Code cosmetics, added missing void statement to empty parameter of

functions
This commit is contained in:
Jan A 2019-09-30 19:01:10 +02:00 committed by Conor Patrick
parent 208d26be89
commit 5168afa16e
12 changed files with 67 additions and 56 deletions

View File

@ -8,21 +8,25 @@
#include "device.h" #include "device.h"
#include "nfc.h" #include "nfc.h"
static void flush_rx() static void flush_rx(void)
{ {
while(LL_SPI_IsActiveFlag_RXNE(SPI1) != 0) while(LL_SPI_IsActiveFlag_RXNE(SPI1) != 0)
{ {
LL_SPI_ReceiveData8(SPI1); LL_SPI_ReceiveData8(SPI1);
} }
} }
static void wait_for_tx()
static void wait_for_tx(void)
{ {
// while (LL_SPI_IsActiveFlag_BSY(SPI1) == 1) // while (LL_SPI_IsActiveFlag_BSY(SPI1) == 1)
// ; // ;
while(LL_SPI_GetTxFIFOLevel(SPI1) != LL_SPI_TX_FIFO_EMPTY) while(LL_SPI_GetTxFIFOLevel(SPI1) != LL_SPI_TX_FIFO_EMPTY)
; ;
} }
static void wait_for_rx()
static void wait_for_rx(void)
{ {
while(LL_SPI_IsActiveFlag_RXNE(SPI1) == 0) while(LL_SPI_IsActiveFlag_RXNE(SPI1) == 0)
; ;
@ -270,7 +274,7 @@ void ams_print_int1(uint8_t int0)
#endif #endif
} }
int ams_init() int ams_init(void)
{ {
LL_GPIO_SetPinMode(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN,LL_GPIO_MODE_OUTPUT); LL_GPIO_SetPinMode(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN,LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN); LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN);
@ -292,7 +296,7 @@ int ams_init()
return 0; return 0;
} }
void ams_configure() void ams_configure(void)
{ {
// Should not be used during passive operation. // Should not be used during passive operation.
uint8_t block[4]; uint8_t block[4];

View File

@ -39,8 +39,8 @@ typedef union
#define SELECT() LL_GPIO_ResetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN) #define SELECT() LL_GPIO_ResetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
#define UNSELECT() LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN) #define UNSELECT() LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
int ams_init(); int ams_init(void);
void ams_configure(); void ams_configure(void);
void ams_read_buffer(uint8_t * data, int len); void ams_read_buffer(uint8_t * data, int len);
void ams_write_buffer(uint8_t * data, int len); void ams_write_buffer(uint8_t * data, int len);

View File

@ -61,12 +61,13 @@ static uint8_t master_secret[64];
static uint8_t transport_secret[32]; static uint8_t transport_secret[32];
void crypto_sha256_init() void crypto_sha256_init(void)
{ {
sha256_init(&sha256_ctx); sha256_init(&sha256_ctx);
} }
void crypto_sha512_init() { void crypto_sha512_init(void)
{
cf_sha512_init(&sha512_ctx); cf_sha512_init(&sha512_ctx);
} }
@ -79,7 +80,7 @@ void crypto_load_master_secret(uint8_t * key)
memmove(transport_secret, key+64, 32); memmove(transport_secret, key+64, 32);
} }
void crypto_reset_master_secret() void crypto_reset_master_secret(void)
{ {
memset(master_secret, 0, 64); memset(master_secret, 0, 64);
memset(transport_secret, 0, 32); memset(transport_secret, 0, 32);
@ -107,7 +108,8 @@ void crypto_sha256_final(uint8_t * hash)
sha256_final(&sha256_ctx, hash); sha256_final(&sha256_ctx, hash);
} }
void crypto_sha512_final(uint8_t * hash) { void crypto_sha512_final(uint8_t * hash)
{
// NB: there is also cf_sha512_digest // NB: there is also cf_sha512_digest
cf_sha512_digest_final(&sha512_ctx, hash); cf_sha512_digest_final(&sha512_ctx, hash);
} }
@ -183,14 +185,14 @@ void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac)
} }
void crypto_ecc256_init() void crypto_ecc256_init(void)
{ {
uECC_set_rng((uECC_RNG_Function)ctap_generate_rng); uECC_set_rng((uECC_RNG_Function)ctap_generate_rng);
_es256_curve = uECC_secp256r1(); _es256_curve = uECC_secp256r1();
} }
void crypto_ecc256_load_attestation_key() void crypto_ecc256_load_attestation_key(void)
{ {
static uint8_t _key [32]; static uint8_t _key [32];
memmove(_key, (uint8_t*)ATTESTATION_KEY_ADDR, 32); memmove(_key, (uint8_t*)ATTESTATION_KEY_ADDR, 32);

