diff --git a/docs/solo/nucleo32-board.md b/docs/solo/nucleo32-board.md index 7ca6202..008839d 100644 --- a/docs/solo/nucleo32-board.md +++ b/docs/solo/nucleo32-board.md @@ -28,12 +28,6 @@ See this [USB plug] image, and Wikipedia's [USB plug description]. Plug in [USB-A_schematic.pdf] has wrong wire order, registered as [solo-hw#1]. -[solo-hw#1]: https://github.com/solokeys/solo-hw/issues/1 - -[usb plug]: https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/USB.svg/1200px-USB.svg.png - -[usb plug description]: https://en.wikipedia.org/wiki/USB#Receptacle_(socket)_identification - The power is taken from the debugger / board (unless the board is configured in another way). Make sure 5V is not connected, and is covered from contacting with the board elements. @@ -66,15 +60,13 @@ PA0 / pin 6 --> button --> GND In that case the mentioned patch would not be required. -[usb-a_schematic.pdf]: https://github.com/solokeys/solo-hw/releases/download/1.2/USB-A_schematic.pdf - -# Development environment setup +## Development environment setup Environment: Fedora 29 x64, Linux 4.19.9 See for the original guide. Here details not included there will be covered. -## Install ARM tools +### Install ARM tools 1. Download current [ARM tools] package: [gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2]. 2. Extract the archive. @@ -85,15 +77,15 @@ See for the original guide. Here detai [gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2]: https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2018q4/gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2?revision=d830f9dd-cd4f-406d-8672-cca9210dd220?product=GNU%20Arm%20Embedded%20Toolchain,64-bit,,Linux,8-2018-q4-major -## Install flashing software +### Install flashing software ST provides a CLI flashing tool - `STM32_Programmer_CLI`. It can be downloaded directly from the vendor's site: -1\. Go to [download site URL](https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/stm32cubeprog.html), +1. Go to [download site URL](https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/stm32cubeprog.html), go to bottom page and from STM32CubeProg row select Download button. -2\. Unzip contents of the archive. -3\. Run \*Linux setup -4\. In installation directory go to ./bin - there the ./STM32_Programmer_CLI is located -5\. Add symlink to the STM32 CLI binary to .local/bin. Make sure the latter it is in $PATH. +2. Unzip contents of the archive. +3. Run \*Linux setup +4. In installation directory go to ./bin - there the ./STM32_Programmer_CLI is located +5. Add symlink to the STM32 CLI binary to .local/bin. Make sure the latter it is in $PATH. If you're on OsX and installed the STM32CubeProg, you need to add the following to your path: @@ -102,9 +94,9 @@ If you're on OsX and installed the STM32CubeProg, you need to add the following export PATH="/Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM32CubeProgrammer.app/Contents/MacOs/bin/":$PATH ``` -# Building and flashing +## Building and flashing -## Building +### Building Please follow , as the build way changes rapidly. Currently (8.1.19) to build the firmware, following lines should be executed @@ -119,7 +111,7 @@ make build-hacker DEBUG=1 Note: `DEBUG=2` stops the device initialization, until a serial client will be attached to its virtual port. Do not use it, if you do not plan to do so. -## Flashing via the Makefile command +### Flashing via the Makefile command ```bash # while in the main project directory @@ -136,7 +128,7 @@ make flash # STM32_Programmer_CLI -c port=SWD -halt -d all.hex -rst ``` -## Manual flashing +### Manual flashing In case you already have a firmware to flash (named `all.hex`), please run the following: @@ -145,17 +137,17 @@ STM32_Programmer_CLI -c port=SWD -halt -e all --readunprotect STM32_Programmer_CLI -c port=SWD -halt -d all.hex -rst ``` -# Testing +## Testing -## Internal +### Internal Project-provided tests. -### Simulated device +#### Simulated device A simulated device is provided to test the HID layer. -#### Build +##### Build ```bash make clean @@ -165,7 +157,7 @@ cd .. make env2 ``` -#### Execution +##### Execution ```bash # run simulated device (will create a network UDP server) @@ -176,7 +168,7 @@ make env2 ./env2/bin/python python-fido2/examples/credential.py ``` -### Real device +#### Real device ```bash # while in the main project directory @@ -184,27 +176,27 @@ make env2 make fido2-test ``` -## External +### External -### FIDO2 test sites +#### FIDO2 test sites 1. 2. 3. -### U2F test sites +#### U2F test sites 1. 2. -### FIDO2 standalone clients +#### FIDO2 standalone clients 1. 2. 3. 4. -# USB serial console reading +## USB serial console reading Device opens an USB-emulated serial port to output its messages. While Nucleo board offers such already, the Solo device provides its own. @@ -223,9 +215,9 @@ sudo picocom -b 115200 /dev/solokey-serial where `/dev/solokey-serial` is an udev symlink to `/dev/ttyACM1`. -# Other +## Other -## Dumping firmware +### Dumping firmware Size is calculated using bash arithmetic. @@ -233,13 +225,13 @@ Size is calculated using bash arithmetic. STM32_Programmer_CLI -c port=SWD -halt -u 0x0 $((256*1024)) current.hex ``` -## Software reset +### Software reset ```bash STM32_Programmer_CLI -c port=SWD -rst ``` -## Installing required Python packages +### Installing required Python packages Client script requires some Python packages, which could be easily installed locally to the project via the Makefile command. It is sufficient to run: @@ -247,3 +239,11 @@ via the Makefile command. It is sufficient to run: ```bash make env3 ``` + +[solo-hw#1]: https://github.com/solokeys/solo-hw/issues/1 + +[usb plug]: https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/USB.svg/1200px-USB.svg.png + +[usb plug description]: https://en.wikipedia.org/wiki/USB#Receptacle_(socket)_identification + +[usb-a_schematic.pdf]: https://github.com/solokeys/solo-hw/releases/download/1.2/USB-A_schematic.pdf