python3 update
This commit is contained in:
@@ -1,379 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# PublicKey/DSA.py : DSA signature primitive
|
||||
#
|
||||
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
|
||||
"""DSA public-key signature algorithm.
|
||||
|
||||
DSA_ is a widespread public-key signature algorithm. Its security is
|
||||
based on the discrete logarithm problem (DLP_). Given a cyclic
|
||||
group, a generator *g*, and an element *h*, it is hard
|
||||
to find an integer *x* such that *g^x = h*. The problem is believed
|
||||
to be difficult, and it has been proved such (and therefore secure) for
|
||||
more than 30 years.
|
||||
|
||||
The group is actually a sub-group over the integers modulo *p*, with *p* prime.
|
||||
The sub-group order is *q*, which is prime too; it always holds that *(p-1)* is a multiple of *q*.
|
||||
The cryptographic strength is linked to the magnitude of *p* and *q*.
|
||||
The signer holds a value *x* (*0<x<q-1*) as private key, and its public
|
||||
key (*y* where *y=g^x mod p*) is distributed.
|
||||
|
||||
In 2012, a sufficient size is deemed to be 2048 bits for *p* and 256 bits for *q*.
|
||||
For more information, see the most recent ECRYPT_ report.
|
||||
|
||||
DSA is reasonably secure for new designs.
|
||||
|
||||
The algorithm can only be used for authentication (digital signature).
|
||||
DSA cannot be used for confidentiality (encryption).
|
||||
|
||||
The values *(p,q,g)* are called *domain parameters*;
|
||||
they are not sensitive but must be shared by both parties (the signer and the verifier).
|
||||
Different signers can share the same domain parameters with no security
|
||||
concerns.
|
||||
|
||||
The DSA signature is twice as big as the size of *q* (64 bytes if *q* is 256 bit
|
||||
long).
|
||||
|
||||
This module provides facilities for generating new DSA keys and for constructing
|
||||
them from known components. DSA keys allows you to perform basic signing and
|
||||
verification.
|
||||
|
||||
>>> from Crypto.Random import random
|
||||
>>> from Crypto.PublicKey import DSA
|
||||
>>> from Crypto.Hash import SHA
|
||||
>>>
|
||||
>>> message = "Hello"
|
||||
>>> key = DSA.generate(1024)
|
||||
>>> h = SHA.new(message).digest()
|
||||
>>> k = random.StrongRandom().randint(1,key.q-1)
|
||||
>>> sig = key.sign(h,k)
|
||||
>>> ...
|
||||
>>> if key.verify(h,sig):
|
||||
>>> print "OK"
|
||||
>>> else:
|
||||
>>> print "Incorrect signature"
|
||||
|
||||
.. _DSA: http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
|
||||
.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
|
||||
.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
|
||||
"""
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
__all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj']
|
||||
|
||||
import sys
|
||||
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
|
||||
from Crypto.Util.py21compat import *
|
||||
|
||||
from Crypto.PublicKey import _DSA, _slowmath, pubkey
|
||||
from Crypto import Random
|
||||
|
||||
try:
|
||||
from Crypto.PublicKey import _fastmath
|
||||
except ImportError:
|
||||
_fastmath = None
|
||||
|
||||
class _DSAobj(pubkey.pubkey):
|
||||
"""Class defining an actual DSA key.
|
||||
|
||||
:undocumented: __getstate__, __setstate__, __repr__, __getattr__
|
||||
"""
|
||||
#: Dictionary of DSA parameters.
|
||||
#:
|
||||
#: A public key will only have the following entries:
|
||||
#:
|
||||
#: - **y**, the public key.
|
||||
#: - **g**, the generator.
|
||||
#: - **p**, the modulus.
|
||||
#: - **q**, the order of the sub-group.
|
||||
#:
|
||||
#: A private key will also have:
|
||||
#:
|
||||
#: - **x**, the private key.
|
||||
keydata = ['y', 'g', 'p', 'q', 'x']
|
||||
|
||||
def __init__(self, implementation, key):
|
||||
self.implementation = implementation
|
||||
self.key = key
|
||||
|
||||
def __getattr__(self, attrname):
|
||||
if attrname in self.keydata:
|
||||
# For backward compatibility, allow the user to get (not set) the
|
||||
# DSA key parameters directly from this object.
|
||||
return getattr(self.key, attrname)
|
||||
else:
|
||||
raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
|
||||
|
||||
def sign(self, M, K):
|
||||
"""Sign a piece of data with DSA.
|
||||
|
||||
:Parameter M: The piece of data to sign with DSA. It may
|
||||
not be longer in bit size than the sub-group order (*q*).
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter K: A secret number, chosen randomly in the closed
|
||||
range *[1,q-1]*.
|
||||
:Type K: long (recommended) or byte string (not recommended)
|
||||
|
||||
:attention: selection of *K* is crucial for security. Generating a
|
||||
random number larger than *q* and taking the modulus by *q* is
|
||||
**not** secure, since smaller values will occur more frequently.
|
||||
Generating a random number systematically smaller than *q-1*
|
||||
(e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general,
|
||||
it shall not be possible for an attacker to know the value of `any
|
||||
bit of K`__.
|
||||
|
||||
:attention: The number *K* shall not be reused for any other
|
||||
operation and shall be discarded immediately.
|
||||
|
||||
:attention: M must be a digest cryptographic hash, otherwise
|
||||
an attacker may mount an existential forgery attack.
|
||||
|
||||
:Return: A tuple with 2 longs.
|
||||
|
||||
.. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm
|
||||
"""
|
||||
return pubkey.pubkey.sign(self, M, K)
|
||||
|
||||
def verify(self, M, signature):
|
||||
"""Verify the validity of a DSA signature.
|
||||
|
||||
:Parameter M: The expected message.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter signature: The DSA signature to verify.
|
||||
:Type signature: A tuple with 2 longs as return by `sign`
|
||||
|
||||
:Return: True if the signature is correct, False otherwise.
|
||||
"""
|
||||
return pubkey.pubkey.verify(self, M, signature)
|
||||
|
||||
def _encrypt(self, c, K):
|
||||
raise TypeError("DSA cannot encrypt")
|
||||
|
||||
def _decrypt(self, c):
|
||||
raise TypeError("DSA cannot decrypt")
|
||||
|
||||
def _blind(self, m, r):
|
||||
raise TypeError("DSA cannot blind")
|
||||
|
||||
def _unblind(self, m, r):
|
||||
raise TypeError("DSA cannot unblind")
|
||||
|
||||
def _sign(self, m, k):
|
||||
return self.key._sign(m, k)
|
||||
|
||||
def _verify(self, m, sig):
|
||||
(r, s) = sig
|
||||
return self.key._verify(m, r, s)
|
||||
|
||||
def has_private(self):
|
||||
return self.key.has_private()
|
||||
|
||||
def size(self):
|
||||
return self.key.size()
|
||||
|
||||
def can_blind(self):
|
||||
return False
|
||||
|
||||
def can_encrypt(self):
|
||||
return False
|
||||
|
||||
def can_sign(self):
|
||||
return True
|
||||
|
||||
def publickey(self):
|
||||
return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q))
|
||||
|
||||
def __getstate__(self):
|
||||
d = {}
|
||||
for k in self.keydata:
|
||||
try:
|
||||
d[k] = getattr(self.key, k)
|
||||
except AttributeError:
|
||||
pass
|
||||
return d
|
||||
|
||||
def __setstate__(self, d):
|
||||
if not hasattr(self, 'implementation'):
|
||||
self.implementation = DSAImplementation()
|
||||
t = []
|
||||
for k in self.keydata:
|
||||
if not d.has_key(k):
|
||||
break
|
||||
t.append(d[k])
|
||||
self.key = self.implementation._math.dsa_construct(*tuple(t))
|
||||
|
||||
def __repr__(self):
|
||||
attrs = []
|
||||
for k in self.keydata:
|
||||
if k == 'p':
|
||||
attrs.append("p(%d)" % (self.size()+1,))
|
||||
elif hasattr(self.key, k):
|
||||
attrs.append(k)
|
||||
if self.has_private():
|
||||
attrs.append("private")
|
||||
# PY3K: This is meant to be text, do not change to bytes (data)
|
||||
return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
|
||||
|
||||
class DSAImplementation(object):
|
||||
"""
|
||||
A DSA key factory.
|
||||
|
||||
This class is only internally used to implement the methods of the
|
||||
`Crypto.PublicKey.DSA` module.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""Create a new DSA key factory.
|
||||
|
||||
:Keywords:
|
||||
use_fast_math : bool
|
||||
Specify which mathematic library to use:
|
||||
|
||||
- *None* (default). Use fastest math available.
|
||||
- *True* . Use fast math.
|
||||
- *False* . Use slow math.
|
||||
default_randfunc : callable
|
||||
Specify how to collect random data:
|
||||
|
||||
- *None* (default). Use Random.new().read().
|
||||
- not *None* . Use the specified function directly.
|
||||
:Raise RuntimeError:
|
||||
When **use_fast_math** =True but fast math is not available.
|
||||
"""
|
||||
use_fast_math = kwargs.get('use_fast_math', None)
|
||||
if use_fast_math is None: # Automatic
|
||||
if _fastmath is not None:
|
||||
self._math = _fastmath
|
||||
else:
|
||||
self._math = _slowmath
|
||||
|
||||
elif use_fast_math: # Explicitly select fast math
|
||||
if _fastmath is not None:
|
||||
self._math = _fastmath
|
||||
else:
|
||||
raise RuntimeError("fast math module not available")
|
||||
|
||||
else: # Explicitly select slow math
|
||||
self._math = _slowmath
|
||||
|
||||
self.error = self._math.error
|
||||
|
||||
# 'default_randfunc' parameter:
|
||||
# None (default) - use Random.new().read
|
||||
# not None - use the specified function
|
||||
self._default_randfunc = kwargs.get('default_randfunc', None)
|
||||
self._current_randfunc = None
|
||||
|
||||
def _get_randfunc(self, randfunc):
|
||||
if randfunc is not None:
|
||||
return randfunc
|
||||
elif self._current_randfunc is None:
|
||||
self._current_randfunc = Random.new().read
|
||||
return self._current_randfunc
|
||||
|
||||
def generate(self, bits, randfunc=None, progress_func=None):
|
||||
"""Randomly generate a fresh, new DSA key.
