Merge pull request #121 from solokeys/nfc

Nfc
This commit is contained in:
Conor Patrick 2019-03-01 21:43:12 -05:00 committed by GitHub
commit 7255c4f8db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
29 changed files with 4191 additions and 300 deletions

10
.gitignore vendored
View File

@ -81,15 +81,5 @@ env3/
.tags*
targets/*/docs/
main
targets/efm32/.project
targets/efm32/.settings/com.silabs.ss.framework.ide.project.sls.core.prefs
targets/efm32/.settings/org.eclipse.cdt.codan.core.prefs
targets/efm32/CMSIS/EFM32PG1B/startup_gcc_efm32pg1b.s
targets/efm32/CMSIS/EFM32PG1B/system_efm32pg1b.c
targets/efm32/EFM32.hwconf
targets/efm32/EFM32_EFM32JG1B200F128GM32.hwconf
targets/efm32/emlib/em_adc.c
targets/efm32/emlib/em_assert.c
targets/efm32/emlib/em_cmu.c
builds/*

30
fido2/apdu.h Normal file
View File

@ -0,0 +1,30 @@
#ifndef _APDU_H_
#define _APDU_H_
#include <stdint.h>
typedef struct
{
uint8_t cla;
uint8_t ins;
uint8_t p1;
uint8_t p2;
uint8_t lc;
} __attribute__((packed)) APDU_HEADER;
#define APDU_FIDO_U2F_REGISTER 0x01
#define APDU_FIDO_U2F_AUTHENTICATE 0x02
#define APDU_FIDO_U2F_VERSION 0x03
#define APDU_FIDO_NFCCTAP_MSG 0x10
#define APDU_INS_SELECT 0xA4
#define APDU_INS_READ_BINARY 0xB0
#define SW_SUCCESS 0x9000
#define SW_GET_RESPONSE 0x6100 // Command successfully executed; 'XX' bytes of data are available and can be requested using GET RESPONSE.
#define SW_WRONG_LENGTH 0x6700
#define SW_COND_USE_NOT_SATISFIED 0x6985
#define SW_FILE_NOT_FOUND 0x6a82
#define SW_INS_INVALID 0x6d00 // Instruction code not supported or invalid
#define SW_INTERNAL_EXCEPTION 0x6f00
#endif //_APDU_H_

View File

@ -336,7 +336,12 @@ static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * au
count = auth_data_update_count(&authData->head);
device_set_status(CTAPHID_STATUS_UPNEEDED);
int but = ctap_user_presence_test();
// if NFC - not need to click a button
int but = 1;
if(!device_is_nfc())
{
but = ctap_user_presence_test();
}
if (!but)
{
@ -1586,7 +1591,10 @@ void ctap_init()
exit(1);
}
if (! device_is_nfc())
{
crypto_ecc256_make_key_pair(KEY_AGREEMENT_PUB, KEY_AGREEMENT_PRIV);
}
#ifdef BRIDGE_TO_WALLET
wallet_init();

View File

@ -86,5 +86,22 @@ void boot_st_bootloader();
// HID wink command
void device_wink();
typedef enum {
DEVICE_LOW_POWER_IDLE = 0,
DEVICE_LOW_POWER_FAST = 1,
DEVICE_FAST = 2,
} DEVICE_CLOCK_RATE;
// Set the clock rate for the device.
// Three modes are targetted for Solo.
// 0: Lowest clock rate for NFC.
// 1: fastest clock rate supported at a low power setting for NFC FIDO.
// 2: fastest clock rate. Generally for USB interface.
void device_set_clock_rate(DEVICE_CLOCK_RATE param);
// Returns 1 if operating in NFC mode.
// 0 otherwise.
bool device_is_nfc();
#endif

View File

@ -91,10 +91,10 @@ int16_t extend_fido2(CredentialId * credid, uint8_t * output)
}
}
int16_t extend_u2f(struct u2f_request_apdu* req, uint32_t len)
int16_t extend_u2f(APDU_HEADER * req, uint8_t * payload, uint32_t len)
{
struct u2f_authenticate_request * auth = (struct u2f_authenticate_request *) req->payload;
struct u2f_authenticate_request * auth = (struct u2f_authenticate_request *) payload;
uint16_t rcode;
if (req->ins == U2F_AUTHENTICATE)

