diff --git a/docs/solo/nucleo32-board.md b/docs/solo/nucleo32-board.md
index 7ca6202..008839d 100644
--- a/docs/solo/nucleo32-board.md
+++ b/docs/solo/nucleo32-board.md
@@ -28,12 +28,6 @@ See this [USB plug] image, and Wikipedia's [USB plug description].
Plug in [USB-A_schematic.pdf] has wrong wire order, registered as [solo-hw#1].
-[solo-hw#1]: https://github.com/solokeys/solo-hw/issues/1
-
-[usb plug]: https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/USB.svg/1200px-USB.svg.png
-
-[usb plug description]: https://en.wikipedia.org/wiki/USB#Receptacle_(socket)_identification
-
The power is taken from the debugger / board (unless the board is configured in another way).
Make sure 5V is not connected, and is covered from contacting with the board elements.
@@ -66,15 +60,13 @@ PA0 / pin 6 --> button --> GND
In that case the mentioned patch would not be required.
-[usb-a_schematic.pdf]: https://github.com/solokeys/solo-hw/releases/download/1.2/USB-A_schematic.pdf
-
-# Development environment setup
+## Development environment setup
Environment: Fedora 29 x64, Linux 4.19.9
See for the original guide. Here details not included there will be covered.
-## Install ARM tools
+### Install ARM tools
1. Download current [ARM tools] package: [gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2].
2. Extract the archive.
@@ -85,15 +77,15 @@ See for the original guide. Here detai
[gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2]: https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2018q4/gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2?revision=d830f9dd-cd4f-406d-8672-cca9210dd220?product=GNU%20Arm%20Embedded%20Toolchain,64-bit,,Linux,8-2018-q4-major
-## Install flashing software
+### Install flashing software
ST provides a CLI flashing tool - `STM32_Programmer_CLI`. It can be downloaded directly from the vendor's site:
-1\. Go to [download site URL](https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/stm32cubeprog.html),
+1. Go to [download site URL](https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/stm32cubeprog.html),
go to bottom page and from STM32CubeProg row select Download button.
-2\. Unzip contents of the archive.
-3\. Run \*Linux setup
-4\. In installation directory go to ./bin - there the ./STM32_Programmer_CLI is located
-5\. Add symlink to the STM32 CLI binary to .local/bin. Make sure the latter it is in $PATH.
+2. Unzip contents of the archive.
+3. Run \*Linux setup
+4. In installation directory go to ./bin - there the ./STM32_Programmer_CLI is located
+5. Add symlink to the STM32 CLI binary to .local/bin. Make sure the latter it is in $PATH.
If you're on OsX and installed the STM32CubeProg, you need to add the following to your path:
@@ -102,9 +94,9 @@ If you're on OsX and installed the STM32CubeProg, you need to add the following
export PATH="/Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM32CubeProgrammer.app/Contents/MacOs/bin/":$PATH
```
-# Building and flashing
+## Building and flashing
-## Building
+### Building
Please follow , as the build way changes rapidly.
Currently (8.1.19) to build the firmware, following lines should be executed
@@ -119,7 +111,7 @@ make build-hacker DEBUG=1
Note: `DEBUG=2` stops the device initialization, until a serial client will be attached to its virtual port.
Do not use it, if you do not plan to do so.
-## Flashing via the Makefile command
+### Flashing via the Makefile command
```bash
# while in the main project directory
@@ -136,7 +128,7 @@ make flash
# STM32_Programmer_CLI -c port=SWD -halt -d all.hex -rst
```
-## Manual flashing
+### Manual flashing
In case you already have a firmware to flash (named `all.hex`), please run the following:
@@ -145,17 +137,17 @@ STM32_Programmer_CLI -c port=SWD -halt -e all --readunprotect
STM32_Programmer_CLI -c port=SWD -halt -d all.hex -rst
```
-# Testing
+## Testing
-## Internal
+### Internal
Project-provided tests.
-### Simulated device
+#### Simulated device
A simulated device is provided to test the HID layer.
-#### Build
+##### Build
```bash
make clean
@@ -165,7 +157,7 @@ cd ..
make env2
```
-#### Execution
+##### Execution
```bash
# run simulated device (will create a network UDP server)
@@ -176,7 +168,7 @@ make env2
./env2/bin/python python-fido2/examples/credential.py
```
-### Real device
+#### Real device
```bash
# while in the main project directory
@@ -184,27 +176,27 @@ make env2
make fido2-test
```
-## External
+### External
-### FIDO2 test sites
+#### FIDO2 test sites
1.
2.
3.
-### U2F test sites
+#### U2F test sites
1.
2.
-### FIDO2 standalone clients
+#### FIDO2 standalone clients
1.
2.
3.
4.
-# USB serial console reading
+## USB serial console reading
Device opens an USB-emulated serial port to output its messages. While Nucleo board offers such already,
the Solo device provides its own.
@@ -223,9 +215,9 @@ sudo picocom -b 115200 /dev/solokey-serial
where `/dev/solokey-serial` is an udev symlink to `/dev/ttyACM1`.
-# Other
+## Other
-## Dumping firmware
+### Dumping firmware
Size is calculated using bash arithmetic.
@@ -233,13 +225,13 @@ Size is calculated using bash arithmetic.
STM32_Programmer_CLI -c port=SWD -halt -u 0x0 $((256*1024)) current.hex
```
-## Software reset
+### Software reset
```bash
STM32_Programmer_CLI -c port=SWD -rst
```
-## Installing required Python packages
+### Installing required Python packages
Client script requires some Python packages, which could be easily installed locally to the project
via the Makefile command. It is sufficient to run:
@@ -247,3 +239,11 @@ via the Makefile command. It is sufficient to run:
```bash
make env3
```
+
+[solo-hw#1]: https://github.com/solokeys/solo-hw/issues/1
+
+[usb plug]: https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/USB.svg/1200px-USB.svg.png
+
+[usb plug description]: https://en.wikipedia.org/wiki/USB#Receptacle_(socket)_identification
+
+[usb-a_schematic.pdf]: https://github.com/solokeys/solo-hw/releases/download/1.2/USB-A_schematic.pdf