|
||||
|
||||
:Parameters:
|
||||
bits : int
|
||||
Key length, or size (in bits) of the DSA modulus
|
||||
*p*.
|
||||
It must be a multiple of 64, in the closed
|
||||
interval [512,1024].
|
||||
randfunc : callable
|
||||
Random number generation function; it should accept
|
||||
a single integer N and return a string of random data
|
||||
N bytes long.
|
||||
If not specified, a new one will be instantiated
|
||||
from ``Crypto.Random``.
|
||||
progress_func : callable
|
||||
Optional function that will be called with a short string
|
||||
containing the key parameter currently being generated;
|
||||
it's useful for interactive applications where a user is
|
||||
waiting for a key to be generated.
|
||||
|
||||
:attention: You should always use a cryptographically secure random number generator,
|
||||
such as the one defined in the ``Crypto.Random`` module; **don't** just use the
|
||||
current time and the ``random`` module.
|
||||
|
||||
:Return: A DSA key object (`_DSAobj`).
|
||||
|
||||
:Raise ValueError:
|
||||
When **bits** is too little, too big, or not a multiple of 64.
|
||||
"""
|
||||
|
||||
# Check against FIPS 186-2, which says that the size of the prime p
|
||||
# must be a multiple of 64 bits between 512 and 1024
|
||||
for i in (0, 1, 2, 3, 4, 5, 6, 7, 8):
|
||||
if bits == 512 + 64*i:
|
||||
return self._generate(bits, randfunc, progress_func)
|
||||
|
||||
# The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit
|
||||
# primes, but only with longer q values. Since the current DSA
|
||||
# implementation only supports a 160-bit q, we don't support larger
|
||||
# values.
|
||||
raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,))
|
||||
|
||||
def _generate(self, bits, randfunc=None, progress_func=None):
|
||||
rf = self._get_randfunc(randfunc)
|
||||
obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module
|
||||
key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x)
|
||||
return _DSAobj(self, key)
|
||||
|
||||
def construct(self, tup):
|
||||
"""Construct a DSA key from a tuple of valid DSA components.
|
||||
|
||||
The modulus *p* must be a prime.
|
||||
|
||||
The following equations must apply:
|
||||
|
||||
- p-1 = 0 mod q
|
||||
- g^x = y mod p
|
||||
- 0 < x < q
|
||||
- 1 < g < p
|
||||
|
||||
:Parameters:
|
||||
tup : tuple
|
||||
A tuple of long integers, with 4 or 5 items
|
||||
in the following order:
|
||||
|
||||
1. Public key (*y*).
|
||||
2. Sub-group generator (*g*).
|
||||
3. Modulus, finite field order (*p*).
|
||||
4. Sub-group order (*q*).
|
||||
5. Private key (*x*). Optional.
|
||||
|
||||
:Return: A DSA key object (`_DSAobj`).
|
||||
"""
|
||||
key = self._math.dsa_construct(*tup)
|
||||
return _DSAobj(self, key)
|
||||
|
||||
_impl = DSAImplementation()
|
||||
generate = _impl.generate
|
||||
construct = _impl.construct
|
||||
error = _impl.error
|
||||
|
||||
# vim:set ts=4 sw=4 sts=4 expandtab:
|
||||
|
@@ -1,373 +0,0 @@
|
||||
#
|
||||
# ElGamal.py : ElGamal encryption/decryption and signatures
|
||||
#
|
||||
# Part of the Python Cryptography Toolkit
|
||||
#
|
||||
# Originally written by: A.M. Kuchling
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
|
||||
"""ElGamal public-key algorithm (randomized encryption and signature).
|
||||
|
||||
Signature algorithm
|
||||
-------------------
|
||||
The security of the ElGamal signature scheme is based (like DSA) on the discrete
|
||||
logarithm problem (DLP_). Given a cyclic group, a generator *g*,
|
||||
and an element *h*, it is hard to find an integer *x* such that *g^x = h*.
|
||||
|
||||
The group is the largest multiplicative sub-group of the integers modulo *p*,
|
||||
with *p* prime.
|
||||
The signer holds a value *x* (*0<x<p-1*) as private key, and its public
|
||||
key (*y* where *y=g^x mod p*) is distributed.
|
||||
|
||||
The ElGamal signature is twice as big as *p*.
|
||||
|
||||
Encryption algorithm
|
||||
--------------------
|
||||
The security of the ElGamal encryption scheme is based on the computational
|
||||
Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*,
|
||||
and two integers *a* and *b*, it is difficult to find
|
||||
the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*.
|
||||
|
||||
As before, the group is the largest multiplicative sub-group of the integers
|
||||
modulo *p*, with *p* prime.
|
||||
The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key
|
||||
(*b* where *b*=g^a*) is given to the sender.
|
||||
|
||||
The ElGamal ciphertext is twice as big as *p*.
|
||||
|
||||
Domain parameters
|
||||
-----------------
|
||||
For both signature and encryption schemes, the values *(p,g)* are called
|
||||
*domain parameters*.
|
||||
They are not sensitive but must be distributed to all parties (senders and
|
||||
receivers).
|
||||
Different signers can share the same domain parameters, as can
|
||||
different recipients of encrypted messages.
|
||||
|
||||
Security
|
||||
--------
|
||||
Both DLP and CDH problem are believed to be difficult, and they have been proved
|
||||
such (and therefore secure) for more than 30 years.
|
||||
|
||||
The cryptographic strength is linked to the magnitude of *p*.
|
||||
In 2012, a sufficient size for *p* is deemed to be 2048 bits.
|
||||
For more information, see the most recent ECRYPT_ report.
|
||||
|
||||
Even though ElGamal algorithms are in theory reasonably secure for new designs,
|
||||
in practice there are no real good reasons for using them.
|
||||
The signature is four times larger than the equivalent DSA, and the ciphertext
|
||||
is two times larger than the equivalent RSA.
|
||||
|
||||
Functionality
|
||||
-------------
|
||||
This module provides facilities for generating new ElGamal keys and for constructing
|
||||
them from known components. ElGamal keys allows you to perform basic signing,
|
||||
verification, encryption, and decryption.
|
||||
|
||||
>>> from Crypto import Random
|
||||
>>> from Crypto.Random import random
|
||||
>>> from Crypto.PublicKey import ElGamal
|
||||
>>> from Crypto.Util.number import GCD
|
||||
>>> from Crypto.Hash import SHA
|
||||
>>>
|
||||
>>> message = "Hello"
|
||||
>>> key = ElGamal.generate(1024, Random.new().read)
|
||||
>>> h = SHA.new(message).digest()
|
||||
>>> while 1:
|
||||
>>> k = random.StrongRandom().randint(1,key.p-1)
|
||||
>>> if GCD(k,key.p-1)==1: break
|
||||
>>> sig = key.sign(h,k)
|
||||
>>> ...
|
||||
>>> if key.verify(h,sig):
|
||||
>>> print "OK"
|
||||
>>> else:
|
||||
>>> print "Incorrect signature"
|
||||
|
||||
.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
|
||||
.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
|
||||
.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
|
||||
"""
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
__all__ = ['generate', 'construct', 'error', 'ElGamalobj']
|
||||
|
||||
from Crypto.PublicKey.pubkey import *
|
||||
from Crypto.Util import number
|
||||
|
||||
class error (Exception):
|
||||
pass
|
||||
|
||||
# Generate an ElGamal key with N bits
|
||||
def generate(bits, randfunc, progress_func=None):
|
||||
"""Randomly generate a fresh, new ElGamal key.
|
||||
|
||||
The key will be safe for use for both encryption and signature
|
||||
(although it should be used for **only one** purpose).
|
||||
|
||||
:Parameters:
|
||||
bits : int
|
||||
Key length, or size (in bits) of the modulus *p*.
|
||||
Recommended value is 2048.
|
||||
randfunc : callable
|
||||
Random number generation function; it should accept
|
||||
a single integer N and return a string of random data
|
||||
N bytes long.
|
||||
progress_func : callable
|
||||
Optional function that will be called with a short string
|
||||
containing the key parameter currently being generated;
|
||||
it's useful for interactive applications where a user is
|
||||
waiting for a key to be generated.
|
||||
|
||||
:attention: You should always use a cryptographically secure random number generator,
|
||||
such as the one defined in the ``Crypto.Random`` module; **don't** just use the
|
||||
current time and the ``random`` module.
|
||||
|
||||
:Return: An ElGamal key object (`ElGamalobj`).
|
||||
"""
|
||||
obj=ElGamalobj()
|
||||
# Generate a safe prime p
|
||||
# See Algorithm 4.86 in Handbook of Applied Cryptography
|
||||
if progress_func:
|
||||
progress_func('p\n')
|
||||
while 1:
|
||||
q = bignum(getPrime(bits-1, randfunc))
|
||||
obj.p = 2*q+1
|
||||
if number.isPrime(obj.p, randfunc=randfunc):
|
||||
break
|
||||
# Generate generator g
|
||||
# See Algorithm 4.80 in Handbook of Applied Cryptography
|
||||
# Note that the order of the group is n=p-1=2q, where q is prime
|
||||
if progress_func:
|
||||
progress_func('g\n')
|
||||
while 1:
|
||||
# We must avoid g=2 because of Bleichenbacher's attack described
|
||||
# in "Generating ElGamal signatures without knowning the secret key",
|
||||
# 1996
|
||||
#
|
||||
obj.g = number.getRandomRange(3, obj.p, randfunc)
|
||||
safe = 1
|
||||
if pow(obj.g, 2, obj.p)==1:
|
||||
safe=0
|
||||
if safe and pow(obj.g, q, obj.p)==1:
|
||||
safe=0
|
||||
# Discard g if it divides p-1 because of the attack described
|
||||
# in Note 11.67 (iii) in HAC
|
||||
if safe and divmod(obj.p-1, obj.g)[1]==0:
|
||||
safe=0
|
||||
# g^{-1} must not divide p-1 because of Khadir's attack
|
||||
# described in "Conditions of the generator for forging ElGamal
|
||||
# signature", 2011
|
||||
ginv = number.inverse(obj.g, obj.p)
|
||||
if safe and divmod(obj.p-1, ginv)[1]==0:
|
||||
safe=0
|
||||
if safe:
|
||||
break
|
||||
# Generate private key x
|
||||
if progress_func:
|
||||
progress_func('x\n')
|
||||
obj.x=number.getRandomRange(2, obj.p-1, randfunc)
|
||||
# Generate public key y
|
||||
if progress_func:
|
||||
progress_func('y\n')
|
||||
obj.y = pow(obj.g, obj.x, obj.p)
|
||||
return obj
|
||||
|
||||
def construct(tup):
|
||||
"""Construct an ElGamal key from a tuple of valid ElGamal components.
