basic functionalty
This commit is contained in:
382
modules/Crypto/PublicKey/ElGamal.py
Normal file
382
modules/Crypto/PublicKey/ElGamal.py
Normal file
@@ -0,0 +1,382 @@
|
||||
#
|
||||
# ElGamal.py : ElGamal encryption/decryption and signatures
|
||||
#
|
||||
# Part of the Python Cryptography Toolkit
|
||||
#
|
||||
# Originally written by: A.M. Kuchling
|
||||
#
|
||||
# ===================================================================
|
||||
# The contents of this file are dedicated to the public domain. To
|
||||
# the extent that dedication to the public domain is not available,
|
||||
# everyone is granted a worldwide, perpetual, royalty-free,
|
||||
# non-exclusive license to exercise all rights associated with the
|
||||
# contents of this file for any purpose whatsoever.
|
||||
# No rights are reserved.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||||
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
# ===================================================================
|
||||
|
||||
"""ElGamal public-key algorithm (randomized encryption and signature).
|
||||
|
||||
Signature algorithm
|
||||
-------------------
|
||||
The security of the ElGamal signature scheme is based (like DSA) on the discrete
|
||||
logarithm problem (DLP_). Given a cyclic group, a generator *g*,
|
||||
and an element *h*, it is hard to find an integer *x* such that *g^x = h*.
|
||||
|
||||
The group is the largest multiplicative sub-group of the integers modulo *p*,
|
||||
with *p* prime.
|
||||
The signer holds a value *x* (*0<x<p-1*) as private key, and its public
|
||||
key (*y* where *y=g^x mod p*) is distributed.
|
||||
|
||||
The ElGamal signature is twice as big as *p*.
|
||||
|
||||
Encryption algorithm
|
||||
--------------------
|
||||
The security of the ElGamal encryption scheme is based on the computational
|
||||
Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*,
|
||||
and two integers *a* and *b*, it is difficult to find
|
||||
the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*.
|
||||
|
||||
As before, the group is the largest multiplicative sub-group of the integers
|
||||
modulo *p*, with *p* prime.
|
||||
The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key
|
||||
(*b* where *b*=g^a*) is given to the sender.
|
||||
|
||||
The ElGamal ciphertext is twice as big as *p*.
|
||||
|
||||
Domain parameters
|
||||
-----------------
|
||||
For both signature and encryption schemes, the values *(p,g)* are called
|
||||
*domain parameters*.
|
||||
They are not sensitive but must be distributed to all parties (senders and
|
||||
receivers).
|
||||
Different signers can share the same domain parameters, as can
|
||||
different recipients of encrypted messages.
|
||||
|
||||
Security
|
||||
--------
|
||||
Both DLP and CDH problem are believed to be difficult, and they have been proved
|
||||
such (and therefore secure) for more than 30 years.
|
||||
|
||||
The cryptographic strength is linked to the magnitude of *p*.
|
||||
In 2012, a sufficient size for *p* is deemed to be 2048 bits.
|
||||
For more information, see the most recent ECRYPT_ report.
|
||||
|
||||
Even though ElGamal algorithms are in theory reasonably secure for new designs,
|
||||
in practice there are no real good reasons for using them.
|
||||
The signature is four times larger than the equivalent DSA, and the ciphertext
|
||||
is two times larger than the equivalent RSA.
|
||||
|
||||
Functionality
|
||||
-------------
|
||||
This module provides facilities for generating new ElGamal keys and for constructing
|
||||
them from known components. ElGamal keys allows you to perform basic signing,
|
||||
verification, encryption, and decryption.
|
||||
|
||||
>>> from Crypto import Random
|
||||
>>> from Crypto.Random import random
|
||||
>>> from Crypto.PublicKey import ElGamal
|
||||
>>> from Crypto.Util.number import GCD
|
||||
>>> from Crypto.Hash import SHA
|
||||
>>>
|
||||
>>> message = "Hello"
|
||||
>>> key = ElGamal.generate(1024, Random.new().read)
|
||||
>>> h = SHA.new(message).digest()
|
||||
>>> while 1:
|
||||
>>> k = random.StrongRandom().randint(1,key.p-1)
|
||||
>>> if GCD(k,key.p-1)==1: break
|
||||
>>> sig = key.sign(h,k)
|
||||
>>> ...