View File

@ -7,8 +7,9 @@
#ifndef EXTENSIONS_H_
#define EXTENSIONS_H_
#include "u2f.h"
#include "apdu.h"
int16_t extend_u2f(struct u2f_request_apdu* req, uint32_t len);
int16_t extend_u2f(APDU_HEADER * req, uint8_t * payload, uint32_t len);
int16_t extend_fido2(CredentialId * credid, uint8_t * output);

View File

@ -48,6 +48,8 @@ struct logtag tagtable[] = {
{TAG_STOR,"STOR"},
{TAG_BOOT,"BOOT"},
{TAG_EXT,"EXT"},
{TAG_NFC,"NFC"},
{TAG_NFC_APDU, "NAPDU"},
};
@ -68,7 +70,7 @@ void LOG(uint32_t tag, const char * filename, int num, const char * fmt, ...)
{
if (tag & tagtable[i].tagn)
{
if (tagtable[i].tag[0]) printf("[%s] ", tagtable[i].tag);
if (tagtable[i].tag[0] && !(tag & TAG_NO_TAG)) printf("[%s] ", tagtable[i].tag);
i = 0;
break;
}

View File

@ -42,8 +42,11 @@ typedef enum
TAG_DUMP2 = (1 << 16),
TAG_BOOT = (1 << 17),
TAG_EXT = (1 << 18),
TAG_NFC = (1 << 19),
TAG_NFC_APDU = (1 << 20),
TAG_FILENO = (1u << 31)
TAG_NO_TAG = (1UL << 30),
TAG_FILENO = (1UL << 31)
} LOG_TAG;
#if DEBUG_LEVEL > 0

View File

@ -29,12 +29,14 @@ int main()
//TAG_GEN|
//TAG_MC |
//TAG_GA |
TAG_WALLET |
//TAG_WALLET |
TAG_STOR |
//TAG_NFC_APDU |
TAG_NFC |
//TAG_CP |
//TAG_CTAP|
//TAG_HID|
/*TAG_U2F|*/
//TAG_U2F|
//TAG_PARSE |
//TAG_TIME|
//TAG_DUMP|
@ -44,21 +46,12 @@ int main()
);
device_init();
printf1(TAG_GEN,"init device\n");
usbhid_init();
printf1(TAG_GEN,"init usb\n");
ctaphid_init();
printf1(TAG_GEN,"init ctaphid\n");
ctap_init();
printf1(TAG_GEN,"init ctap\n");
memset(hidmsg,0,sizeof(hidmsg));
printf1(TAG_GEN,"recv'ing hid msg \n");
// printf1(TAG_GEN,"recv'ing hid msg \n");
while(1)
@ -80,6 +73,7 @@ int main()
{
}
ctaphid_check_timeouts();
}
// Should never get here