View File

@ -34,7 +34,7 @@
#define LOW_FREQUENCY 1 #define LOW_FREQUENCY 1
#define HIGH_FREQUENCY 0 #define HIGH_FREQUENCY 0
void wait_for_usb_tether(); void wait_for_usb_tether(void);
uint32_t __90_ms = 0; uint32_t __90_ms = 0;
@ -48,12 +48,12 @@ static bool isLowFreq = 0;
static bool _up_disabled = false; static bool _up_disabled = false;
// #define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN)) // #define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN))
static int is_physical_button_pressed() static int is_physical_button_pressed(void)
{ {
return (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN)); return (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN));
} }
static int is_touch_button_pressed() static int is_touch_button_pressed(void)
{ {
int is_pressed = (tsc_read_button(0) || tsc_read_button(1)); int is_pressed = (tsc_read_button(0) || tsc_read_button(1));
#ifndef IS_BOOTLOADER #ifndef IS_BOOTLOADER
@ -69,7 +69,7 @@ static int is_touch_button_pressed()
int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed; int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed;
static void edge_detect_touch_button() static void edge_detect_touch_button(void)
{ {
static uint8_t last_touch = 0; static uint8_t last_touch = 0;
uint8_t current_touch = 0; uint8_t current_touch = 0;
@ -92,12 +92,13 @@ static void edge_detect_touch_button()
} }
void device_disable_up(bool disable) { void device_disable_up(bool disable)
{
_up_disabled = disable; _up_disabled = disable;
} }
// Timer6 overflow handler. happens every ~90ms. // Timer6 overflow handler. happens every ~90ms.
void TIM6_DAC_IRQHandler() void TIM6_DAC_IRQHandler(void)
{ {
// timer is only 16 bits, so roll it over here // timer is only 16 bits, so roll it over here
TIM6->SR = 0; TIM6->SR = 0;
@ -142,7 +143,7 @@ void USB_IRQHandler(void)
HAL_PCD_IRQHandler(&hpcd); HAL_PCD_IRQHandler(&hpcd);
} }
uint32_t millis() uint32_t millis(void)
{ {
return (((uint32_t)TIM6->CNT) + (__90_ms * 90)); return (((uint32_t)TIM6->CNT) + (__90_ms * 90));
} }
@ -160,7 +161,7 @@ void device_set_status(uint32_t status)
__device_status = status; __device_status = status;
} }
int device_is_button_pressed() int device_is_button_pressed(void)
{ {
return IS_BUTTON_PRESSED(); return IS_BUTTON_PRESSED();
} }
@ -171,12 +172,13 @@ void delay(uint32_t ms)
while ((millis() - time) < ms) while ((millis() - time) < ms)
; ;
} }
void device_reboot()
void device_reboot(void)
{ {
NVIC_SystemReset(); NVIC_SystemReset();
} }
void device_init_button() void device_init_button(void)
{ {
if (tsc_sensor_exists()) if (tsc_sensor_exists())
{ {
@ -226,12 +228,12 @@ void device_init(int argc, char *argv[])
} }
int device_is_nfc() int device_is_nfc(void)
{ {
return _NFC_status; return _NFC_status;
} }
void wait_for_usb_tether() void wait_for_usb_tether(void)
{ {