|
||||
|
||||
The modulus *p* must be a prime.
|
||||
|
||||
The following conditions must apply:
|
||||
|
||||
- 1 < g < p-1
|
||||
- g^{p-1} = 1 mod p
|
||||
- 1 < x < p-1
|
||||
- g^x = y mod p
|
||||
|
||||
:Parameters:
|
||||
tup : tuple
|
||||
A tuple of long integers, with 3 or 4 items
|
||||
in the following order:
|
||||
|
||||
1. Modulus (*p*).
|
||||
2. Generator (*g*).
|
||||
3. Public key (*y*).
|
||||
4. Private key (*x*). Optional.
|
||||
|
||||
:Return: An ElGamal key object (`ElGamalobj`).
|
||||
"""
|
||||
|
||||
obj=ElGamalobj()
|
||||
if len(tup) not in [3,4]:
|
||||
raise ValueError('argument for construct() wrong length')
|
||||
for i in range(len(tup)):
|
||||
field = obj.keydata[i]
|
||||
setattr(obj, field, tup[i])
|
||||
return obj
|
||||
|
||||
class ElGamalobj(pubkey):
|
||||
"""Class defining an ElGamal key.
|
||||
|
||||
:undocumented: __getstate__, __setstate__, __repr__, __getattr__
|
||||
"""
|
||||
|
||||
#: Dictionary of ElGamal parameters.
|
||||
#:
|
||||
#: A public key will only have the following entries:
|
||||
#:
|
||||
#: - **y**, the public key.
|
||||
#: - **g**, the generator.
|
||||
#: - **p**, the modulus.
|
||||
#:
|
||||
#: A private key will also have:
|
||||
#:
|
||||
#: - **x**, the private key.
|
||||
keydata=['p', 'g', 'y', 'x']
|
||||
|
||||
def encrypt(self, plaintext, K):
|
||||
"""Encrypt a piece of data with ElGamal.
|
||||
|
||||
:Parameter plaintext: The piece of data to encrypt with ElGamal.
|
||||
It must be numerically smaller than the module (*p*).
|
||||
:Type plaintext: byte string or long
|
||||
|
||||
:Parameter K: A secret number, chosen randomly in the closed
|
||||
range *[1,p-2]*.
|
||||
:Type K: long (recommended) or byte string (not recommended)
|
||||
|
||||
:Return: A tuple with two items. Each item is of the same type as the
|
||||
plaintext (string or long).
|
||||
|
||||
:attention: selection of *K* is crucial for security. Generating a
|
||||
random number larger than *p-1* and taking the modulus by *p-1* is
|
||||
**not** secure, since smaller values will occur more frequently.
|
||||
Generating a random number systematically smaller than *p-1*
|
||||
(e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
|
||||
In general, it shall not be possible for an attacker to know
|
||||
the value of any bit of K.
|
||||
|
||||
:attention: The number *K* shall not be reused for any other
|
||||
operation and shall be discarded immediately.
|
||||
"""
|
||||
return pubkey.encrypt(self, plaintext, K)
|
||||
|
||||
def decrypt(self, ciphertext):
|
||||
"""Decrypt a piece of data with ElGamal.
|
||||
|
||||
:Parameter ciphertext: The piece of data to decrypt with ElGamal.
|
||||
:Type ciphertext: byte string, long or a 2-item tuple as returned
|
||||
by `encrypt`
|
||||
|
||||
:Return: A byte string if ciphertext was a byte string or a tuple
|
||||
of byte strings. A long otherwise.
|
||||
"""
|
||||
return pubkey.decrypt(self, ciphertext)
|
||||
|
||||
def sign(self, M, K):
|
||||
"""Sign a piece of data with ElGamal.
|
||||
|
||||
:Parameter M: The piece of data to sign with ElGamal. It may
|
||||
not be longer in bit size than *p-1*.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter K: A secret number, chosen randomly in the closed
|
||||
range *[1,p-2]* and such that *gcd(k,p-1)=1*.
|
||||
:Type K: long (recommended) or byte string (not recommended)
|
||||
|
||||
:attention: selection of *K* is crucial for security. Generating a
|
||||
random number larger than *p-1* and taking the modulus by *p-1* is
|
||||
**not** secure, since smaller values will occur more frequently.
|
||||
Generating a random number systematically smaller than *p-1*
|
||||
(e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
|
||||
In general, it shall not be possible for an attacker to know
|
||||
the value of any bit of K.
|
||||
|
||||
:attention: The number *K* shall not be reused for any other
|
||||
operation and shall be discarded immediately.
|
||||
|
||||
:attention: M must be be a cryptographic hash, otherwise an
|
||||
attacker may mount an existential forgery attack.
|
||||
|
||||
:Return: A tuple with 2 longs.
|
||||
"""
|
||||
return pubkey.sign(self, M, K)
|
||||
|
||||
def verify(self, M, signature):
|
||||
"""Verify the validity of an ElGamal signature.
|
||||
|
||||
:Parameter M: The expected message.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter signature: The ElGamal signature to verify.
|
||||
:Type signature: A tuple with 2 longs as return by `sign`
|
||||
|
||||
:Return: True if the signature is correct, False otherwise.
|
||||
"""
|
||||
return pubkey.verify(self, M, signature)
|
||||
|
||||
def _encrypt(self, M, K):
|
||||
a=pow(self.g, K, self.p)
|
||||
b=( M*pow(self.y, K, self.p) ) % self.p
|
||||
return ( a,b )
|
||||
|
||||
def _decrypt(self, M):
|
||||
if (not hasattr(self, 'x')):
|
||||
raise TypeError('Private key not available in this object')
|
||||
ax=pow(M[0], self.x, self.p)
|
||||
plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
|
||||
return plaintext
|
||||
|
||||
def _sign(self, M, K):
|
||||
if (not hasattr(self, 'x')):
|
||||
raise TypeError('Private key not available in this object')
|
||||
p1=self.p-1
|
||||
if (GCD(K, p1)!=1):
|
||||
raise ValueError('Bad K value: GCD(K,p-1)!=1')
|
||||
a=pow(self.g, K, self.p)
|
||||
t=(M-self.x*a) % p1
|
||||
while t<0: t=t+p1
|
||||
b=(t*inverse(K, p1)) % p1
|
||||
return (a, b)
|
||||
|
||||
def _verify(self, M, sig):
|
||||
if sig[0]<1 or sig[0]>self.p-1:
|
||||
return 0
|
||||
v1=pow(self.y, sig[0], self.p)
|
||||
v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
|
||||
v2=pow(self.g, M, self.p)
|
||||
if v1==v2:
|
||||
return 1
|
||||
return 0
|
||||
|
||||
def size(self):
|
||||
return number.size(self.p) - 1
|
||||
|
||||
def has_private(self):
|
||||
if hasattr(self, 'x'):
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
def publickey(self):
|
||||
return construct((self.p, self.g, self.y))
|
||||
|
||||
|
||||
object=ElGamalobj
|
@@ -1,719 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# PublicKey/RSA.py : RSA public key primitive
|
||||
#
|
||||
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
|
||||
"""RSA public-key cryptography algorithm (signature and encryption).
|
||||
|
||||
RSA_ is the most widespread and used public key algorithm. Its security is
|
||||
based on the difficulty of factoring large integers. The algorithm has
|
||||
withstood attacks for 30 years, and it is therefore considered reasonably
|
||||
secure for new designs.
|
||||
|
||||
The algorithm can be used for both confidentiality (encryption) and
|
||||
authentication (digital signature). It is worth noting that signing and
|
||||
decryption are significantly slower than verification and encryption.
|
||||
The cryptograhic strength is primarily linked to the length of the modulus *n*.
|
||||
In 2012, a sufficient length is deemed to be 2048 bits. For more information,
|
||||
see the most recent ECRYPT_ report.
|
||||
|
||||
Both RSA ciphertext and RSA signature are as big as the modulus *n* (256
|
||||
bytes if *n* is 2048 bit long).
|
||||
|
||||
This module provides facilities for generating fresh, new RSA keys, constructing
|
||||
them from known components, exporting them, and importing them.
|
||||
|
||||
>>> from Crypto.PublicKey import RSA
|
||||
>>>
|
||||
>>> key = RSA.generate(2048)
|
||||
>>> f = open('mykey.pem','w')
|
||||
>>> f.write(RSA.exportKey('PEM'))
|
||||
>>> f.close()
|
||||
...
|
||||
>>> f = open('mykey.pem','r')
|
||||
>>> key = RSA.importKey(f.read())
|
||||
|
||||
Even though you may choose to directly use the methods of an RSA key object
|
||||
to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`),
|
||||
it is recommended to use one of the standardized schemes instead (like
|
||||
`Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`).