View File

@ -10,6 +10,7 @@
#include "crypto.h"
#include "log.h"
#include "device.h"
#include "apdu.h"
#include "wallet.h"
#ifdef ENABLE_U2F_EXTENSIONS
#include "extensions.h"
@ -27,12 +28,12 @@ void u2f_reset_response();
static CTAP_RESPONSE * _u2f_resp = NULL;
void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp)
void u2f_request_ex(APDU_HEADER *req, uint8_t *payload, uint32_t len, CTAP_RESPONSE * resp)
{
uint16_t rcode = 0;
uint32_t len = ((req->LC3) | ((uint32_t)req->LC2 << 8) | ((uint32_t)req->LC1 << 16));
uint8_t byte;
ctap_response_init(resp);
u2f_set_writeback_buffer(resp);
if (req->cla != 0)
@ -42,7 +43,7 @@ void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp)
goto end;
}
#ifdef ENABLE_U2F_EXTENSIONS
rcode = extend_u2f(req, len);
rcode = extend_u2f(req, payload, len);
#endif
if (rcode != U2F_SW_NO_ERROR && rcode != U2F_SW_CONDITIONS_NOT_SATISFIED) // If the extension didn't do anything...
{
@ -59,7 +60,7 @@ void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp)
{
timestamp();
rcode = u2f_register((struct u2f_register_request*)req->payload);
rcode = u2f_register((struct u2f_register_request*)payload);
printf1(TAG_TIME,"u2f_register time: %d ms\n", timestamp());
}
@ -67,7 +68,7 @@ void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp)
case U2F_AUTHENTICATE:
printf1(TAG_U2F, "U2F_AUTHENTICATE\n");
timestamp();
rcode = u2f_authenticate((struct u2f_authenticate_request*)req->payload, req->p1);
rcode = u2f_authenticate((struct u2f_authenticate_request*)payload, req->p1);
printf1(TAG_TIME,"u2f_authenticate time: %d ms\n", timestamp());
break;
case U2F_VERSION:
@ -109,6 +110,22 @@ end:
printf1(TAG_U2F,"u2f resp: "); dump_hex1(TAG_U2F, _u2f_resp->data, _u2f_resp->length);
}
void u2f_request_nfc(uint8_t * req, int len, CTAP_RESPONSE * resp)
{
if (len < 5 || !req)
return;
uint32_t alen = req[4];
u2f_request_ex((APDU_HEADER *)req, &req[5], alen, resp);
}
void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp)
{
uint32_t len = ((req->LC3) | ((uint32_t)req->LC2 << 8) | ((uint32_t)req->LC1 << 16));
u2f_request_ex((APDU_HEADER *)req, req->payload, len, resp);
}
int8_t u2f_response_writeback(const uint8_t * buf, uint16_t len)
{
@ -156,7 +173,7 @@ static void u2f_make_auth_tag(struct u2f_key_handle * kh, uint8_t * appid, uint8
memmove(tag, hashbuf, CREDENTIAL_TAG_SIZE);
}
static int8_t u2f_new_keypair(struct u2f_key_handle * kh, uint8_t * appid, uint8_t * pubkey)
int8_t u2f_new_keypair(struct u2f_key_handle * kh, uint8_t * appid, uint8_t * pubkey)
{
ctap_generate_rng(kh->key, U2F_KEY_HANDLE_KEY_SIZE);
u2f_make_auth_tag(kh, appid, kh->tag);
@ -203,11 +220,11 @@ static int16_t u2f_authenticate(struct u2f_authenticate_request * req, uint8_t c
}
else
{
return U2F_SW_WRONG_DATA;
return U2F_SW_WRONG_PAYLOAD;
}
}
if (
control != U2F_AUTHENTICATE_SIGN ||
(control != U2F_AUTHENTICATE_SIGN && control != U2F_AUTHENTICATE_SIGN_NO_USER) ||
req->khl != U2F_KEY_HANDLE_SIZE ||
u2f_appid_eq(&req->kh, req->app) != 0 || // Order of checks is important
u2f_load_key(&req->kh, req->app) != 0
@ -217,12 +234,17 @@ static int16_t u2f_authenticate(struct u2f_authenticate_request * req, uint8_t c
return U2F_SW_WRONG_DATA;
}
// dont-enforce-user-presence-and-sign
if (control == U2F_AUTHENTICATE_SIGN_NO_USER)
up = 0;
if(!device_is_nfc() && up)
{
if (ctap_user_presence_test() == 0)
{
return U2F_SW_CONDITIONS_NOT_SATISFIED;
}
}
count = ctap_atomic_count(0);
hash[0] = (count >> 24) & 0xff;
@ -264,10 +286,13 @@ static int16_t u2f_register(struct u2f_register_request * req)
const uint16_t attest_size = attestation_cert_der_size;
if(!device_is_nfc())
{
if ( ! ctap_user_presence_test())
{
return U2F_SW_CONDITIONS_NOT_SATISFIED;
}
}
if ( u2f_new_keypair(&key_handle, req->app, pubkey) == -1)
{

View File

@ -38,6 +38,7 @@
// U2F Authenticate
#define U2F_AUTHENTICATE_CHECK 0x7
#define U2F_AUTHENTICATE_SIGN 0x3
#define U2F_AUTHENTICATE_SIGN_NO_USER 0x8
// Command status responses
@ -97,6 +98,11 @@ struct u2f_authenticate_request
// @req U2F message
void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp);
// u2f_request send a U2F message to NFC protocol
// @req data with iso7816 apdu message
// @len data length
void u2f_request_nfc(uint8_t * req, int len, CTAP_RESPONSE * resp);
int8_t u2f_response_writeback(const uint8_t * buf, uint16_t len);
void u2f_reset_response();