while (USBD_OK != CDC_Transmit_FS((uint8_t*)"tethered\r\n", 10) ) while (USBD_OK != CDC_Transmit_FS((uint8_t*)"tethered\r\n", 10) )
; ;
@ -242,7 +244,7 @@ void wait_for_usb_tether()
; ;
} }
void usbhid_init() void usbhid_init(void)
{ {
if (!isLowFreq) if (!isLowFreq)
{ {
@ -292,12 +294,12 @@ void ctaphid_write_block(uint8_t * data)
} }
void usbhid_close() void usbhid_close(void)
{ {
} }
void main_loop_delay() void main_loop_delay(void)
{ {
} }
@ -307,13 +309,14 @@ static uint32_t winkt1 = 0;
#ifdef LED_WINK_VALUE #ifdef LED_WINK_VALUE
static uint32_t winkt2 = 0; static uint32_t winkt2 = 0;
#endif #endif
void device_wink()
void device_wink(void)
{ {
wink_time = 10; wink_time = 10;
winkt1 = 0; winkt1 = 0;
} }
void heartbeat() void heartbeat(void)
{ {
static int state = 0; static int state = 0;
static uint32_t val = (LED_MAX_SCALER - LED_MIN_SCALER)/2; static uint32_t val = (LED_MAX_SCALER - LED_MIN_SCALER)/2;
@ -382,7 +385,7 @@ void authenticator_read_backup_state(AuthenticatorState * a)
} }
// Return 1 yes backup is init'd, else 0 // Return 1 yes backup is init'd, else 0
int authenticator_is_backup_initialized() int authenticator_is_backup_initialized(void)
{ {
uint8_t header[16]; uint8_t header[16];
uint32_t * ptr = (uint32_t *)flash_addr(STATE2_PAGE); uint32_t * ptr = (uint32_t *)flash_addr(STATE2_PAGE);
@ -499,7 +502,7 @@ uint32_t ctap_atomic_count(int sel)
void device_manage() void device_manage(void)
{ {
#if NON_BLOCK_PRINTING #if NON_BLOCK_PRINTING
int i = 10; int i = 10;
@ -525,7 +528,7 @@ void device_manage()
#endif #endif
} }
static int handle_packets() static int handle_packets(void)
{ {
static uint8_t hidmsg[HID_PACKET_SIZE]; static uint8_t hidmsg[HID_PACKET_SIZE];
memset(hidmsg,0, sizeof(hidmsg)); memset(hidmsg,0, sizeof(hidmsg));
@ -561,6 +564,7 @@ static int wait_for_button_activate(uint32_t wait)
} while (!IS_BUTTON_PRESSED()); } while (!IS_BUTTON_PRESSED());
return 0; return 0;
} }
static int wait_for_button_release(uint32_t wait) static int wait_for_button_release(uint32_t wait)
{ {
int ret; int ret;
@ -654,7 +658,7 @@ int ctap_user_verification(uint8_t arg)
return 1; return 1;
} }
void ctap_reset_rk() void ctap_reset_rk(void)
{ {
int i; int i;
printf1(TAG_GREEN, "resetting RK \r\n"); printf1(TAG_GREEN, "resetting RK \r\n");
@ -664,7 +668,7 @@ void ctap_reset_rk()
} }
} }
uint32_t ctap_rk_size() uint32_t ctap_rk_size(void)
{ {
return RK_NUM_PAGES * (PAGE_SIZE / sizeof(CTAP_residentKey)); return RK_NUM_PAGES * (PAGE_SIZE / sizeof(CTAP_residentKey));
} }
@ -726,7 +730,7 @@ void ctap_overwrite_rk(int index,CTAP_residentKey * rk)
} }
} }
void boot_st_bootloader() void boot_st_bootloader(void)
{ {
__disable_irq(); __disable_irq();
@ -738,7 +742,7 @@ void boot_st_bootloader()
; ;
} }
void boot_solo_bootloader() void boot_solo_bootloader(void)
{ {
LL_IWDG_Enable(IWDG); LL_IWDG_Enable(IWDG);

