initial fido2 port

This commit is contained in:
Conor Patrick
2018-10-25 21:25:49 -04:00
parent 2819c0a215
commit 705ee28860
16 changed files with 659 additions and 124 deletions

View File

@@ -5,8 +5,30 @@
#define DEBUG_UART USART1
#define DEBUG_LEVEL 1
#define NON_BLOCK_PRINTING 1
//#define PRINTING_USE_VCOM
//#define USING_DEV_BOARD
//#define ENABLE_U2F_EXTENSIONS
#define ENABLE_U2F
//#define DISABLE_CTAPHID_PING
//#define DISABLE_CTAPHID_WINK
//#define DISABLE_CTAPHID_CBOR
void printing_init();
void hw_init(void);
//#define TEST
//#define TEST_POWER
#define LED_INIT_VALUE 0x001000
#endif

View File

@@ -0,0 +1,355 @@
/*
* Wrapper for crypto implementation on device
*
* */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#include "crypto.h"
#ifdef USE_SOFTWARE_IMPLEMENTATION
#include "sha256.h"
#include "uECC.h"
#include "aes.h"
#include "ctap.h"
#include "device.h"
#include "app.h"
typedef enum
{
MBEDTLS_ECP_DP_NONE = 0,
MBEDTLS_ECP_DP_SECP192R1, /*!< 192-bits NIST curve */
MBEDTLS_ECP_DP_SECP224R1, /*!< 224-bits NIST curve */
MBEDTLS_ECP_DP_SECP256R1, /*!< 256-bits NIST curve */
MBEDTLS_ECP_DP_SECP384R1, /*!< 384-bits NIST curve */
MBEDTLS_ECP_DP_SECP521R1, /*!< 521-bits NIST curve */
MBEDTLS_ECP_DP_BP256R1, /*!< 256-bits Brainpool curve */
MBEDTLS_ECP_DP_BP384R1, /*!< 384-bits Brainpool curve */
MBEDTLS_ECP_DP_BP512R1, /*!< 512-bits Brainpool curve */
MBEDTLS_ECP_DP_CURVE25519, /*!< Curve25519 */
MBEDTLS_ECP_DP_SECP192K1, /*!< 192-bits "Koblitz" curve */
MBEDTLS_ECP_DP_SECP224K1, /*!< 224-bits "Koblitz" curve */
MBEDTLS_ECP_DP_SECP256K1, /*!< 256-bits "Koblitz" curve */
} mbedtls_ecp_group_id;
const uint8_t attestation_cert_der[];
const uint16_t attestation_cert_der_size;
const uint8_t attestation_key[];
const uint16_t attestation_key_size;
static SHA256_CTX sha256_ctx;
static const struct uECC_Curve_t * _es256_curve = NULL;
static const uint8_t * _signing_key = NULL;
static int _key_len = 0;
// Secrets for testing only
static uint8_t master_secret[32] = "\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa\xbb\xcc\xdd\xee\xff"
"\xff\xee\xdd\xcc\xbb\xaa\x99\x88\x77\x66\x55\x44\x33\x22\x11\x00";
static uint8_t transport_secret[32] = "\x10\x01\x22\x33\x44\x55\x66\x77\x87\x90\x0a\xbb\x3c\xd8\xee\xff"
"\xff\xee\x8d\x1c\x3b\xfa\x99\x88\x77\x86\x55\x44\xd3\xff\x33\x00";
void crypto_sha256_init()
{
sha256_init(&sha256_ctx);
}
void crypto_reset_master_secret()
{
ctap_generate_rng(master_secret, 32);
}
void crypto_sha256_update(uint8_t * data, size_t len)
{
sha256_update(&sha256_ctx, data, len);
}
void crypto_sha256_update_secret()
{
sha256_update(&sha256_ctx, master_secret, 32);
}
void crypto_sha256_final(uint8_t * hash)
{
sha256_final(&sha256_ctx, hash);
}
void crypto_sha256_hmac_init(uint8_t * key, uint32_t klen, uint8_t * hmac)
{
uint8_t buf[64];
int i;
memset(buf, 0, sizeof(buf));
if (key == CRYPTO_MASTER_KEY)
{
key = master_secret;
klen = sizeof(master_secret);
}
if(klen > 64)
{
printf("Error, key size must be <= 64\n");
exit(1);
}
memmove(buf, key, klen);
for (i = 0; i < sizeof(buf); i++)
{
buf[i] = buf[i] ^ 0x36;
}
crypto_sha256_init();