|
||||
>>> if key.verify(h,sig):
|
||||
>>> print "OK"
|
||||
>>> else:
|
||||
>>> print "Incorrect signature"
|
||||
|
||||
.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
|
||||
.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
|
||||
.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
|
||||
"""
|
||||
|
||||
__revision__ = "$Id$"
|
||||
|
||||
__all__ = ['generate', 'construct', 'error', 'ElGamalobj']
|
||||
|
||||
from Crypto.PublicKey.pubkey import *
|
||||
from Crypto.Util import number
|
||||
from Crypto import Random
|
||||
|
||||
class error (Exception):
|
||||
pass
|
||||
|
||||
# Generate an ElGamal key with N bits
|
||||
def generate(bits, randfunc, progress_func=None):
|
||||
"""Randomly generate a fresh, new ElGamal key.
|
||||
|
||||
The key will be safe for use for both encryption and signature
|
||||
(although it should be used for **only one** purpose).
|
||||
|
||||
:Parameters:
|
||||
bits : int
|
||||
Key length, or size (in bits) of the modulus *p*.
|
||||
Recommended value is 2048.
|
||||
randfunc : callable
|
||||
Random number generation function; it should accept
|
||||
a single integer N and return a string of random data
|
||||
N bytes long.
|
||||
progress_func : callable
|
||||
Optional function that will be called with a short string
|
||||
containing the key parameter currently being generated;
|
||||
it's useful for interactive applications where a user is
|
||||
waiting for a key to be generated.
|
||||
|
||||
:attention: You should always use a cryptographically secure random number generator,
|
||||
such as the one defined in the ``Crypto.Random`` module; **don't** just use the
|
||||
current time and the ``random`` module.
|
||||
|
||||
:Return: An ElGamal key object (`ElGamalobj`).
|
||||
"""
|
||||
obj=ElGamalobj()
|
||||
# Generate a safe prime p
|
||||
# See Algorithm 4.86 in Handbook of Applied Cryptography
|
||||
if progress_func:
|
||||
progress_func('p\n')
|
||||
while 1:
|
||||
q = bignum(getPrime(bits-1, randfunc))
|
||||
obj.p = 2*q+1
|
||||
if number.isPrime(obj.p, randfunc=randfunc):
|
||||
break
|
||||
# Generate generator g
|
||||
# See Algorithm 4.80 in Handbook of Applied Cryptography
|
||||
# Note that the order of the group is n=p-1=2q, where q is prime
|
||||
if progress_func:
|
||||
progress_func('g\n')
|
||||
while 1:
|
||||
# We must avoid g=2 because of Bleichenbacher's attack described
|
||||
# in "Generating ElGamal signatures without knowning the secret key",
|
||||
# 1996
|
||||
#
|
||||
obj.g = number.getRandomRange(3, obj.p, randfunc)
|
||||
safe = 1
|
||||
if pow(obj.g, 2, obj.p)==1:
|
||||
safe=0
|
||||
if safe and pow(obj.g, q, obj.p)==1:
|
||||
safe=0
|
||||
# Discard g if it divides p-1 because of the attack described
|
||||
# in Note 11.67 (iii) in HAC
|
||||
if safe and divmod(obj.p-1, obj.g)[1]==0:
|
||||
safe=0
|
||||
# g^{-1} must not divide p-1 because of Khadir's attack
|
||||
# described in "Conditions of the generator for forging ElGamal
|
||||
# signature", 2011
|
||||
ginv = number.inverse(obj.g, obj.p)
|
||||
if safe and divmod(obj.p-1, ginv)[1]==0:
|
||||
safe=0
|
||||
if safe:
|
||||
break
|
||||
# Generate private key x
|
||||
if progress_func:
|
||||
progress_func('x\n')
|
||||
obj.x=number.getRandomRange(2, obj.p-1, randfunc)
|
||||
# Generate public key y
|
||||
if progress_func:
|
||||
progress_func('y\n')
|
||||
obj.y = pow(obj.g, obj.x, obj.p)
|
||||
return obj
|
||||
|
||||
def construct(tup):
|
||||
"""Construct an ElGamal key from a tuple of valid ElGamal components.