View File

@ -14,12 +14,12 @@
#include "log.h" #include "log.h"
#include "device.h" #include "device.h"
static void flash_lock() static void flash_lock(void)
{ {
FLASH->CR |= (1U<<31); FLASH->CR |= (1U<<31);
} }
static void flash_unlock() static void flash_unlock(void)
{ {
if (FLASH->CR & FLASH_CR_LOCK) if (FLASH->CR & FLASH_CR_LOCK)
{ {

View File

@ -699,7 +699,7 @@ void SystemClock_Config_LF20(void)
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN); SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
} }
void init_usb() void init_usb(void)
{ {
// enable USB power // enable USB power
SET_BIT(PWR->CR2, PWR_CR2_USV); SET_BIT(PWR->CR2, PWR_CR2_USV);

View File

@ -22,7 +22,7 @@
#ifndef _INIT_H_ #ifndef _INIT_H_
#define _INIT_H_ #define _INIT_H_
void init_usb(); void init_usb(void);
void init_gpio(void); void init_gpio(void);
void init_debug_uart(void); void init_debug_uart(void);
void init_pwm(void); void init_pwm(void);

View File

@ -57,10 +57,11 @@ void TIM6_DAC_IRQHandler()
__90_ms += 1; __90_ms += 1;
} }
uint32_t millis() uint32_t millis(void)
{ {
return (((uint32_t)TIM6->CNT) + (__90_ms * 90)); return (((uint32_t)TIM6->CNT) + (__90_ms * 90));
} }
void _Error_Handler(char *file, int line) void _Error_Handler(char *file, int line)
{ {
while(1) while(1)

View File

@ -359,7 +359,7 @@ static uint32_t WTX_timer;
bool WTX_process(int read_timeout); bool WTX_process(int read_timeout);
void WTX_clear() void WTX_clear(void)
{ {
WTX_sent = false; WTX_sent = false;
WTX_fail = false; WTX_fail = false;
@ -374,7 +374,7 @@ bool WTX_on(int WTX_time)
return true; return true;
} }
bool WTX_off() bool WTX_off(void)
{ {
WTX_timer = 0; WTX_timer = 0;
@ -398,7 +398,7 @@ bool WTX_off()
return true; return true;
} }
void WTX_timer_exec() void WTX_timer_exec(void)
{ {
// condition: (timer on) or (not expired[300ms]) // condition: (timer on) or (not expired[300ms])
if ((WTX_timer == 0) || WTX_timer + 300 > millis()) if ((WTX_timer == 0) || WTX_timer + 300 > millis())
@ -856,7 +856,7 @@ void nfc_process_iblock(uint8_t * buf, int len)
static uint8_t ibuf[1024]; static uint8_t ibuf[1024];
static int ibuflen = 0; static int ibuflen = 0;
void clear_ibuf() void clear_ibuf(void)
{ {
ibuflen = 0; ibuflen = 0;
memset(ibuf, 0, sizeof(ibuf)); memset(ibuf, 0, sizeof(ibuf));
@ -969,7 +969,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
} }
} }
int nfc_loop() int nfc_loop(void)
{ {
uint8_t buf[32]; uint8_t buf[32];
AMS_DEVICE ams; AMS_DEVICE ams;

View File

@ -6,9 +6,9 @@
#include "apdu.h" #include "apdu.h"
// Return number of bytes read if any. // Return number of bytes read if any.
int nfc_loop(); int nfc_loop(void);
int nfc_init(); int nfc_init(void);
typedef struct typedef struct
{ {
@ -61,6 +61,6 @@ typedef enum
APP_FIDO, APP_FIDO,
} APPLETS; } APPLETS;
void WTX_timer_exec(); void WTX_timer_exec(void);
#endif #endif

View File

@ -8,7 +8,7 @@
#define ELECTRODE_0 TSC_GROUP2_IO1 #define ELECTRODE_0 TSC_GROUP2_IO1
#define ELECTRODE_1 TSC_GROUP2_IO2 #define ELECTRODE_1 TSC_GROUP2_IO2
void tsc_init() void tsc_init(void)
{ {
LL_GPIO_InitTypeDef GPIO_InitStruct; LL_GPIO_InitTypeDef GPIO_InitStruct;
// Enable TSC clock // Enable TSC clock
@ -74,7 +74,7 @@ void tsc_set_electrode(uint32_t channel_ids)
TSC->IOCCR = (channel_ids); TSC->IOCCR = (channel_ids);
} }
void tsc_start_acq() void tsc_start_acq(void)
{ {
TSC->CR &= ~(TSC_CR_START); TSC->CR &= ~(TSC_CR_START);
@ -86,7 +86,7 @@ void tsc_start_acq()
TSC->CR |= TSC_CR_START; TSC->CR |= TSC_CR_START;
} }
void tsc_wait_on_acq() void tsc_wait_on_acq(void)
{ {
while ( ! (TSC->ISR & TSC_FLAG_EOA) ) while ( ! (TSC->ISR & TSC_FLAG_EOA) )
; ;
@ -117,7 +117,7 @@ uint32_t tsc_read_button(uint32_t index)
return tsc_read(1) < 45; return tsc_read(1) < 45;
} }
int tsc_sensor_exists() int tsc_sensor_exists(void)
{ {
static uint8_t does = 0; static uint8_t does = 0;
if (does) return 1; if (does) return 1;

View File

@ -3,9 +3,9 @@
#include <stdint.h> #include <stdint.h>
void tsc_init(); void tsc_init(void);
int tsc_sensor_exists(); int tsc_sensor_exists(void);
// Read button0 or button1 // Read button0 or button1
// Returns 1 if pressed, 0 if not. // Returns 1 if pressed, 0 if not.