|
||||
|
||||
.. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29
|
||||
.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
|
||||
|
||||
:sort: generate,construct,importKey,error
|
||||
"""
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
__all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation', '_RSAobj']
|
||||
|
||||
import sys
|
||||
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
|
||||
from Crypto.Util.py21compat import *
|
||||
from Crypto.Util.py3compat import *
|
||||
#from Crypto.Util.python_compat import *
|
||||
from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes
|
||||
|
||||
from Crypto.PublicKey import _RSA, _slowmath, pubkey
|
||||
from Crypto import Random
|
||||
|
||||
from Crypto.Util.asn1 import DerObject, DerSequence, DerNull
|
||||
import binascii
|
||||
import struct
|
||||
|
||||
from Crypto.Util.number import inverse
|
||||
|
||||
from Crypto.Util.number import inverse
|
||||
|
||||
try:
|
||||
from Crypto.PublicKey import _fastmath
|
||||
except ImportError:
|
||||
_fastmath = None
|
||||
|
||||
class _RSAobj(pubkey.pubkey):
|
||||
"""Class defining an actual RSA key.
|
||||
|
||||
:undocumented: __getstate__, __setstate__, __repr__, __getattr__
|
||||
"""
|
||||
#: Dictionary of RSA parameters.
|
||||
#:
|
||||
#: A public key will only have the following entries:
|
||||
#:
|
||||
#: - **n**, the modulus.
|
||||
#: - **e**, the public exponent.
|
||||
#:
|
||||
#: A private key will also have:
|
||||
#:
|
||||
#: - **d**, the private exponent.
|
||||
#: - **p**, the first factor of n.
|
||||
#: - **q**, the second factor of n.
|
||||
#: - **u**, the CRT coefficient (1/p) mod q.
|
||||
keydata = ['n', 'e', 'd', 'p', 'q', 'u']
|
||||
|
||||
def __init__(self, implementation, key, randfunc=None):
|
||||
self.implementation = implementation
|
||||
self.key = key
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
self._randfunc = randfunc
|
||||
|
||||
def __getattr__(self, attrname):
|
||||
if attrname in self.keydata:
|
||||
# For backward compatibility, allow the user to get (not set) the
|
||||
# RSA key parameters directly from this object.
|
||||
return getattr(self.key, attrname)
|
||||
else:
|
||||
raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
|
||||
|
||||
def encrypt(self, plaintext, K):
|
||||
"""Encrypt a piece of data with RSA.
|
||||
|
||||
:Parameter plaintext: The piece of data to encrypt with RSA. It may not
|
||||
be numerically larger than the RSA module (**n**).
|
||||
:Type plaintext: byte string or long
|
||||
|
||||
:Parameter K: A random parameter (*for compatibility only. This
|
||||
value will be ignored*)
|
||||
:Type K: byte string or long
|
||||
|
||||
:attention: this function performs the plain, primitive RSA encryption
|
||||
(*textbook*). In real applications, you always need to use proper
|
||||
cryptographic padding, and you should not directly encrypt data with
|
||||
this method. Failure to do so may lead to security vulnerabilities.
|
||||
It is recommended to use modules
|
||||
`Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
|
||||
|
||||
:Return: A tuple with two items. The first item is the ciphertext
|
||||
of the same type as the plaintext (string or long). The second item
|
||||
is always None.
|
||||
"""
|
||||
return pubkey.pubkey.encrypt(self, plaintext, K)
|
||||
|
||||
def decrypt(self, ciphertext):
|
||||
"""Decrypt a piece of data with RSA.
|
||||
|
||||
Decryption always takes place with blinding.
|
||||
|
||||
:attention: this function performs the plain, primitive RSA decryption
|
||||
(*textbook*). In real applications, you always need to use proper
|
||||
cryptographic padding, and you should not directly decrypt data with
|
||||
this method. Failure to do so may lead to security vulnerabilities.
|
||||
It is recommended to use modules
|
||||
`Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead.
|
||||
|
||||
:Parameter ciphertext: The piece of data to decrypt with RSA. It may
|
||||
not be numerically larger than the RSA module (**n**). If a tuple,
|
||||
the first item is the actual ciphertext; the second item is ignored.
|
||||
|
||||
:Type ciphertext: byte string, long or a 2-item tuple as returned by
|
||||
`encrypt`
|
||||
|
||||
:Return: A byte string if ciphertext was a byte string or a tuple
|
||||
of byte strings. A long otherwise.
|
||||
"""
|
||||
return pubkey.pubkey.decrypt(self, ciphertext)
|
||||
|
||||
def sign(self, M, K):
|
||||
"""Sign a piece of data with RSA.
|
||||
|
||||
Signing always takes place with blinding.
|
||||
|
||||
:attention: this function performs the plain, primitive RSA decryption
|
||||
(*textbook*). In real applications, you always need to use proper
|
||||
cryptographic padding, and you should not directly sign data with
|
||||
this method. Failure to do so may lead to security vulnerabilities.
|
||||
It is recommended to use modules
|
||||
`Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
|
||||
|
||||
:Parameter M: The piece of data to sign with RSA. It may
|
||||
not be numerically larger than the RSA module (**n**).
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter K: A random parameter (*for compatibility only. This
|
||||
value will be ignored*)
|
||||
:Type K: byte string or long
|
||||
|
||||
:Return: A 2-item tuple. The first item is the actual signature (a
|
||||
long). The second item is always None.
|
||||
"""
|
||||
return pubkey.pubkey.sign(self, M, K)
|
||||
|
||||
def verify(self, M, signature):
|
||||
"""Verify the validity of an RSA signature.
|
||||
|
||||
:attention: this function performs the plain, primitive RSA encryption
|
||||
(*textbook*). In real applications, you always need to use proper
|
||||
cryptographic padding, and you should not directly verify data with
|
||||
this method. Failure to do so may lead to security vulnerabilities.
|
||||
It is recommended to use modules
|
||||
`Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead.
|
||||
|
||||
:Parameter M: The expected message.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter signature: The RSA signature to verify. The first item of
|
||||
the tuple is the actual signature (a long not larger than the modulus
|
||||
**n**), whereas the second item is always ignored.
|
||||
:Type signature: A 2-item tuple as return by `sign`
|
||||
|
||||
:Return: True if the signature is correct, False otherwise.
|
||||
"""
|
||||
return pubkey.pubkey.verify(self, M, signature)
|
||||
|
||||
def _encrypt(self, c, K):
|
||||
return (self.key._encrypt(c),)
|
||||
|
||||
def _decrypt(self, c):
|
||||
#(ciphertext,) = c
|
||||
(ciphertext,) = c[:1] # HACK - We should use the previous line
|
||||
# instead, but this is more compatible and we're
|
||||
# going to replace the Crypto.PublicKey API soon
|
||||
# anyway.
|
||||
|
||||
# Blinded RSA decryption (to prevent timing attacks):
|
||||
# Step 1: Generate random secret blinding factor r, such that 0 < r < n-1
|
||||
r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc)
|
||||
# Step 2: Compute c' = c * r**e mod n
|
||||
cp = self.key._blind(ciphertext, r)
|
||||
# Step 3: Compute m' = c'**d mod n (ordinary RSA decryption)
|
||||
mp = self.key._decrypt(cp)
|
||||
# Step 4: Compute m = m**(r-1) mod n
|
||||
return self.key._unblind(mp, r)
|
||||
|
||||
def _blind(self, m, r):
|
||||
return self.key._blind(m, r)
|
||||
|
||||
def _unblind(self, m, r):
|
||||
return self.key._unblind(m, r)
|
||||
|
||||
def _sign(self, m, K=None):
|
||||
return (self.key._sign(m),)
|
||||
|
||||
def _verify(self, m, sig):
|
||||
#(s,) = sig
|
||||
(s,) = sig[:1] # HACK - We should use the previous line instead, but
|
||||
# this is more compatible and we're going to replace
|
||||
# the Crypto.PublicKey API soon anyway.
|
||||
return self.key._verify(m, s)
|
||||
|
||||
def has_private(self):
|
||||
return self.key.has_private()
|
||||
|
||||
def size(self):
|
||||
return self.key.size()
|
||||
|
||||
def can_blind(self):
|
||||
return True
|
||||
|
||||
def can_encrypt(self):
|
||||
return True
|
||||
|
||||
def can_sign(self):
|
||||
return True
|
||||
|
||||
def publickey(self):
|
||||
return self.implementation.construct((self.key.n, self.key.e))
|
||||
|
||||
def __getstate__(self):
|
||||
d = {}
|
||||
for k in self.keydata:
|
||||
try:
|
||||
d[k] = getattr(self.key, k)
|
||||
except AttributeError:
|
||||
pass
|
||||
return d
|
||||
|
||||
def __setstate__(self, d):
|
||||
if not hasattr(self, 'implementation'):
|
||||
self.implementation = RSAImplementation()
|
||||
t = []
|
||||
for k in self.keydata:
|
||||
if not d.has_key(k):
|
||||
break
|
||||
t.append(d[k])
|
||||
self.key = self.implementation._math.rsa_construct(*tuple(t))
|
||||
|
||||
def __repr__(self):
|
||||
attrs = []
|
||||
for k in self.keydata:
|
||||
if k == 'n':
|
||||
attrs.append("n(%d)" % (self.size()+1,))
|
||||
elif hasattr(self.key, k):
|
||||
attrs.append(k)
|
||||
if self.has_private():
|
||||
attrs.append("private")
|
||||
# PY3K: This is meant to be text, do not change to bytes (data)
|
||||
return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
|
||||
|
||||
def exportKey(self, format='PEM', passphrase=None, pkcs=1):
|
||||
"""Export this RSA key.
|
||||
|
||||
:Parameter format: The format to use for wrapping the key.
|
||||
|
||||
- *'DER'*. Binary encoding, always unencrypted.
|
||||
- *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_.
|
||||
Unencrypted (default) or encrypted.
|
||||
- *'OpenSSH'*. Textual encoding, done according to OpenSSH specification.
|
||||
Only suitable for public keys (not private keys).
|
||||
:Type format: string
|
||||
|
||||
:Parameter passphrase: In case of PEM, the pass phrase to derive the encryption key from.
