Initial commit

This commit is contained in:
Arda Xi
2018-12-27 20:22:33 +01:00
commit 640023e0f8
12 changed files with 1889 additions and 0 deletions

410
src/lib.rs Normal file
View File

@@ -0,0 +1,410 @@
// This file is part of ctap, a Rust implementation of the FIDO2 protocol.
// Copyright (c) Ariën Holthuizen <contact@ardaxi.com>
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! An implementation of the CTAP2 protocol over USB.
//!
//! # Example
//!
//! ```
//! # fn do_fido() -> ctap::FidoResult<()> {
//! let devices = ctap::get_devices()?;
//! let device_info = &devices[0];
//! let mut device = ctap::FidoDevice::new(device_info)?;
//!
//! // This can be omitted if the FIDO device is not configured with a PIN.
//! let pin = "test";
//! device.unlock(pin)?;
//!
//! // In a real application these values would come from the requesting app.
//! let rp_id = "rp_id";
//! let user_id = [0];
//! let user_name = "user_name";
//! let client_data_hash = [0; 32];
//! let cred = device.make_credential(
//! rp_id,
//! &user_id,
//! user_name,
//! &client_data_hash
//! )?;
//!
//! // In a real application the credential would be stored and used later.
//! let result = device.get_assertion(&cred, &client_data_hash);
//! # Ok(())
//! # }
#![allow(dead_code)]
extern crate rand;
extern crate failure;
#[macro_use]
extern crate failure_derive;
#[macro_use]
extern crate num_derive;
extern crate num_traits;
extern crate byteorder;
extern crate cbor as cbor_codec;
extern crate ring;
extern crate untrusted;
extern crate crypto as rust_crypto;
mod packet;
mod hid_common;
mod hid_linux;
mod error;
mod crypto;
mod cbor;
use std::cmp;
use std::u8;
use std::u16;
use std::fs;
use std::io::{Read, Write, Cursor};
use failure::{Fail, ResultExt};
use rand::prelude::*;
use num_traits::FromPrimitive;
use self::hid_linux as hid;
use self::packet::CtapCommand;
use self::packet::Packet;
pub use self::error::*;
static BROADCAST_CID: [u8; 4] = [0xff, 0xff, 0xff, 0xff];
/// Looks for any connected HID devices and returns those that support FIDO.
pub fn get_devices() -> error::FidoResult<Vec<hid::DeviceInfo>> {
Ok(
hid::enumerate()
.context(FidoErrorKind::Io)?
.into_iter()
.filter(|dev| dev.usage_page == 0xf1d0 && dev.usage == 0x21)
.collect(),
)
}
/// A credential created by a FIDO2 authenticator.
#[derive(Debug)]
pub struct FidoCredential {
/// The ID provided by the authenticator.
pub id: Vec<u8>,
/// The public key provided by the authenticator, in uncompressed form.
pub public_key: Vec<u8>,
/// The Relying Party ID provided by the platform when this key was generated.
pub rp_id: String,
}
/// An opened FIDO authenticator.
pub struct FidoDevice {
device: fs::File,
packet_size: u16,
channel_id: [u8; 4],
needs_pin: bool,
shared_secret: Option<crypto::SharedSecret>,
pin_token: Option<crypto::PinToken>,
}
impl FidoDevice {
/// Open and initialize a given device. DeviceInfo is provided by the `get_devices`
/// function. This method will allocate a channel for this application, verify that
/// it supports FIDO2, and checks if a PIN is set.
///
/// This method will fail if the device can't be opened, if the device returns
/// malformed data or if the device is not supported.
pub fn new(device: &hid::DeviceInfo) -> error::FidoResult<Self> {
let mut options = fs::OpenOptions::new();
options.read(true).write(true);
let mut dev = FidoDevice {
device: options.open(&device.path).context(FidoErrorKind::Io)?,
packet_size: 64,
channel_id: BROADCAST_CID,
needs_pin: false,
shared_secret: None,
pin_token: None,
};
dev.init()?;
Ok(dev)
}
fn init(&mut self) -> FidoResult<()> {
let mut nonce = [0u8; 8];
thread_rng().fill_bytes(&mut nonce);
let response = self.exchange(CtapCommand::Init, &nonce)?;
if response.len() < 17 || response[0..8] != nonce {
Err(FidoErrorKind::ParseCtap)?
}
self.channel_id.copy_from_slice(&response[8..12]);
let response = match self.cbor(cbor::Request::GetInfo)? {
cbor::Response::GetInfo(resp) => resp,
_ => Err(FidoErrorKind::CborDecode)?,
};
if !response.versions.iter().any(|ver| ver == "FIDO_2_0") {
Err(FidoErrorKind::DeviceUnsupported)?