crypto_sha256_update(buf, 64);
}
void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac)
{
uint8_t buf[64];
int i;
crypto_sha256_final(hmac);
memset(buf, 0, sizeof(buf));
if (key == CRYPTO_MASTER_KEY)
{
key = master_secret;
klen = sizeof(master_secret);
}
if(klen > 64)
{
printf("Error, key size must be <= 64\n");
exit(1);
}
memmove(buf, key, klen);
for (i = 0; i < sizeof(buf); i++)
{
buf[i] = buf[i] ^ 0x5c;
}
crypto_sha256_init();
crypto_sha256_update(buf, 64);
crypto_sha256_update(hmac, 32);
crypto_sha256_final(hmac);
}
void crypto_ecc256_init()
{
uECC_set_rng((uECC_RNG_Function)ctap_generate_rng);
_es256_curve = uECC_secp256r1();
}
void crypto_ecc256_load_attestation_key()
{
_signing_key = attestation_key;
_key_len = 32;
}
void crypto_ecc256_sign(uint8_t * data, int len, uint8_t * sig)
{
if ( uECC_sign(_signing_key, data, len, sig, _es256_curve) == 0)
{
printf("error, uECC failed\n");
exit(1);
}
}
void crypto_ecc256_load_key(uint8_t * data, int len, uint8_t * data2, int len2)
{
static uint8_t privkey[32];
generate_private_key(data,len,data2,len2,privkey);
_signing_key = privkey;
_key_len = 32;
}
void crypto_ecdsa_sign(uint8_t * data, int len, uint8_t * sig, int MBEDTLS_ECP_ID)
{
const struct uECC_Curve_t * curve = NULL;
switch(MBEDTLS_ECP_ID)
{
case MBEDTLS_ECP_DP_SECP192R1:
curve = uECC_secp192r1();
if (_key_len != 24) goto fail;
break;
case MBEDTLS_ECP_DP_SECP224R1:
curve = uECC_secp224r1();
if (_key_len != 28) goto fail;
break;
case MBEDTLS_ECP_DP_SECP256R1:
curve = uECC_secp256r1();
if (_key_len != 32) goto fail;
break;
case MBEDTLS_ECP_DP_SECP256K1:
curve = uECC_secp256k1();
if (_key_len != 32) goto fail;
break;
default:
printf("error, invalid ECDSA alg specifier\n");
exit(1);
}
if ( uECC_sign(_signing_key, data, len, sig, curve) == 0)
{
printf("error, uECC failed\n");
exit(1);
}
return;
fail:
printf("error, invalid key length\n");
exit(1);
}
void generate_private_key(uint8_t * data, int len, uint8_t * data2, int len2, uint8_t * privkey)
{
crypto_sha256_hmac_init(CRYPTO_MASTER_KEY, 0, privkey);
crypto_sha256_update(data, len);
crypto_sha256_update(data2, len2);
crypto_sha256_update(master_secret, 32);
crypto_sha256_hmac_final(CRYPTO_MASTER_KEY, 0, privkey);
}
/*int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve);*/
void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8_t * y)
{
uint8_t privkey[32];
uint8_t pubkey[64];
generate_private_key(data,len,NULL,0,privkey);
memset(pubkey,0,sizeof(pubkey));
uECC_compute_public_key(privkey, pubkey, _es256_curve);
memmove(x,pubkey,32);
memmove(y,pubkey+32,32);
}
void crypto_load_external_key(uint8_t * key, int len)
{
_signing_key = key;
_key_len = len;
}
void crypto_ecc256_make_key_pair(uint8_t * pubkey, uint8_t * privkey)
{
if (uECC_make_key(pubkey, privkey, _es256_curve) != 1)
{
printf("Error, uECC_make_key failed\n");
exit(1);
}
}
void crypto_ecc256_shared_secret(const uint8_t * pubkey, const uint8_t * privkey, uint8_t * shared_secret)
{
if (uECC_shared_secret(pubkey, privkey, shared_secret, _es256_curve) != 1)
{
printf("Error, uECC_shared_secret failed\n");
exit(1);
}
}
struct AES_ctx aes_ctx;