|
||||
:Type passphrase: string
|
||||
|
||||
:Parameter pkcs: The PKCS standard to follow for assembling the key.
|
||||
You have two choices:
|
||||
|
||||
- with **1**, the public key is embedded into an X.509 `SubjectPublicKeyInfo` DER SEQUENCE.
|
||||
The private key is embedded into a `PKCS#1`_ `RSAPrivateKey` DER SEQUENCE.
|
||||
This mode is the default.
|
||||
- with **8**, the private key is embedded into a `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE.
|
||||
This mode is not available for public keys.
|
||||
|
||||
PKCS standards are not relevant for the *OpenSSH* format.
|
||||
:Type pkcs: integer
|
||||
|
||||
:Return: A byte string with the encoded public or private half.
|
||||
:Raise ValueError:
|
||||
When the format is unknown.
|
||||
|
||||
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
|
||||
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
|
||||
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
|
||||
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
|
||||
"""
|
||||
if passphrase is not None:
|
||||
passphrase = tobytes(passphrase)
|
||||
if format=='OpenSSH':
|
||||
eb = long_to_bytes(self.e)
|
||||
nb = long_to_bytes(self.n)
|
||||
if bord(eb[0]) & 0x80: eb=bchr(0x00)+eb
|
||||
if bord(nb[0]) & 0x80: nb=bchr(0x00)+nb
|
||||
keyparts = [ 'ssh-rsa', eb, nb ]
|
||||
keystring = ''.join([ struct.pack(">I",len(kp))+kp for kp in keyparts])
|
||||
return 'ssh-rsa '+binascii.b2a_base64(keystring)[:-1]
|
||||
|
||||
# DER format is always used, even in case of PEM, which simply
|
||||
# encodes it into BASE64.
|
||||
der = DerSequence()
|
||||
if self.has_private():
|
||||
keyType= { 1: 'RSA PRIVATE', 8: 'PRIVATE' }[pkcs]
|
||||
der[:] = [ 0, self.n, self.e, self.d, self.p, self.q,
|
||||
self.d % (self.p-1), self.d % (self.q-1),
|
||||
inverse(self.q, self.p) ]
|
||||
if pkcs==8:
|
||||
derkey = der.encode()
|
||||
der = DerSequence([0])
|
||||
der.append(algorithmIdentifier)
|
||||
der.append(DerObject('OCTET STRING', derkey).encode())
|
||||
else:
|
||||
keyType = "PUBLIC"
|
||||
der.append(algorithmIdentifier)
|
||||
bitmap = DerObject('BIT STRING')
|
||||
derPK = DerSequence( [ self.n, self.e ] )
|
||||
bitmap.payload = bchr(0x00) + derPK.encode()
|
||||
der.append(bitmap.encode())
|
||||
if format=='DER':
|
||||
return der.encode()
|
||||
if format=='PEM':
|
||||
pem = b("-----BEGIN " + keyType + " KEY-----\n")
|
||||
objenc = None
|
||||
if passphrase and keyType.endswith('PRIVATE'):
|
||||
# We only support 3DES for encryption
|
||||
import Crypto.Hash.MD5
|
||||
from Crypto.Cipher import DES3
|
||||
from Crypto.Protocol.KDF import PBKDF1
|
||||
salt = self._randfunc(8)
|
||||
key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
|
||||
key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
|
||||
objenc = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
|
||||
pem += b('Proc-Type: 4,ENCRYPTED\n')
|
||||
pem += b('DEK-Info: DES-EDE3-CBC,') + binascii.b2a_hex(salt).upper() + b('\n\n')
|
||||
|
||||
binaryKey = der.encode()
|
||||
if objenc:
|
||||
# Add PKCS#7-like padding
|
||||
padding = objenc.block_size-len(binaryKey)%objenc.block_size
|
||||
binaryKey = objenc.encrypt(binaryKey+bchr(padding)*padding)
|
||||
|
||||
# Each BASE64 line can take up to 64 characters (=48 bytes of data)
|
||||
chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ]
|
||||
pem += b('').join(chunks)
|
||||
pem += b("-----END " + keyType + " KEY-----")
|
||||
return pem
|
||||
return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
|
||||
|
||||
class RSAImplementation(object):
|
||||
"""
|
||||
An RSA key factory.
|
||||
|
||||
This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` module.
|
||||
|
||||
:sort: __init__,generate,construct,importKey
|
||||
:undocumented: _g*, _i*
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""Create a new RSA key factory.
|
||||
|
||||
:Keywords:
|
||||
use_fast_math : bool
|
||||
Specify which mathematic library to use:
|
||||
|
||||
- *None* (default). Use fastest math available.
|
||||
- *True* . Use fast math.
|
||||
- *False* . Use slow math.
|
||||
default_randfunc : callable
|
||||
Specify how to collect random data:
|
||||
|
||||
- *None* (default). Use Random.new().read().
|
||||
- not *None* . Use the specified function directly.
|
||||
:Raise RuntimeError:
|
||||
When **use_fast_math** =True but fast math is not available.
|
||||
"""
|
||||
use_fast_math = kwargs.get('use_fast_math', None)
|
||||
if use_fast_math is None: # Automatic
|
||||
if _fastmath is not None:
|
||||
self._math = _fastmath
|
||||
else:
|
||||
self._math = _slowmath
|
||||
|
||||
elif use_fast_math: # Explicitly select fast math
|
||||
if _fastmath is not None:
|
||||
self._math = _fastmath
|
||||
else:
|
||||
raise RuntimeError("fast math module not available")
|
||||
|
||||
else: # Explicitly select slow math
|
||||
self._math = _slowmath
|
||||
|
||||
self.error = self._math.error
|
||||
|
||||
self._default_randfunc = kwargs.get('default_randfunc', None)
|
||||
self._current_randfunc = None
|
||||
|
||||
def _get_randfunc(self, randfunc):
|
||||
if randfunc is not None:
|
||||
return randfunc
|
||||
elif self._current_randfunc is None:
|
||||
self._current_randfunc = Random.new().read
|
||||
return self._current_randfunc
|
||||
|
||||
def generate(self, bits, randfunc=None, progress_func=None, e=65537):
|
||||
"""Randomly generate a fresh, new RSA key.
|
||||
|
||||
:Parameters:
|
||||
bits : int
|
||||
Key length, or size (in bits) of the RSA modulus.
|
||||
It must be a multiple of 256, and no smaller than 1024.
|
||||
|
||||
randfunc : callable
|
||||
Random number generation function; it should accept
|
||||
a single integer N and return a string of random data
|
||||
N bytes long.
|
||||
If not specified, a new one will be instantiated
|
||||
from ``Crypto.Random``.
|
||||
|
||||
progress_func : callable
|
||||
Optional function that will be called with a short string
|
||||
containing the key parameter currently being generated;
|
||||
it's useful for interactive applications where a user is
|
||||
waiting for a key to be generated.
|
||||
|
||||
e : int
|
||||
Public RSA exponent. It must be an odd positive integer.
|
||||
It is typically a small number with very few ones in its
|
||||
binary representation.
|
||||
The default value 65537 (= ``0b10000000000000001`` ) is a safe
|
||||
choice: other common values are 5, 7, 17, and 257.
|
||||
|
||||
:attention: You should always use a cryptographically secure random number generator,
|
||||
such as the one defined in the ``Crypto.Random`` module; **don't** just use the
|
||||
current time and the ``random`` module.
|
||||
|
||||
:attention: Exponent 3 is also widely used, but it requires very special care when padding
|
||||
the message.
|
||||
|
||||
:Return: An RSA key object (`_RSAobj`).
|
||||
|
||||
:Raise ValueError:
|
||||
When **bits** is too little or not a multiple of 256, or when
|
||||
**e** is not odd or smaller than 2.
|
||||
"""
|
||||
if bits < 1024 or (bits & 0xff) != 0:
|
||||
# pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024
|
||||
raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024")
|
||||
if e%2==0 or e<3:
|
||||
raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
|
||||
rf = self._get_randfunc(randfunc)
|
||||
obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module
|
||||
key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u)
|
||||
return _RSAobj(self, key)
|
||||
|
||||
def construct(self, tup):
|
||||
"""Construct an RSA key from a tuple of valid RSA components.
|
||||
|
||||
The modulus **n** must be the product of two primes.
|
||||
The public exponent **e** must be odd and larger than 1.
|
||||
|
||||
In case of a private key, the following equations must apply:
|
||||
|
||||
- e != 1
|
||||
- p*q = n
|
||||
- e*d = 1 mod (p-1)(q-1)
|
||||
- p*u = 1 mod q
|
||||
|
||||
:Parameters:
|
||||
tup : tuple
|
||||
A tuple of long integers, with at least 2 and no
|
||||
more than 6 items. The items come in the following order:
|
||||
|
||||
1. RSA modulus (n).
|
||||
2. Public exponent (e).
|
||||
3. Private exponent (d). Only required if the key is private.
|
||||
4. First factor of n (p). Optional.
|
||||
5. Second factor of n (q). Optional.
|
||||
6. CRT coefficient, (1/p) mod q (u). Optional.
|
||||
|
||||
:Return: An RSA key object (`_RSAobj`).
|
||||
"""
|
||||
key = self._math.rsa_construct(*tup)
|
||||
return _RSAobj(self, key)
|
||||
|
||||
def _importKeyDER(self, externKey):
|
||||
"""Import an RSA key (public or private half), encoded in DER form."""