}
if !response.pin_protocols.iter().any(|ver| *ver == 1) {
Err(FidoErrorKind::DeviceUnsupported)?
}
self.needs_pin = response.options.client_pin == Some(true);
Ok(())
}
fn init_shared_secret(&mut self) -> FidoResult<()> {
let mut request = cbor::ClientPinRequest::default();
request.pin_protocol = 1;
request.sub_command = 0x02; // getKeyAgreement
let response = match self.cbor(cbor::Request::ClientPin(request))? {
cbor::Response::ClientPin(resp) => resp,
_ => Err(FidoErrorKind::CborDecode)?,
};
if let Some(key_agreement) = response.key_agreement {
self.shared_secret = Some(crypto::SharedSecret::new(&key_agreement)?);
Ok(())
} else {
Err(FidoErrorKind::CborDecode)?
}
}
/// Unlock the device with the provided PIN. Internally this will generate
/// an ECDH keypair, send the encrypted PIN to the device and store the PIN
/// token that the device generates on every power cycle. The PIN itself is
/// not stored.
///
/// This method will fail if the device returns malformed data or the PIN is
/// incorrect.
pub fn unlock(&mut self, pin: &str) -> FidoResult<()> {
while self.shared_secret.is_none() {
self.init_shared_secret()?;
}
// If the PIN is invalid the device should create a new agreementKey,
// so we only replace shared_secret on success.
let shared_secret = self.shared_secret.take().unwrap();
let mut request = cbor::ClientPinRequest::default();
request.pin_protocol = 1;
request.sub_command = 0x05; // getPINToken
request.key_agreement = Some(&shared_secret.public_key);
request.pin_hash_enc = Some(shared_secret.encrypt_pin(pin)?);
let response = match self.cbor(cbor::Request::ClientPin(request))? {
cbor::Response::ClientPin(resp) => resp,
_ => Err(FidoErrorKind::CborDecode)?,
};
if let Some(mut pin_token) = response.pin_token {
self.pin_token = Some(shared_secret.decrypt_token(&mut pin_token)?);
self.shared_secret = Some(shared_secret);
Ok(())
} else {
Err(FidoErrorKind::CborDecode)?
}
}
/// Request a new credential from the authenticator. The `rp_id` should be
/// a stable string used to identify the party for whom the credential is
/// created, for convenience it will be returned with the credential.
/// `user_id` and `user_name` are not required when requesting attestations
/// but they MAY be displayed to the user and MAY be stored on the device
/// to be returned with an attestation if the device supports this.
/// `client_data_hash` SHOULD be a SHA256 hash of provided `client_data`,
/// this is only used to verify the attestation provided by the
/// authenticator. When not implementing WebAuthN this can be any random
/// 32-byte array.
///
/// This method will fail if a PIN is required but the device is not
/// unlocked or if the device returns malformed data.
pub fn make_credential(
&mut self,
rp_id: &str,
user_id: &[u8],
user_name: &str,
client_data_hash: &[u8],
) -> FidoResult<FidoCredential> {
if self.needs_pin && self.pin_token.is_none() {
Err(FidoErrorKind::PinRequired)?
}
if client_data_hash.len() != 32 {
Err(FidoErrorKind::CborEncode)?
}
let pin_auth = self.pin_token.as_ref().map(
|token| token.auth(&client_data_hash),
);
let rp = cbor::PublicKeyCredentialRpEntity {
id: rp_id,
name: None,
icon: None,
};
let user = cbor::PublicKeyCredentialUserEntity {
id: user_id,
name: user_name,
icon: None,
display_name: None,
};
let pub_key_cred_params = [("public-key", -7)];
let request = cbor::MakeCredentialRequest {
client_data_hash,
rp,
user,
pub_key_cred_params: &pub_key_cred_params,
exclude_list: Default::default(),
extensions: Default::default(),
options: Some(cbor::AuthenticatorOptions {
rk: false,
uv: true,
}),
pin_auth,
pin_protocol: pin_auth.and(Some(0x01)),
};
let response = match self.cbor(cbor::Request::MakeCredential(request))? {
cbor::Response::MakeCredential(resp) => resp,
_ => Err(FidoErrorKind::CborDecode)?,
};
let public_key = cbor::P256Key::from_cose(
&response
.auth_data
.attested_credential_data
.credential_public_key,
)?
.bytes();
Ok(FidoCredential {
id: response.auth_data.attested_credential_data.credential_id,
rp_id: String::from(rp_id),
public_key: Vec::from(&public_key[..]),
})
}
/// Request an assertion from the authenticator for a given credential.
/// `client_data_hash` SHOULD be a SHA256 hash of provided `client_data`,
/// this is signed and verified as part of the attestation. When not
/// implementing WebAuthN this can be any random 32-byte array.