View File

@ -461,3 +461,8 @@ void device_wink()
{
printf("*WINK*\n");
}
bool device_is_nfc()
{
return 0;
}

View File

@ -55,7 +55,7 @@
#define SOLO_PRODUCT_NAME "Solo Bootloader " SOLO_VERSION
void printing_init();
void hw_init(void);
void hw_init(int lf);
// Trigger software reset
void device_reboot();

View File

@ -8,6 +8,10 @@
#include <stdlib.h>
#include <stdint.h>
#include "stm32l4xx_ll_rcc.h"
#include "stm32l4xx_ll_gpio.h"
#include "stm32l4xx.h"
#include "cbor.h"
#include "device.h"
#include "ctaphid.h"
@ -17,9 +21,8 @@
#include "ctap.h"
#include "app.h"
#include "memory_layout.h"
#include "stm32l4xx_ll_rcc.h"
#include "init.h"
#include "stm32l4xx.h"
uint8_t REBOOT_FLAG = 0;
@ -69,7 +72,16 @@ int main()
TAG_ERR
);
device_init();
// device_init();
init_gpio();
init_millisecond_timer(1);
#if DEBUG_LEVEL > 0
init_debug_uart();
#endif
printf1(TAG_GEN,"init device\n");
t1 = millis();
@ -107,7 +119,13 @@ int main()
#ifdef SOLO_HACKER
start_bootloader:
#endif
SystemClock_Config();
init_gpio();
init_millisecond_timer(0);
init_pwm();
init_rng();
usbhid_init();
printf1(TAG_GEN,"init usb\n");
ctaphid_init();

View File

@ -2,7 +2,7 @@ include build/common.mk
# ST related
SRC = src/main.c src/init.c src/redirect.c src/flash.c src/rng.c src/led.c src/device.c
SRC += src/fifo.c src/crypto.c src/attestation.c
SRC += src/fifo.c src/crypto.c src/attestation.c src/nfc.c src/ams.c
SRC += src/startup_stm32l432xx.s src/system_stm32l4xx.c
SRC += $(DRIVER_LIBS) $(USB_LIB)
@ -41,7 +41,7 @@ DEBUG=0
endif
DEFINES = -DDEBUG_LEVEL=$(DEBUG) -D$(CHIP) -DAES256=1 -DUSE_FULL_LL_DRIVER -DAPP_CONFIG=\"app.h\" $(EXTRA_DEFINES)
# DEFINES += -DTEST_SOLO_STM32 -DTEST -DTEST_FIFO=1
DEFINES += -DuECC_PLATFORM=5 -DuECC_OPTIMIZATION_LEVEL=4 -DuECC_SQUARE_FUNC=1 -DuECC_SUPPORT_COMPRESSED_POINT=0
CFLAGS=$(INC) -c $(DEFINES) -Wall -Wextra -Wno-unused-parameter -Wno-missing-field-initializers -fdata-sections -ffunction-sections $(HW) -g $(VERSION_FLAGS)
LDFLAGS_LIB=$(HW) $(SEARCH) -specs=nano.specs -specs=nosys.specs -Wl,--gc-sections -u _printf_float -lnosys

View File

@ -6,7 +6,7 @@ AR=$(PREFIX)arm-none-eabi-ar
DRIVER_LIBS := lib/stm32l4xx_hal_pcd.c lib/stm32l4xx_hal_pcd_ex.c lib/stm32l4xx_ll_gpio.c \
lib/stm32l4xx_ll_rcc.c lib/stm32l4xx_ll_rng.c lib/stm32l4xx_ll_tim.c \
lib/stm32l4xx_ll_usb.c lib/stm32l4xx_ll_utils.c lib/stm32l4xx_ll_pwr.c \
lib/stm32l4xx_ll_usart.c
lib/stm32l4xx_ll_usart.c lib/stm32l4xx_ll_spi.c
USB_LIB := lib/usbd/usbd_cdc.c lib/usbd/usbd_cdc_if.c lib/usbd/usbd_composite.c \
lib/usbd/usbd_conf.c lib/usbd/usbd_core.c lib/usbd/usbd_ioreq.c \