|
||||
|
||||
try:
|
||||
|
||||
der = DerSequence()
|
||||
der.decode(externKey, True)
|
||||
|
||||
# Try PKCS#1 first, for a private key
|
||||
if len(der)==9 and der.hasOnlyInts() and der[0]==0:
|
||||
# ASN.1 RSAPrivateKey element
|
||||
del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p
|
||||
der.append(inverse(der[4],der[5])) # Add p^{-1} mod q
|
||||
del der[0] # Remove version
|
||||
return self.construct(der[:])
|
||||
|
||||
# Keep on trying PKCS#1, but now for a public key
|
||||
if len(der)==2:
|
||||
# The DER object is an RSAPublicKey SEQUENCE with two elements
|
||||
if der.hasOnlyInts():
|
||||
return self.construct(der[:])
|
||||
# The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements:
|
||||
# an 'algorithm' (or 'algorithmIdentifier') SEQUENCE and a 'subjectPublicKey' BIT STRING.
|
||||
# 'algorithm' takes the value given a few lines above.
|
||||
# 'subjectPublicKey' encapsulates the actual ASN.1 RSAPublicKey element.
|
||||
if der[0]==algorithmIdentifier:
|
||||
bitmap = DerObject()
|
||||
bitmap.decode(der[1], True)
|
||||
if bitmap.isType('BIT STRING') and bord(bitmap.payload[0])==0x00:
|
||||
der.decode(bitmap.payload[1:], True)
|
||||
if len(der)==2 and der.hasOnlyInts():
|
||||
return self.construct(der[:])
|
||||
|
||||
# Try unencrypted PKCS#8
|
||||
if der[0]==0:
|
||||
# The second element in the SEQUENCE is algorithmIdentifier.
|
||||
# It must say RSA (see above for description).
|
||||
if der[1]==algorithmIdentifier:
|
||||
privateKey = DerObject()
|
||||
privateKey.decode(der[2], True)
|
||||
if privateKey.isType('OCTET STRING'):
|
||||
return self._importKeyDER(privateKey.payload)
|
||||
|
||||
except ValueError, IndexError:
|
||||
pass
|
||||
|
||||
raise ValueError("RSA key format is not supported")
|
||||
|
||||
def importKey(self, externKey, passphrase=None):
|
||||
"""Import an RSA key (public or private half), encoded in standard form.
|
||||
|
||||
:Parameter externKey:
|
||||
The RSA key to import, encoded as a string.
|
||||
|
||||
An RSA public key can be in any of the following formats:
|
||||
|
||||
- X.509 `subjectPublicKeyInfo` DER SEQUENCE (binary or PEM encoding)
|
||||
- `PKCS#1`_ `RSAPublicKey` DER SEQUENCE (binary or PEM encoding)
|
||||
- OpenSSH (textual public key only)
|
||||
|
||||
An RSA private key can be in any of the following formats:
|
||||
|
||||
- PKCS#1 `RSAPrivateKey` DER SEQUENCE (binary or PEM encoding)
|
||||
- `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE (binary or PEM encoding)
|
||||
- OpenSSH (textual public key only)
|
||||
|
||||
For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
|
||||
|
||||
In case of PEM encoding, the private key can be encrypted with DES or 3TDES according to a certain ``pass phrase``.
|
||||
Only OpenSSL-compatible pass phrases are supported.
|
||||
:Type externKey: string
|
||||
|
||||
:Parameter passphrase:
|
||||
In case of an encrypted PEM key, this is the pass phrase from which the encryption key is derived.
|
||||
:Type passphrase: string
|
||||
|
||||
:Return: An RSA key object (`_RSAobj`).
|
||||
|
||||
:Raise ValueError/IndexError/TypeError:
|
||||
When the given key cannot be parsed (possibly because the pass phrase is wrong).
|
||||
|
||||
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
|
||||
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
|
||||
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
|
||||
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
|
||||
"""
|
||||
externKey = tobytes(externKey)
|
||||
if passphrase is not None:
|
||||
passphrase = tobytes(passphrase)
|
||||
|
||||
if externKey.startswith(b('-----')):
|
||||
# This is probably a PEM encoded key
|
||||
lines = externKey.replace(b(" "),b('')).split()
|
||||
keyobj = None
|
||||
|
||||
# The encrypted PEM format
|
||||
if lines[1].startswith(b('Proc-Type:4,ENCRYPTED')):
|
||||
DEK = lines[2].split(b(':'))
|
||||
if len(DEK)!=2 or DEK[0]!=b('DEK-Info') or not passphrase:
|
||||
raise ValueError("PEM encryption format not supported.")
|
||||
algo, salt = DEK[1].split(b(','))
|
||||
salt = binascii.a2b_hex(salt)
|
||||
import Crypto.Hash.MD5
|
||||
from Crypto.Cipher import DES, DES3
|
||||
from Crypto.Protocol.KDF import PBKDF1
|
||||
if algo==b("DES-CBC"):
|
||||
# This is EVP_BytesToKey in OpenSSL
|
||||
key = PBKDF1(passphrase, salt, 8, 1, Crypto.Hash.MD5)
|
||||
keyobj = DES.new(key, Crypto.Cipher.DES.MODE_CBC, salt)
|
||||
elif algo==b("DES-EDE3-CBC"):
|
||||
# Note that EVP_BytesToKey is note exactly the same as PBKDF1
|
||||
key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5)
|
||||
key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5)
|
||||
keyobj = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt)
|
||||
else:
|
||||
raise ValueError("Unsupport PEM encryption algorithm.")
|
||||
lines = lines[2:]
|
||||
|
||||
der = binascii.a2b_base64(b('').join(lines[1:-1]))
|
||||
if keyobj:
|
||||
der = keyobj.decrypt(der)
|
||||
padding = bord(der[-1])
|
||||
der = der[:-padding]
|
||||
return self._importKeyDER(der)
|
||||
|
||||
if externKey.startswith(b('ssh-rsa ')):
|
||||
# This is probably an OpenSSH key
|
||||
keystring = binascii.a2b_base64(externKey.split(b(' '))[1])
|
||||
keyparts = []
|
||||
while len(keystring)>4:
|
||||
l = struct.unpack(">I",keystring[:4])[0]
|
||||
keyparts.append(keystring[4:4+l])
|
||||
keystring = keystring[4+l:]
|
||||
e = bytes_to_long(keyparts[1])
|
||||
n = bytes_to_long(keyparts[2])
|
||||
return self.construct([n, e])
|
||||
if bord(externKey[0])==0x30:
|
||||
# This is probably a DER encoded key
|
||||
return self._importKeyDER(externKey)
|
||||
|
||||
raise ValueError("RSA key format is not supported")
|
||||
|
||||
#: This is the ASN.1 DER object that qualifies an algorithm as
|
||||
#: compliant to PKCS#1 (that is, the standard RSA).
|
||||
# It is found in all 'algorithm' fields (also called 'algorithmIdentifier').
|
||||
# It is a SEQUENCE with the oid assigned to RSA and with its parameters (none).
|
||||
# 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload
|
||||
# 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01
|
||||
# rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1)
|
||||
# 0x05 0x00 NULL
|
||||
algorithmIdentifier = DerSequence(
|
||||
[ b('\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01'),
|
||||
DerNull().encode() ]
|
||||
).encode()
|
||||
|
||||
_impl = RSAImplementation()
|
||||
#:
|
||||
#: Randomly generate a fresh, new RSA key object.
|
||||
#:
|
||||
#: See `RSAImplementation.generate`.
|
||||
#:
|
||||
generate = _impl.generate
|
||||
#:
|
||||
#: Construct an RSA key object from a tuple of valid RSA components.
|
||||
#:
|
||||
#: See `RSAImplementation.construct`.
|
||||
#:
|
||||
construct = _impl.construct
|
||||
#:
|
||||
#: Import an RSA key (public or private half), encoded in standard form.
|
||||
#:
|
||||
#: See `RSAImplementation.importKey`.
|
||||
#:
|
||||
importKey = _impl.importKey
|
||||
error = _impl.error
|
||||
|
||||
# vim:set ts=4 sw=4 sts=4 expandtab:
|
||||
|
@@ -1,115 +0,0 @@
|
||||
|
||||
#
|
||||
# DSA.py : Digital Signature Algorithm
|
||||
#
|
||||
# Part of the Python Cryptography Toolkit
|
||||
#
|
||||
# Written by Andrew Kuchling, Paul Swartz, and others
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
#
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
from Crypto.PublicKey.pubkey import *
|
||||
from Crypto.Util import number
|
||||
from Crypto.Util.number import bytes_to_long, long_to_bytes
|
||||
from Crypto.Hash import SHA
|
||||
from Crypto.Util.py3compat import *
|
||||
|
||||
class error (Exception):
|
||||
pass
|
||||
|
||||
def generateQ(randfunc):
|
||||
S=randfunc(20)
|
||||
hash1=SHA.new(S).digest()
|
||||
hash2=SHA.new(long_to_bytes(bytes_to_long(S)+1)).digest()
|
||||
q = bignum(0)
|
||||
for i in range(0,20):
|
||||
c=bord(hash1[i])^bord(hash2[i])
|
||||
if i==0:
|
||||
c=c | 128
|
||||
if i==19:
|
||||
c= c | 1
|
||||
q=q*256+c
|
||||
while (not isPrime(q)):
|
||||
q=q+2
|
||||
if pow(2,159L) < q < pow(2,160L):
|
||||
return S, q
|
||||
raise RuntimeError('Bad q value generated')
|
||||
|
||||
def generate_py(bits, randfunc, progress_func=None):
|
||||
"""generate(bits:int, randfunc:callable, progress_func:callable)
|
||||
|
||||
Generate a DSA key of length 'bits', using 'randfunc' to get
|
||||
random data and 'progress_func', if present, to display
|
||||
the progress of the key generation.