|
||||
|
||||
The modulus *p* must be a prime.
|
||||
|
||||
The following conditions must apply:
|
||||
|
||||
- 1 < g < p-1
|
||||
- g^{p-1} = 1 mod p
|
||||
- 1 < x < p-1
|
||||
- g^x = y mod p
|
||||
|
||||
:Parameters:
|
||||
tup : tuple
|
||||
A tuple of long integers, with 3 or 4 items
|
||||
in the following order:
|
||||
|
||||
1. Modulus (*p*).
|
||||
2. Generator (*g*).
|
||||
3. Public key (*y*).
|
||||
4. Private key (*x*). Optional.
|
||||
|
||||
:Return: An ElGamal key object (`ElGamalobj`).
|
||||
"""
|
||||
|
||||
obj=ElGamalobj()
|
||||
if len(tup) not in [3,4]:
|
||||
raise ValueError('argument for construct() wrong length')
|
||||
for i in range(len(tup)):
|
||||
field = obj.keydata[i]
|
||||
setattr(obj, field, tup[i])
|
||||
return obj
|
||||
|
||||
class ElGamalobj(pubkey):
|
||||
"""Class defining an ElGamal key.
|
||||
|
||||
:undocumented: __getstate__, __setstate__, __repr__, __getattr__
|
||||
"""
|
||||
|
||||
#: Dictionary of ElGamal parameters.
|
||||
#:
|
||||
#: A public key will only have the following entries:
|
||||
#:
|
||||
#: - **y**, the public key.
|
||||
#: - **g**, the generator.
|
||||
#: - **p**, the modulus.
|
||||
#:
|
||||
#: A private key will also have:
|
||||
#:
|
||||
#: - **x**, the private key.
|
||||
keydata=['p', 'g', 'y', 'x']
|
||||
|
||||
def __init__(self, randfunc=None):
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
self._randfunc = randfunc
|
||||
|
||||
def encrypt(self, plaintext, K):
|
||||
"""Encrypt a piece of data with ElGamal.
|
||||
|
||||
:Parameter plaintext: The piece of data to encrypt with ElGamal.
|
||||
It must be numerically smaller than the module (*p*).
|
||||
:Type plaintext: byte string or long
|
||||
|
||||
:Parameter K: A secret number, chosen randomly in the closed
|
||||
range *[1,p-2]*.
|
||||
:Type K: long (recommended) or byte string (not recommended)
|
||||
|
||||
:Return: A tuple with two items. Each item is of the same type as the
|
||||
plaintext (string or long).
|
||||
|
||||
:attention: selection of *K* is crucial for security. Generating a
|
||||
random number larger than *p-1* and taking the modulus by *p-1* is
|
||||
**not** secure, since smaller values will occur more frequently.
|
||||
Generating a random number systematically smaller than *p-1*
|
||||
(e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
|
||||
In general, it shall not be possible for an attacker to know
|
||||
the value of any bit of K.
|
||||
|
||||
:attention: The number *K* shall not be reused for any other
|
||||
operation and shall be discarded immediately.
|
||||
"""
|
||||
return pubkey.encrypt(self, plaintext, K)
|
||||
|
||||
def decrypt(self, ciphertext):
|
||||
"""Decrypt a piece of data with ElGamal.
|
||||
|
||||
:Parameter ciphertext: The piece of data to decrypt with ElGamal.
|
||||
:Type ciphertext: byte string, long or a 2-item tuple as returned
|
||||
by `encrypt`
|
||||
|
||||
:Return: A byte string if ciphertext was a byte string or a tuple
|
||||
of byte strings. A long otherwise.