void crypto_aes256_init(uint8_t * key, uint8_t * nonce)
{
if (key == CRYPTO_TRANSPORT_KEY)
{
AES_init_ctx(&aes_ctx, transport_secret);
}
else
{
AES_init_ctx(&aes_ctx, key);
}
if (nonce == NULL)
{
memset(aes_ctx.Iv, 0, 16);
}
else
{
memmove(aes_ctx.Iv, nonce, 16);
}
}
// prevent round key recomputation
void crypto_aes256_reset_iv(uint8_t * nonce)
{
if (nonce == NULL)
{
memset(aes_ctx.Iv, 0, 16);
}
else
{
memmove(aes_ctx.Iv, nonce, 16);
}
}
void crypto_aes256_decrypt(uint8_t * buf, int length)
{
AES_CBC_decrypt_buffer(&aes_ctx, buf, length);
}
void crypto_aes256_encrypt(uint8_t * buf, int length)
{
AES_CBC_encrypt_buffer(&aes_ctx, buf, length);
}
const uint8_t attestation_cert_der[] =
"\x30\x82\x01\xfb\x30\x82\x01\xa1\xa0\x03\x02\x01\x02\x02\x01\x00\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13"
"\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e"
"\x06\x03\x55\x04\x0a\x0c\x07\x54\x45\x53\x54\x20\x43\x41\x30\x20\x17\x0d\x31\x38"
"\x30\x35\x31\x30\x30\x33\x30\x36\x32\x30\x5a\x18\x0f\x32\x30\x36\x38\x30\x34\x32"
"\x37\x30\x33\x30\x36\x32\x30\x5a\x30\x7c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13"
"\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x0f\x30\x0d"
"\x06\x03\x55\x04\x07\x0c\x06\x4c\x61\x75\x72\x65\x6c\x31\x15\x30\x13\x06\x03\x55"
"\x04\x0a\x0c\x0c\x54\x45\x53\x54\x20\x43\x4f\x4d\x50\x41\x4e\x59\x31\x22\x30\x20"
"\x06\x03\x55\x04\x0b\x0c\x19\x41\x75\x74\x68\x65\x6e\x74\x69\x63\x61\x74\x6f\x72"
"\x20\x41\x74\x74\x65\x73\x74\x61\x74\x69\x6f\x6e\x31\x14\x30\x12\x06\x03\x55\x04"
"\x03\x0c\x0b\x63\x6f\x6e\x6f\x72\x70\x70\x2e\x63\x6f\x6d\x30\x59\x30\x13\x06\x07"
"\x2a\x86\x48\xce\x3d\x02\x01\x06\x08\x2a\x86\x48\xce\x3d\x03\x01\x07\x03\x42\x00"
"\x04\x45\xa9\x02\xc1\x2e\x9c\x0a\x33\xfa\x3e\x84\x50\x4a\xb8\x02\xdc\x4d\xb9\xaf"
"\x15\xb1\xb6\x3a\xea\x8d\x3f\x03\x03\x55\x65\x7d\x70\x3f\xb4\x02\xa4\x97\xf4\x83"
"\xb8\xa6\xf9\x3c\xd0\x18\xad\x92\x0c\xb7\x8a\x5a\x3e\x14\x48\x92\xef\x08\xf8\xca"
"\xea\xfb\x32\xab\x20\xa3\x62\x30\x60\x30\x46\x06\x03\x55\x1d\x23\x04\x3f\x30\x3d"
"\xa1\x30\xa4\x2e\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13\x02\x55\x53\x31"
"\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e\x06\x03\x55\x04"
"\x0a\x0c\x07\x54\x45\x53\x54\x20\x43\x41\x82\x09\x00\xf7\xc9\xec\x89\xf2\x63\x94"
"\xd9\x30\x09\x06\x03\x55\x1d\x13\x04\x02\x30\x00\x30\x0b\x06\x03\x55\x1d\x0f\x04"
"\x04\x03\x02\x04\xf0\x30\x0a\x06\x08\x2a\x86\x48\xce\x3d\x04\x03\x02\x03\x48\x00"
"\x30\x45\x02\x20\x18\x38\xb0\x45\x03\x69\xaa\xa7\xb7\x38\x62\x01\xaf\x24\x97\x5e"
"\x7e\x74\x64\x1b\xa3\x7b\xf7\xe6\xd3\xaf\x79\x28\xdb\xdc\xa5\x88\x02\x21\x00\xcd"
"\x06\xf1\xe3\xab\x16\x21\x8e\xd8\xc0\x14\xaf\x09\x4f\x5b\x73\xef\x5e\x9e\x4b\xe7"
"\x35\xeb\xdd\x9b\x6d\x8f\x7d\xf3\xc4\x3a\xd7";
const uint16_t attestation_cert_der_size = sizeof(attestation_cert_der)-1;
const uint8_t attestation_key[] = "\xcd\x67\xaa\x31\x0d\x09\x1e\xd1\x6e\x7e\x98\x92\xaa\x07\x0e\x19\x94\xfc\xd7\x14\xae\x7c\x40\x8f\xb9\x46\xb7\x2e\x5f\xe7\x5d\x30";
const uint16_t attestation_key_size = sizeof(attestation_key)-1;
#else
#error "No crypto implementation defined"
#endif