View File

@ -0,0 +1,307 @@
/**
******************************************************************************
* @file stm32l4xx_ll_spi.c
* @author MCD Application Team
* @brief SPI LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_ll_spi.h"
#include "stm32l4xx_ll_bus.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32L4xx_LL_Driver
* @{
*/
#if defined (SPI1) || defined (SPI2) || defined (SPI3)
/** @addtogroup SPI_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup SPI_LL_Private_Constants SPI Private Constants
* @{
*/
/* SPI registers Masks */
#define SPI_CR1_CLEAR_MASK (SPI_CR1_CPHA | SPI_CR1_CPOL | SPI_CR1_MSTR | \
SPI_CR1_BR | SPI_CR1_LSBFIRST | SPI_CR1_SSI | \
SPI_CR1_SSM | SPI_CR1_RXONLY | SPI_CR1_CRCL | \
SPI_CR1_CRCNEXT | SPI_CR1_CRCEN | SPI_CR1_BIDIOE | \
SPI_CR1_BIDIMODE)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup SPI_LL_Private_Macros SPI Private Macros
* @{
*/
#define IS_LL_SPI_TRANSFER_DIRECTION(__VALUE__) (((__VALUE__) == LL_SPI_FULL_DUPLEX) \
|| ((__VALUE__) == LL_SPI_SIMPLEX_RX) \
|| ((__VALUE__) == LL_SPI_HALF_DUPLEX_RX) \
|| ((__VALUE__) == LL_SPI_HALF_DUPLEX_TX))
#define IS_LL_SPI_MODE(__VALUE__) (((__VALUE__) == LL_SPI_MODE_MASTER) \
|| ((__VALUE__) == LL_SPI_MODE_SLAVE))
#define IS_LL_SPI_DATAWIDTH(__VALUE__) (((__VALUE__) == LL_SPI_DATAWIDTH_4BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_5BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_6BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_7BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_8BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_9BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_10BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_11BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_12BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_13BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_14BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_15BIT) \
|| ((__VALUE__) == LL_SPI_DATAWIDTH_16BIT))
#define IS_LL_SPI_POLARITY(__VALUE__) (((__VALUE__) == LL_SPI_POLARITY_LOW) \
|| ((__VALUE__) == LL_SPI_POLARITY_HIGH))
#define IS_LL_SPI_PHASE(__VALUE__) (((__VALUE__) == LL_SPI_PHASE_1EDGE) \
|| ((__VALUE__) == LL_SPI_PHASE_2EDGE))
#define IS_LL_SPI_NSS(__VALUE__) (((__VALUE__) == LL_SPI_NSS_SOFT) \
|| ((__VALUE__) == LL_SPI_NSS_HARD_INPUT) \
|| ((__VALUE__) == LL_SPI_NSS_HARD_OUTPUT))
#define IS_LL_SPI_BAUDRATE(__VALUE__) (((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV2) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV4) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV8) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV16) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV32) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV64) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV128) \
|| ((__VALUE__) == LL_SPI_BAUDRATEPRESCALER_DIV256))
#define IS_LL_SPI_BITORDER(__VALUE__) (((__VALUE__) == LL_SPI_LSB_FIRST) \
|| ((__VALUE__) == LL_SPI_MSB_FIRST))
#define IS_LL_SPI_CRCCALCULATION(__VALUE__) (((__VALUE__) == LL_SPI_CRCCALCULATION_ENABLE) \
|| ((__VALUE__) == LL_SPI_CRCCALCULATION_DISABLE))
#define IS_LL_SPI_CRC_POLYNOMIAL(__VALUE__) ((__VALUE__) >= 0x1U)
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup SPI_LL_Exported_Functions
* @{
*/
/** @addtogroup SPI_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the SPI registers to their default reset values.
* @param SPIx SPI Instance
* @retval An ErrorStatus enumeration value:
* - SUCCESS: SPI registers are de-initialized
* - ERROR: SPI registers are not de-initialized
*/
ErrorStatus LL_SPI_DeInit(SPI_TypeDef *SPIx)
{
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_SPI_ALL_INSTANCE(SPIx));
#if defined(SPI1)
if (SPIx == SPI1)
{
/* Force reset of SPI clock */
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_SPI1);
/* Release reset of SPI clock */
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_SPI1);
status = SUCCESS;
}
#endif /* SPI1 */
#if defined(SPI2)
if (SPIx == SPI2)
{
/* Force reset of SPI clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI2);