///
/// This method will return whether the assertion matches the credential
/// provided, and will fail if a PIN is required but not provided or if the
/// device returns malformed data.
pub fn get_assertion(
&mut self,
credential: &FidoCredential,
client_data_hash: &[u8],
) -> FidoResult<bool> {
if self.needs_pin && self.pin_token.is_none() {
Err(FidoErrorKind::PinRequired)?
}
if client_data_hash.len() != 32 {
Err(FidoErrorKind::CborEncode)?
}
let pin_auth = self.pin_token.as_ref().map(
|token| token.auth(&client_data_hash),
);
let allow_list = [
cbor::PublicKeyCredentialDescriptor {
cred_type: String::from("public-key"),
id: credential.id.clone(),
},
];
let request = cbor::GetAssertionRequest {
rp_id: &credential.rp_id,
client_data_hash: client_data_hash,
allow_list: &allow_list,
extensions: Default::default(),
options: Some(cbor::AuthenticatorOptions {
rk: false,
uv: true,
}),
pin_auth,
pin_protocol: pin_auth.and(Some(0x01)),
};
let response = match self.cbor(cbor::Request::GetAssertion(request))? {
cbor::Response::GetAssertion(resp) => resp,
_ => Err(FidoErrorKind::CborDecode)?,
};
Ok(crypto::verify_signature(
&credential.public_key,
&client_data_hash,
&response.auth_data_bytes,
&response.signature,
))
}
fn cbor(&mut self, request: cbor::Request) -> FidoResult<cbor::Response> {
let mut buf = Cursor::new(Vec::new());
request.encode(&mut buf).context(FidoErrorKind::CborEncode)?;
let response = self.exchange(CtapCommand::Cbor, &buf.into_inner())?;
request
.decode(Cursor::new(response))
.context(FidoErrorKind::CborDecode)
.map_err(From::from)
}
fn exchange(&mut self, cmd: CtapCommand, payload: &[u8]) -> FidoResult<Vec<u8>> {
self.send(&cmd, payload)?;
self.receive(&cmd)
}
fn send(&mut self, cmd: &CtapCommand, payload: &[u8]) -> FidoResult<()> {
if payload.is_empty() || payload.len() > u16::MAX as usize {
Err(FidoErrorKind::WritePacket)?
}
let to_send = payload.len() as u16;
let max_payload = (self.packet_size - 7) as usize;
let (frame, payload) = payload.split_at(cmp::min(payload.len(), max_payload));
{
let packet = packet::InitPacket::new(&self.channel_id, cmd, to_send, frame);
self.device.write(packet.to_wire_format()).context(
FidoErrorKind::WritePacket,
)?;
}
if payload.is_empty() {
return Ok(());
}
let max_payload = (self.packet_size - 5) as usize;
for (seq, frame) in (0..u8::MAX).zip(payload.chunks(max_payload)) {
let packet = packet::ContPacket::new(&self.channel_id, seq, frame);
self.device.write(packet.to_wire_format()).context(
FidoErrorKind::WritePacket,
)?;
}
self.device.flush().context(FidoErrorKind::WritePacket)?;
Ok(())
}
fn receive(&mut self, cmd: &CtapCommand) -> FidoResult<Vec<u8>> {
let mut first_packet: Option<packet::InitPacket> = None;
let mut packet_size = 0;
while first_packet.is_none() {
let mut buf = [0; 64];
packet_size = self.device.read(&mut buf).context(
FidoErrorKind::ReadPacket,
)?;
let packet = packet::InitPacket::from_wire_format(&buf[0..packet_size]);
if packet.cmd() == CtapCommand::Error {
Err(
packet::CtapError::from_u8(packet.payload()[0])
.unwrap_or(packet::CtapError::Other)
.context(FidoErrorKind::ParseCtap),
)?
}
if packet.cid() == self.channel_id && &packet.cmd() == cmd {
first_packet = Some(packet);
}
}
let first_packet = first_packet.unwrap();
let mut data = first_packet.payload()[0..(packet_size - 7)].to_vec();
let mut to_read = (first_packet.size() as isize) - data.len() as isize;
let mut seq = 0;
while to_read > 0 {
let mut buf = [0; 64];
let packet_size = self.device.read(&mut buf).context(
FidoErrorKind::ReadPacket,
)?;
let packet = packet::ContPacket::from_wire_format(&buf[0..packet_size]);
if packet.cid() != self.channel_id {
continue;
}
if packet.seq() != seq {
Err(FidoErrorKind::InvalidSequence)?
}
let payload_size = packet_size - 5;
to_read -= payload_size as isize;
data.extend(&packet.payload()[0..payload_size]);
seq += 1;
}
Ok(data)
}
}