View File

@@ -1,25 +1,201 @@
#include "device.h"
#include "usbd_def.h"
#include "stm32l4xx.h"
#include "stm32l4xx_ll_tim.h"
#include "stm32l4xx_ll_usart.h"
#include "usbd_hid.h"
#include "app.h"
#include "flash.h"
#include "rng.h"
#include "led.h"
#include "device.h"
#include "util.h"
#include "fifo.h"
#include "log.h"
uint32_t __65_seconds = 0;
extern PCD_HandleTypeDef hpcd;
// Timer6 overflow handler
void TIM6_DAC_IRQHandler()
{
// timer is only 16 bits, so roll it over here
TIM6->SR = 0;
__65_seconds += 1;
}
extern PCD_HandleTypeDef hpcd;
// Global USB interrupt handler
void USB_IRQHandler(void)
{
HAL_PCD_IRQHandler(&hpcd);
}
uint32_t millis()
{
return (((uint32_t)TIM6->CNT) | (__65_seconds<<16));
}
void delay(uint32_t ms)
{
uint32_t time = millis();
while ((millis() - time) < ms)
;
}
void device_init()
{
hw_init();
printf1(TAG_GEN,"hello solo\r\n");
}
void usbhid_init()
{
printf1(TAG_GEN,"hello solo\r\n");
}
int usbhid_recv(uint8_t * msg)
{
if (fifo_hidmsg_size())
{
fifo_hidmsg_take(msg);
printf1(TAG_DUMP,">> ");
dump_hex1(TAG_DUMP,msg, HID_PACKET_SIZE);
return HID_PACKET_SIZE;
}
return 0;
}
void usbhid_send(uint8_t * msg)
{
printf1(TAG_DUMP,"<< ");
dump_hex1(TAG_DUMP, msg, HID_PACKET_SIZE);
// USBD_HID_HandleTypeDef *hhid = (USBD_HID_HandleTypeDef*)&Solo_USBD_Device.pClassData;
USBD_LL_Transmit(&Solo_USBD_Device, HID_EPIN_ADDR, msg, HID_PACKET_SIZE);
}
void ctaphid_write_block(uint8_t * data)
{
usbhid_send(data);
}
void usbhid_close()
{
}
void main_loop_delay()
{
}
void heartbeat()
{
static int state = 0;
static uint32_t val = (LED_INIT_VALUE >> 8) & 0xff;
// int but = IS_BUTTON_PRESSED();
int but = 0;
if (state)
{
val--;
}
else
{
val++;
}
if (val > 30 || val < 1)
{
state = !state;
}
// int c = PCD_GET_EP_TX_CNT(USB,1);
// int c = PCD_GET_EP_TX_STATUS(USB,1);
// printf("tx counter: %x\r\n",PCD_GET_EP_TX_CNT(USB,1));
// if (but) RGB(val * 2);
// else
led_rgb((val << 16) | (val*2 << 8));
}
void authenticator_read_state(AuthenticatorState * a)
{
}
void authenticator_read_backup_state(AuthenticatorState * a)
{
}
// Return 1 yes backup is init'd, else 0
//void authenticator_initialize()
int authenticator_is_backup_initialized()
{
return 0;
}
void authenticator_write_state(AuthenticatorState * a, int backup)
{
}
void device_manage()
{
#if NON_BLOCK_PRINTING
int i = 10;
uint8_t c;
while (i--)
{
if (fifo_debug_size())
{
fifo_debug_take(&c);
while (! LL_USART_IsActiveFlag_TXE(DEBUG_UART))
;
LL_USART_TransmitData8(DEBUG_UART,c);
}
else
{
break;
}
}
#endif
}
int ctap_user_presence_test()
{
return 1;
}
int ctap_generate_rng(uint8_t * dst, size_t num)
{
rng_get_bytes(dst, num);
return 1;
}
uint32_t ctap_atomic_count(int sel)
{
static uint32_t c = 4;
return c++;
}
int ctap_user_verification(uint8_t arg)
{
return 1;
}
void _Error_Handler(char *file, int line)
{
printf2(TAG_ERR,"Error: %s: %d\r\n", file, line);
while(1)
{
}
}