/* Release reset of SPI clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI2);
status = SUCCESS;
}
#endif /* SPI2 */
#if defined(SPI3)
if (SPIx == SPI3)
{
/* Force reset of SPI clock */
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_SPI3);
/* Release reset of SPI clock */
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_SPI3);
status = SUCCESS;
}
#endif /* SPI3 */
return status;
}
/**
* @brief Initialize the SPI registers according to the specified parameters in SPI_InitStruct.
* @note As some bits in SPI configuration registers can only be written when the SPI is disabled (SPI_CR1_SPE bit =0),
* SPI IP should be in disabled state prior calling this function. Otherwise, ERROR result will be returned.
* @param SPIx SPI Instance
* @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure
* @retval An ErrorStatus enumeration value. (Return always SUCCESS)
*/
ErrorStatus LL_SPI_Init(SPI_TypeDef *SPIx, LL_SPI_InitTypeDef *SPI_InitStruct)
{
ErrorStatus status = ERROR;
/* Check the SPI Instance SPIx*/
assert_param(IS_SPI_ALL_INSTANCE(SPIx));
/* Check the SPI parameters from SPI_InitStruct*/
assert_param(IS_LL_SPI_TRANSFER_DIRECTION(SPI_InitStruct->TransferDirection));
assert_param(IS_LL_SPI_MODE(SPI_InitStruct->Mode));
assert_param(IS_LL_SPI_DATAWIDTH(SPI_InitStruct->DataWidth));
assert_param(IS_LL_SPI_POLARITY(SPI_InitStruct->ClockPolarity));
assert_param(IS_LL_SPI_PHASE(SPI_InitStruct->ClockPhase));
assert_param(IS_LL_SPI_NSS(SPI_InitStruct->NSS));
assert_param(IS_LL_SPI_BAUDRATE(SPI_InitStruct->BaudRate));
assert_param(IS_LL_SPI_BITORDER(SPI_InitStruct->BitOrder));
assert_param(IS_LL_SPI_CRCCALCULATION(SPI_InitStruct->CRCCalculation));
if (LL_SPI_IsEnabled(SPIx) == 0x00000000U)
{
/*---------------------------- SPIx CR1 Configuration ------------------------
* Configure SPIx CR1 with parameters:
* - TransferDirection: SPI_CR1_BIDIMODE, SPI_CR1_BIDIOE and SPI_CR1_RXONLY bits
* - Master/Slave Mode: SPI_CR1_MSTR bit
* - ClockPolarity: SPI_CR1_CPOL bit
* - ClockPhase: SPI_CR1_CPHA bit
* - NSS management: SPI_CR1_SSM bit
* - BaudRate prescaler: SPI_CR1_BR[2:0] bits
* - BitOrder: SPI_CR1_LSBFIRST bit
* - CRCCalculation: SPI_CR1_CRCEN bit
*/
MODIFY_REG(SPIx->CR1,
SPI_CR1_CLEAR_MASK,
SPI_InitStruct->TransferDirection | SPI_InitStruct->Mode |
SPI_InitStruct->ClockPolarity | SPI_InitStruct->ClockPhase |
SPI_InitStruct->NSS | SPI_InitStruct->BaudRate |
SPI_InitStruct->BitOrder | SPI_InitStruct->CRCCalculation);
/*---------------------------- SPIx CR2 Configuration ------------------------
* Configure SPIx CR2 with parameters:
* - DataWidth: DS[3:0] bits
* - NSS management: SSOE bit
*/
MODIFY_REG(SPIx->CR2,
SPI_CR2_DS | SPI_CR2_SSOE,
SPI_InitStruct->DataWidth | (SPI_InitStruct->NSS >> 16U));
/*---------------------------- SPIx CRCPR Configuration ----------------------
* Configure SPIx CRCPR with parameters:
* - CRCPoly: CRCPOLY[15:0] bits
*/
if (SPI_InitStruct->CRCCalculation == LL_SPI_CRCCALCULATION_ENABLE)
{
assert_param(IS_LL_SPI_CRC_POLYNOMIAL(SPI_InitStruct->CRCPoly));
LL_SPI_SetCRCPolynomial(SPIx, SPI_InitStruct->CRCPoly);
}
status = SUCCESS;
}
return status;
}
/**
* @brief Set each @ref LL_SPI_InitTypeDef field to default value.
* @param SPI_InitStruct pointer to a @ref LL_SPI_InitTypeDef structure
* whose fields will be set to default values.
* @retval None
*/
void LL_SPI_StructInit(LL_SPI_InitTypeDef *SPI_InitStruct)
{
/* Set SPI_InitStruct fields to default values */
SPI_InitStruct->TransferDirection = LL_SPI_FULL_DUPLEX;
SPI_InitStruct->Mode = LL_SPI_MODE_SLAVE;
SPI_InitStruct->DataWidth = LL_SPI_DATAWIDTH_8BIT;
SPI_InitStruct->ClockPolarity = LL_SPI_POLARITY_LOW;
SPI_InitStruct->ClockPhase = LL_SPI_PHASE_1EDGE;
SPI_InitStruct->NSS = LL_SPI_NSS_HARD_INPUT;
SPI_InitStruct->BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV2;
SPI_InitStruct->BitOrder = LL_SPI_MSB_FIRST;
SPI_InitStruct->CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;
SPI_InitStruct->CRCPoly = 7U;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (SPI1) || defined (SPI2) || defined (SPI3) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