|
||||
"""
|
||||
return pubkey.decrypt(self, ciphertext)
|
||||
|
||||
def sign(self, M, K):
|
||||
"""Sign a piece of data with ElGamal.
|
||||
|
||||
:Parameter M: The piece of data to sign with ElGamal. It may
|
||||
not be longer in bit size than *p-1*.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter K: A secret number, chosen randomly in the closed
|
||||
range *[1,p-2]* and such that *gcd(k,p-1)=1*.
|
||||
:Type K: long (recommended) or byte string (not recommended)
|
||||
|
||||
:attention: selection of *K* is crucial for security. Generating a
|
||||
random number larger than *p-1* and taking the modulus by *p-1* is
|
||||
**not** secure, since smaller values will occur more frequently.
|
||||
Generating a random number systematically smaller than *p-1*
|
||||
(e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
|
||||
In general, it shall not be possible for an attacker to know
|
||||
the value of any bit of K.
|
||||
|
||||
:attention: The number *K* shall not be reused for any other
|
||||
operation and shall be discarded immediately.
|
||||
|
||||
:attention: M must be be a cryptographic hash, otherwise an
|
||||
attacker may mount an existential forgery attack.
|
||||
|
||||
:Return: A tuple with 2 longs.
|
||||
"""
|
||||
return pubkey.sign(self, M, K)
|
||||
|
||||
def verify(self, M, signature):
|
||||
"""Verify the validity of an ElGamal signature.
|
||||
|
||||
:Parameter M: The expected message.
|
||||
:Type M: byte string or long
|
||||
|
||||
:Parameter signature: The ElGamal signature to verify.
|
||||
:Type signature: A tuple with 2 longs as return by `sign`
|
||||
|
||||
:Return: True if the signature is correct, False otherwise.
|
||||
"""
|
||||
return pubkey.verify(self, M, signature)
|
||||
|
||||
def _encrypt(self, M, K):
|
||||
a=pow(self.g, K, self.p)
|
||||
b=( M*pow(self.y, K, self.p) ) % self.p
|
||||
return ( a,b )
|
||||
|
||||
def _decrypt(self, M):
|
||||
if (not hasattr(self, 'x')):
|
||||
raise TypeError('Private key not available in this object')
|
||||
r = number.getRandomRange(2, self.p-1, self._randfunc)
|
||||
a_blind = (M[0] * pow(self.g, r, self.p)) % self.p
|
||||
ax=pow(a_blind, self.x, self.p)
|
||||
plaintext_blind = (M[1] * inverse(ax, self.p ) ) % self.p
|
||||
plaintext = (plaintext_blind * pow(self.y, r, self.p)) % self.p
|
||||
return plaintext
|
||||
|
||||
def _sign(self, M, K):
|
||||
if (not hasattr(self, 'x')):
|
||||
raise TypeError('Private key not available in this object')
|
||||
p1=self.p-1
|
||||
if (GCD(K, p1)!=1):
|
||||
raise ValueError('Bad K value: GCD(K,p-1)!=1')
|
||||
a=pow(self.g, K, self.p)
|
||||
t=(M-self.x*a) % p1
|
||||
while t<0: t=t+p1
|
||||
b=(t*inverse(K, p1)) % p1
|
||||
return (a, b)
|
||||
|
||||
def _verify(self, M, sig):
|
||||
if sig[0]<1 or sig[0]>self.p-1:
|
||||
return 0
|
||||
v1=pow(self.y, sig[0], self.p)
|
||||
v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
|
||||
v2=pow(self.g, M, self.p)
|
||||
if v1==v2:
|
||||
return 1
|
||||
return 0
|
||||
|
||||
def size(self):
|
||||
return number.size(self.p) - 1
|
||||
|
||||
def has_private(self):
|
||||
if hasattr(self, 'x'):
|
||||
return 1
|
||||
else:
|
||||
return 0
|
||||
|
||||
def publickey(self):
|
||||
return construct((self.p, self.g, self.y))
|
||||
|
||||
|
||||
object=ElGamalobj
|
Reference in New Issue
Block a user