|
||||
"""
|
||||
|
||||
if bits<160:
|
||||
raise ValueError('Key length < 160 bits')
|
||||
obj=DSAobj()
|
||||
# Generate string S and prime q
|
||||
if progress_func:
|
||||
progress_func('p,q\n')
|
||||
while (1):
|
||||
S, obj.q = generateQ(randfunc)
|
||||
n=divmod(bits-1, 160)[0]
|
||||
C, N, V = 0, 2, {}
|
||||
b=(obj.q >> 5) & 15
|
||||
powb=pow(bignum(2), b)
|
||||
powL1=pow(bignum(2), bits-1)
|
||||
while C<4096:
|
||||
for k in range(0, n+1):
|
||||
V[k]=bytes_to_long(SHA.new(S+bstr(N)+bstr(k)).digest())
|
||||
W=V[n] % powb
|
||||
for k in range(n-1, -1, -1):
|
||||
W=(W<<160L)+V[k]
|
||||
X=W+powL1
|
||||
p=X-(X%(2*obj.q)-1)
|
||||
if powL1<=p and isPrime(p):
|
||||
break
|
||||
C, N = C+1, N+n+1
|
||||
if C<4096:
|
||||
break
|
||||
if progress_func:
|
||||
progress_func('4096 multiples failed\n')
|
||||
|
||||
obj.p = p
|
||||
power=divmod(p-1, obj.q)[0]
|
||||
if progress_func:
|
||||
progress_func('h,g\n')
|
||||
while (1):
|
||||
h=bytes_to_long(randfunc(bits)) % (p-1)
|
||||
g=pow(h, power, p)
|
||||
if 1<h<p-1 and g>1:
|
||||
break
|
||||
obj.g=g
|
||||
if progress_func:
|
||||
progress_func('x,y\n')
|
||||
while (1):
|
||||
x=bytes_to_long(randfunc(20))
|
||||
if 0 < x < obj.q:
|
||||
break
|
||||
obj.x, obj.y = x, pow(g, x, p)
|
||||
return obj
|
||||
|
||||
class DSAobj:
|
||||
pass
|
||||
|
@@ -1,81 +0,0 @@
|
||||
#
|
||||
# RSA.py : RSA encryption/decryption
|
||||
#
|
||||
# Part of the Python Cryptography Toolkit
|
||||
#
|
||||
# Written by Andrew Kuchling, Paul Swartz, and others
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
#
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
from Crypto.PublicKey import pubkey
|
||||
from Crypto.Util import number
|
||||
|
||||
def generate_py(bits, randfunc, progress_func=None, e=65537):
|
||||
"""generate(bits:int, randfunc:callable, progress_func:callable, e:int)
|
||||
|
||||
Generate an RSA key of length 'bits', public exponent 'e'(which must be
|
||||
odd), using 'randfunc' to get random data and 'progress_func',
|
||||
if present, to display the progress of the key generation.
|
||||
"""
|
||||
obj=RSAobj()
|
||||
obj.e = long(e)
|
||||
|
||||
# Generate the prime factors of n
|
||||
if progress_func:
|
||||
progress_func('p,q\n')
|
||||
p = q = 1L
|
||||
while number.size(p*q) < bits:
|
||||
# Note that q might be one bit longer than p if somebody specifies an odd
|
||||
# number of bits for the key. (Why would anyone do that? You don't get
|
||||
# more security.)
|
||||
p = pubkey.getStrongPrime(bits>>1, obj.e, 1e-12, randfunc)
|
||||
q = pubkey.getStrongPrime(bits - (bits>>1), obj.e, 1e-12, randfunc)
|
||||
|
||||
# It's OK for p to be larger than q, but let's be
|
||||
# kind to the function that will invert it for
|
||||
# th calculation of u.
|
||||
if p > q:
|
||||
(p, q)=(q, p)
|
||||
obj.p = p
|
||||
obj.q = q
|
||||
|
||||
if progress_func:
|
||||
progress_func('u\n')
|
||||
obj.u = pubkey.inverse(obj.p, obj.q)
|
||||
obj.n = obj.p*obj.q
|
||||
|
||||
if progress_func:
|
||||
progress_func('d\n')
|
||||
obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1))
|
||||
|
||||
assert bits <= 1+obj.size(), "Generated key is too small"
|
||||
|
||||
return obj
|
||||
|
||||
class RSAobj(pubkey.pubkey):
|
||||
|
||||
def size(self):
|
||||
"""size() : int
|
||||
Return the maximum number of bits that can be handled by this key.
|
||||
"""
|
||||
return number.size(self.n) - 1
|
||||
|
@@ -1,41 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
|
||||
"""Public-key encryption and signature algorithms.
|
||||
|
||||
Public-key encryption uses two different keys, one for encryption and
|
||||
one for decryption. The encryption key can be made public, and the
|
||||
decryption key is kept private. Many public-key algorithms can also
|
||||
be used to sign messages, and some can *only* be used for signatures.
|
||||
|
||||
======================== =============================================
|
||||
Module Description
|
||||
======================== =============================================
|
||||
Crypto.PublicKey.DSA Digital Signature Algorithm (Signature only)
|
||||
Crypto.PublicKey.ElGamal (Signing and encryption)
|
||||
Crypto.PublicKey.RSA (Signing, encryption, and blinding)
|
||||
======================== =============================================
|
||||
|
||||
:undocumented: _DSA, _RSA, _fastmath, _slowmath, pubkey
|
||||
"""
|
||||
|
||||
__all__ = ['RSA', 'DSA', 'ElGamal']
|
||||
__revision__ = "$Id$"
|
||||
|
@@ -1,187 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# PubKey/RSA/_slowmath.py : Pure Python implementation of the RSA portions of _fastmath
|
||||
#
|
||||
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
|
||||
"""Pure Python implementation of the RSA-related portions of Crypto.PublicKey._fastmath."""
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
__all__ = ['rsa_construct']
|
||||
|
||||
import sys
|
||||
|
||||
if sys.version_info[0] == 2 and sys.version_info[1] == 1:
|
||||
from Crypto.Util.py21compat import *
|
||||
from Crypto.Util.number import size, inverse, GCD
|
||||
|
||||
class error(Exception):
|
||||
pass
|
||||
|
||||
class _RSAKey(object):
|
||||
def _blind(self, m, r):
|
||||
# compute r**e * m (mod n)
|
||||
return m * pow(r, self.e, self.n)
|
||||
|
||||
def _unblind(self, m, r):
|
||||
# compute m / r (mod n)
|
||||
return inverse(r, self.n) * m % self.n
|
||||
|
||||
def _decrypt(self, c):
|
||||
# compute c**d (mod n)
|
||||
if not self.has_private():
|
||||
raise TypeError("No private key")
|
||||
if (hasattr(self,'p') and hasattr(self,'q') and hasattr(self,'u')):
|
||||
m1 = pow(c, self.d % (self.p-1), self.p)
|
||||
m2 = pow(c, self.d % (self.q-1), self.q)
|
||||
h = m2 - m1
|
||||
if (h<0):
|
||||
h = h + self.q
|
||||
h = h*self.u % self.q
|
||||
return h*self.p+m1
|
||||
return pow(c, self.d, self.n)
|
||||
|
||||
def _encrypt(self, m):
|
||||
# compute m**d (mod n)
|
||||
return pow(m, self.e, self.n)
|
||||
|
||||
def _sign(self, m): # alias for _decrypt
|
||||
if not self.has_private():
|
||||
raise TypeError("No private key")
|
||||
return self._decrypt(m)
|
||||
|
||||
def _verify(self, m, sig):
|
||||
return self._encrypt(sig) == m
|
||||
|
||||
def has_private(self):
|
||||
return hasattr(self, 'd')
|
||||
|
||||
def size(self):
|
||||
"""Return the maximum number of bits that can be encrypted"""
|
||||
return size(self.n) - 1
|
||||
|
||||
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
|
||||
"""Construct an RSAKey object"""
|
||||
assert isinstance(n, long)
|
||||
assert isinstance(e, long)
|
||||
assert isinstance(d, (long, type(None)))
|
||||
assert isinstance(p, (long, type(None)))
|
||||
assert isinstance(q, (long, type(None)))
|
||||
assert isinstance(u, (long, type(None)))
|
||||
obj = _RSAKey()
|
||||
obj.n = n
|
||||
obj.e = e
|
||||
if d is None:
|
||||
return obj
|
||||
obj.d = d
|
||||
if p is not None and q is not None:
|
||||
obj.p = p
|
||||
obj.q = q
|
||||
else:
|
||||
# Compute factors p and q from the private exponent d.
|
||||
# We assume that n has no more than two factors.
|
||||
# See 8.2.2(i) in Handbook of Applied Cryptography.
|
||||
ktot = d*e-1
|
||||
# The quantity d*e-1 is a multiple of phi(n), even,
|
||||
# and can be represented as t*2^s.
|
||||
t = ktot
|
||||
while t%2==0:
|
||||
t=divmod(t,2)[0]
|
||||
# Cycle through all multiplicative inverses in Zn.
|
||||
# The algorithm is non-deterministic, but there is a 50% chance
|
||||
# any candidate a leads to successful factoring.
|
||||
# See "Digitalized Signatures and Public Key Functions as Intractable
|
||||
# as Factorization", M. Rabin, 1979
|
||||
spotted = 0
|
||||
a = 2
|
||||
while not spotted and a<100:
|
||||
k = t
|
||||
# Cycle through all values a^{t*2^i}=a^k
|
||||
while k<ktot:
|
||||
cand = pow(a,k,n)
|
||||
# Check if a^k is a non-trivial root of unity (mod n)
|
||||
if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
|
||||
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
|
||||
# Either of the terms divides n.
|
||||
obj.p = GCD(cand+1,n)
|
||||
spotted = 1
|
||||
break
|
||||
k = k*2
|
||||
# This value was not any good... let's try another!
|
||||
a = a+2
|
||||
if not spotted:
|
||||
raise ValueError("Unable to compute factors p and q from exponent d.")