366
targets/stm32l432/src/ams.c Normal file
View File

@ -0,0 +1,366 @@
#include <string.h>
#include "stm32l4xx_ll_spi.h"
#include "ams.h"
#include "log.h"
#include "util.h"
#include "device.h"
#include "nfc.h"
static void flush_rx()
{
while(LL_SPI_IsActiveFlag_RXNE(SPI1) != 0)
{
LL_SPI_ReceiveData8(SPI1);
}
}
static void wait_for_tx()
{
// while (LL_SPI_IsActiveFlag_BSY(SPI1) == 1)
// ;
while(LL_SPI_GetTxFIFOLevel(SPI1) != LL_SPI_TX_FIFO_EMPTY)
;
}
static void wait_for_rx()
{
while(LL_SPI_IsActiveFlag_RXNE(SPI1) == 0)
;
}
void ams_print_device(AMS_DEVICE * dev)
{
printf1(TAG_NFC, "AMS_DEVICE:\r\n");
printf1(TAG_NFC, " io_conf: %02x\r\n",dev->regs.io_conf);
printf1(TAG_NFC, " ic_conf0: %02x\r\n",dev->regs.ic_conf0);
printf1(TAG_NFC, " ic_conf1: %02x\r\n",dev->regs.ic_conf1);
printf1(TAG_NFC, " ic_conf2: %02x\r\n",dev->regs.ic_conf2);
printf1(TAG_NFC, " rfid_status: %02x\r\n",dev->regs.rfid_status);
printf1(TAG_NFC, " ic_status: %02x\r\n",dev->regs.ic_status);
printf1(TAG_NFC, " mask_int0: %02x\r\n",dev->regs.mask_int0);
printf1(TAG_NFC, " mask_int1: %02x\r\n",dev->regs.mask_int1);
printf1(TAG_NFC, " int0: %02x\r\n",dev->regs.int0);
printf1(TAG_NFC, " int1: %02x\r\n",dev->regs.int1);
printf1(TAG_NFC, " buffer_status2: %02x\r\n",dev->regs.buffer_status2);
printf1(TAG_NFC, " buffer_status1: %02x\r\n",dev->regs.buffer_status1);
printf1(TAG_NFC, " last_nfc_addr: %02x\r\n",dev->regs.last_nfc_addr);
printf1(TAG_NFC, " product_type: %02x\r\n",dev->regs.product_type);
printf1(TAG_NFC, " product_subtype:%02x\r\n",dev->regs.product_subtype);
printf1(TAG_NFC, " version_maj: %02x\r\n",dev->regs.version_maj);
printf1(TAG_NFC, " version_min: %02x\r\n",dev->regs.version_min);
}
static uint8_t send_recv(uint8_t b)
{
wait_for_tx();
LL_SPI_TransmitData8(SPI1, b);
wait_for_rx();
b = LL_SPI_ReceiveData8(SPI1);
return b;
}
void ams_write_reg(uint8_t addr, uint8_t tx)
{
send_recv(0x00| addr);
send_recv(tx);
UNSELECT();
SELECT();
}
uint8_t ams_read_reg(uint8_t addr)
{
send_recv(0x20| (addr & 0x1f));
uint8_t data = send_recv(0);
UNSELECT();
SELECT();
return data;
}
// data must be 14 bytes long
void read_reg_block(AMS_DEVICE * dev)
{
int i;
uint8_t mode = 0x20 | (4 );
flush_rx();
send_recv(mode);
for (i = 0x04; i < 0x0d; i++)
{
dev->buf[i] = send_recv(0);
}
UNSELECT();
SELECT();
}
void ams_read_buffer(uint8_t * data, int len)
{
send_recv(0xa0);