View File

@@ -1,12 +0,0 @@
#ifndef _DEVICE_H_
#define _DEVICE_H_
#include <stdint.h>
#include "stm32l4xx_ll_tim.h"
void delay(uint32_t ms);
#define millis() (((uint32_t)TIM6->CNT) | (__65_seconds<<16))
extern uint32_t __65_seconds;
#endif

View File

@@ -4,7 +4,7 @@
#include "fifo.h"
FIFO_CREATE(debug,1024,1)
FIFO_CREATE(hidmsg,100,100)

View File

@@ -51,6 +51,8 @@ uint32_t fifo_##NAME##_size();\
FIFO_CREATE_H(hidmsg,10,64)
FIFO_CREATE_H(debug,1024,1)
FIFO_CREATE_H(test,100,100)
void fifo_test();

View File

@@ -5,6 +5,7 @@
#include "app.h"
#include "flash.h"
#include "log.h"
static void flash_unlock()
{
@@ -33,7 +34,7 @@ void flash_erase_page(uint8_t page)
if(FLASH->SR & (1<<1))
{
printf("erase NOT successful %lx\r\n", FLASH->SR);
printf2(TAG_ERR,"erase NOT successful %lx\r\n", FLASH->SR);
}
FLASH->CR &= ~(0x7);
@@ -58,7 +59,7 @@ void flash_write_dword(uint32_t addr, uint64_t data)
if(FLASH->SR & (1<<1))
{
printf("program NOT successful %lx\r\n", FLASH->SR);
printf2(TAG_ERR,"program NOT successful %lx\r\n", FLASH->SR);
}
FLASH->SR = (1<<0);

View File

@@ -20,6 +20,7 @@
#include "usbd_core.h"
#include "usbd_desc.h"
#include "usbd_hid.h"
#include "device.h"
/* USER CODE BEGIN Includes */

View File

@@ -28,6 +28,7 @@
#include "util.h"
#include "fifo.h"
#ifdef TEST_SOLO_STM32
#define Error_Handler() _Error_Handler(__FILE__,__LINE__)
int main(void)
@@ -101,3 +102,4 @@ void _Error_Handler(char *file, int line)
{
}
}
#endif

View File

@@ -1,38 +1,19 @@
#include "stm32l4xx_ll_usart.h"
#include "app.h"
#include "fifo.h"
int WRITE_PTR = 0;
int READ_PTR = 0;
#define BUF_SIZE 20000
static uint8_t WRITE_BUF[BUF_SIZE];
void add2buf(uint8_t c)
{
WRITE_BUF[WRITE_PTR++] = c;
if (WRITE_PTR >= BUF_SIZE)
WRITE_PTR = 0;
}
uint8_t takebuf()
{
uint8_t c;
c = WRITE_BUF[READ_PTR++];
if (READ_PTR >= BUF_SIZE)
READ_PTR = 0;
return c;
}
uint8_t bufavail()
{
return (READ_PTR < WRITE_PTR);
}
void _putchar(char c)
{
// add2buf(c);
#if NON_BLOCK_PRINTING
fifo_debug_add(&c);
#else
while (! LL_USART_IsActiveFlag_TXE(DEBUG_UART))
;
LL_USART_TransmitData8(DEBUG_UART,c);
#endif
}
int _write (int fd, const void *buf, long int len)
@@ -43,4 +24,5 @@ int _write (int fd, const void *buf, long int len)
_putchar(*data++);
}
return 0;
}

View File

@@ -5,6 +5,7 @@
#include "stm32l4xx_ll_rng.h"
#include "rng.h"
#include "log.h"
int __errno = 0;
@@ -20,7 +21,7 @@ void rng_get_bytes(uint8_t * dst, size_t sz)
if (RNG->SR & 0x66)
{
printf("Error RNG: %02lx\r\n", RNG->SR);
printf2(TAG_ERR,"Error RNG: %02lx\r\n", RNG->SR);
exit(1);
}
@@ -54,7 +55,7 @@ float shannon_entropy(float * p, size_t sz)
return entropy;
}
// Measure shannon entropy of RNG
// Measure shannon entropy of RNG
float rng_test(size_t n)
{
unsigned int i;