|
||||
# Found !
|
||||
assert ((n % obj.p)==0)
|
||||
obj.q = divmod(n,obj.p)[0]
|
||||
if u is not None:
|
||||
obj.u = u
|
||||
else:
|
||||
obj.u = inverse(obj.p, obj.q)
|
||||
return obj
|
||||
|
||||
class _DSAKey(object):
|
||||
def size(self):
|
||||
"""Return the maximum number of bits that can be encrypted"""
|
||||
return size(self.p) - 1
|
||||
|
||||
def has_private(self):
|
||||
return hasattr(self, 'x')
|
||||
|
||||
def _sign(self, m, k): # alias for _decrypt
|
||||
# SECURITY TODO - We _should_ be computing SHA1(m), but we don't because that's the API.
|
||||
if not self.has_private():
|
||||
raise TypeError("No private key")
|
||||
if not (1L < k < self.q):
|
||||
raise ValueError("k is not between 2 and q-1")
|
||||
inv_k = inverse(k, self.q) # Compute k**-1 mod q
|
||||
r = pow(self.g, k, self.p) % self.q # r = (g**k mod p) mod q
|
||||
s = (inv_k * (m + self.x * r)) % self.q
|
||||
return (r, s)
|
||||
|
||||
def _verify(self, m, r, s):
|
||||
# SECURITY TODO - We _should_ be computing SHA1(m), but we don't because that's the API.
|
||||
if not (0 < r < self.q) or not (0 < s < self.q):
|
||||
return False
|
||||
w = inverse(s, self.q)
|
||||
u1 = (m*w) % self.q
|
||||
u2 = (r*w) % self.q
|
||||
v = (pow(self.g, u1, self.p) * pow(self.y, u2, self.p) % self.p) % self.q
|
||||
return v == r
|
||||
|
||||
def dsa_construct(y, g, p, q, x=None):
|
||||
assert isinstance(y, long)
|
||||
assert isinstance(g, long)
|
||||
assert isinstance(p, long)
|
||||
assert isinstance(q, long)
|
||||
assert isinstance(x, (long, type(None)))
|
||||
obj = _DSAKey()
|
||||
obj.y = y
|
||||
obj.g = g
|
||||
obj.p = p
|
||||
obj.q = q
|
||||
if x is not None: obj.x = x
|
||||
return obj
|
||||
|
||||
|
||||
# vim:set ts=4 sw=4 sts=4 expandtab:
|
||||
|
@@ -1,240 +0,0 @@
|
||||
#
|
||||
# pubkey.py : Internal functions for public key operations
|
||||
#
|
||||
# Part of the Python Cryptography Toolkit
|
||||
#
|
||||
# Written by Andrew Kuchling, Paul Swartz, and others
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
#
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
import types, warnings
|
||||
from Crypto.Util.number import *
|
||||
|
||||
# Basic public key class
|
||||
class pubkey:
|
||||
"""An abstract class for a public key object.
|
||||
|
||||
:undocumented: __getstate__, __setstate__, __eq__, __ne__, validate
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __getstate__(self):
|
||||
"""To keep key objects platform-independent, the key data is
|
||||
converted to standard Python long integers before being
|
||||
written out. It will then be reconverted as necessary on
|
||||
restoration."""
|
||||
d=self.__dict__
|
||||
for key in self.keydata:
|
||||
if d.has_key(key): d[key]=long(d[key])
|
||||
return d
|
||||
|
||||
def __setstate__(self, d):
|
||||
"""On unpickling a key object, the key data is converted to the big
|
||||
number representation being used, whether that is Python long
|
||||
integers, MPZ objects, or whatever."""
|
||||
for key in self.keydata:
|
||||
if d.has_key(key): self.__dict__[key]=bignum(d[key])
|
||||
|
||||
def encrypt(self, plaintext, K):
|
||||
"""Encrypt a piece of data.
|
||||
|
||||
:Parameter plaintext: The piece of data to encrypt.
|
||||
:Type plaintext: byte string or long
|
||||
|
||||
:Parameter K: A random parameter required by some algorithms
|
||||
:Type K: byte string or long
|
||||
|
||||
:Return: A tuple with two items. Each item is of the same type as the
|
||||
plaintext (string or long).
|
||||
"""
|
||||
wasString=0
|
||||
if isinstance(plaintext, types.StringType):
|
||||
plaintext=bytes_to_long(plaintext) ; wasString=1
|
||||
if isinstance(K, types.StringType):
|
||||
K=bytes_to_long(K)
|
||||
ciphertext=self._encrypt(plaintext, K)
|
||||
if wasString: return tuple(map(long_to_bytes, ciphertext))
|
||||
else: return ciphertext
|
||||
|
||||
def decrypt(self, ciphertext):
|
||||
"""Decrypt a piece of data.
|
||||
|
||||
:Parameter ciphertext: The piece of data to decrypt.
|
||||
:Type ciphertext: byte string, long or a 2-item tuple as returned by `encrypt`
|
||||
|
||||
:Return: A byte string if ciphertext was a byte string or a tuple
|
||||
of byte strings. A long otherwise.
|
||||
"""
|
||||
wasString=0
|
||||
if not isinstance(ciphertext, types.TupleType):
|
||||
ciphertext=(ciphertext,)
|
||||
if isinstance(ciphertext[0], types.StringType):
|
||||
ciphertext=tuple(map(bytes_to_long, ciphertext)) ; wasString=1
|
||||
plaintext=self._decrypt(ciphertext)
|
||||
if wasString: return long_to_bytes(plaintext)
|
||||
else: return plaintext
|
||||
|
||||
def sign(self, M, K):
|
||||
"""Sign a piece of data.
|
||||
|
||||
:Parameter M: The piece of data to encrypt.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter K: A random parameter required by some algorithms
|
||||
:Type K: byte string or long
|
||||
|
||||
:Return: A tuple with two items.
|
||||
"""
|
||||
if (not self.has_private()):
|
||||
raise TypeError('Private key not available in this object')
|
||||
if isinstance(M, types.StringType): M=bytes_to_long(M)
|
||||
if isinstance(K, types.StringType): K=bytes_to_long(K)
|
||||
return self._sign(M, K)
|
||||
|
||||
def verify (self, M, signature):
|
||||
"""Verify the validity of a signature.
|
||||
|
||||
:Parameter M: The expected message.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter signature: The signature to verify.
|
||||
:Type signature: tuple with two items, as return by `sign`
|
||||
|
||||
:Return: True if the signature is correct, False otherwise.
|
||||
"""
|
||||
if isinstance(M, types.StringType): M=bytes_to_long(M)
|
||||
return self._verify(M, signature)
|
||||
|
||||
# alias to compensate for the old validate() name
|
||||
def validate (self, M, signature):
|
||||
warnings.warn("validate() method name is obsolete; use verify()",
|
||||
DeprecationWarning)
|
||||
|
||||
def blind(self, M, B):
|
||||
"""Blind a message to prevent certain side-channel attacks.
|
||||
|
||||
:Parameter M: The message to blind.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter B: Blinding factor.
|
||||
:Type B: byte string or long
|
||||
|
||||
:Return: A byte string if M was so. A long otherwise.
|
||||
"""
|
||||
wasString=0
|
||||
if isinstance(M, types.StringType):
|
||||
M=bytes_to_long(M) ; wasString=1
|
||||
if isinstance(B, types.StringType): B=bytes_to_long(B)
|
||||
blindedmessage=self._blind(M, B)
|
||||
if wasString: return long_to_bytes(blindedmessage)
|
||||
else: return blindedmessage
|
||||
|
||||
def unblind(self, M, B):
|
||||
"""Unblind a message after cryptographic processing.
|
||||
|
||||
:Parameter M: The encoded message to unblind.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter B: Blinding factor.
|
||||
:Type B: byte string or long
|
||||
"""
|
||||
wasString=0
|
||||
if isinstance(M, types.StringType):
|
||||
M=bytes_to_long(M) ; wasString=1
|
||||
if isinstance(B, types.StringType): B=bytes_to_long(B)
|
||||
unblindedmessage=self._unblind(M, B)
|
||||
if wasString: return long_to_bytes(unblindedmessage)
|
||||
else: return unblindedmessage
|
||||
|
||||
|
||||
# The following methods will usually be left alone, except for
|
||||
# signature-only algorithms. They both return Boolean values
|
||||
# recording whether this key's algorithm can sign and encrypt.
|
||||
def can_sign (self):
|
||||
"""Tell if the algorithm can deal with cryptographic signatures.
|
||||
|
||||
This property concerns the *algorithm*, not the key itself.
|
||||
It may happen that this particular key object hasn't got
|
||||
the private information required to generate a signature.
|
||||
|
||||
:Return: boolean
|
||||
"""
|
||||
return 1
|
||||
|
||||
def can_encrypt (self):
|
||||
"""Tell if the algorithm can deal with data encryption.
|
||||
|
||||
This property concerns the *algorithm*, not the key itself.
|
||||
It may happen that this particular key object hasn't got
|
||||
the private information required to decrypt data.
|
||||
|
||||
:Return: boolean
|
||||
"""
|
||||
return 1
|
||||
|
||||
def can_blind (self):
|
||||
"""Tell if the algorithm can deal with data blinding.
|
||||
|
||||
This property concerns the *algorithm*, not the key itself.
|
||||
It may happen that this particular key object hasn't got
|
||||
the private information required carry out blinding.
|
||||
|
||||
:Return: boolean
|
||||
"""
|
||||
return 0
|
||||
|
||||
# The following methods will certainly be overridden by
|
||||
# subclasses.
|
||||
|
||||
def size (self):
|
||||
"""Tell the maximum number of bits that can be handled by this key.
|
||||
|
||||
:Return: int
|
||||
"""
|
||||
return 0
|
||||
|
||||
def has_private (self):
|
||||
"""Tell if the key object contains private components.
|
||||
|
||||
:Return: bool
|
||||
"""
|
||||
return 0
|
||||
|
||||
def publickey (self):
|
||||
"""Construct a new key carrying only the public information.
|
||||
|
||||
:Return: A new `pubkey` object.
|
||||
"""
|
||||
return self
|
||||
|
||||
def __eq__ (self, other):
|
||||
"""__eq__(other): 0, 1
|
||||
Compare us to other for equality.
|
||||
"""
|
||||
return self.__getstate__() == other.__getstate__()
|
||||
|
||||
def __ne__ (self, other):
|
||||
"""__ne__(other): 0, 1
|
||||
Compare us to other for inequality.
|
||||
"""
|
||||
return not self.__eq__(other)
|
Reference in New Issue
Block a user