while(len--)
{
*data++ = send_recv(0x00);
}
UNSELECT();
SELECT();
}
void ams_write_buffer(uint8_t * data, int len)
{
send_recv(0x80);
while(len--)
{
send_recv(*data++);
}
UNSELECT();
SELECT();
}
// data must be 4 bytes
void ams_read_eeprom_block(uint8_t block, uint8_t * data)
{
send_recv(0x7f);
send_recv(block << 1);
data[0] = send_recv(0);
data[1] = send_recv(0);
data[2] = send_recv(0);
data[3] = send_recv(0);
UNSELECT();
SELECT();
}
// data must be 4 bytes
void ams_write_eeprom_block(uint8_t block, uint8_t * data)
{
send_recv(0x40);
send_recv(block << 1);
send_recv(data[0]);
send_recv(data[1]);
send_recv(data[2]);
send_recv(data[3]);
UNSELECT();
SELECT();
}
void ams_write_command(uint8_t cmd)
{
send_recv(0xc0 | cmd);
UNSELECT();
SELECT();
}
const char * ams_get_state_string(uint8_t regval)
{
if (regval & AMS_STATE_INVALID)
{
return "STATE_INVALID";
}
switch (regval & AMS_STATE_MASK)
{
case AMS_STATE_OFF:
return "STATE_OFF";
case AMS_STATE_SENSE:
return "STATE_SENSE";
case AMS_STATE_RESOLUTION:
return "STATE_RESOLUTION";
case AMS_STATE_RESOLUTION_L2:
return "STATE_RESOLUTION_L2";
case AMS_STATE_SELECTED:
return "STATE_SELECTED";
case AMS_STATE_SECTOR2:
return "STATE_SECTOR2";
case AMS_STATE_SECTORX_2:
return "STATE_SECTORX_2";
case AMS_STATE_SELECTEDX:
return "STATE_SELECTEDX";
case AMS_STATE_SENSEX_L2:
return "STATE_SENSEX_L2";
case AMS_STATE_SENSEX:
return "STATE_SENSEX";
case AMS_STATE_SLEEP:
return "STATE_SLEEP";
}
return "STATE_WRONG";
}
int ams_state_is_valid(uint8_t regval)
{
if (regval & AMS_STATE_INVALID)
{
return 0;
}
switch (regval & AMS_STATE_MASK)
{
case AMS_STATE_OFF:
case AMS_STATE_SENSE:
case AMS_STATE_RESOLUTION:
case AMS_STATE_RESOLUTION_L2:
case AMS_STATE_SELECTED:
case AMS_STATE_SECTOR2:
case AMS_STATE_SECTORX_2:
case AMS_STATE_SELECTEDX:
case AMS_STATE_SENSEX_L2:
case AMS_STATE_SENSEX:
case AMS_STATE_SLEEP:
return 1;
}
return 0;
}
void ams_print_int0(uint8_t int0)
{
#if DEBUG_LEVEL
uint32_t tag = (TAG_NFC)|(TAG_NO_TAG);
printf1(TAG_NFC," ");
if (int0 & AMS_INT_XRF)
printf1(tag," XRF");
if (int0 & AMS_INT_TXE)
printf1(tag," TXE");
if (int0 & AMS_INT_RXE)
printf1(tag," RXE");
if (int0 & AMS_INT_EER_RF)
printf1(tag," EER_RF");
if (int0 & AMS_INT_EEW_RF)
printf1(tag," EEW_RF");
if (int0 & AMS_INT_SLP)
printf1(tag," SLP");
if (int0 & AMS_INT_WU_A)
printf1(tag," WU_A");
if (int0 & AMS_INT_INIT)
printf1(tag," INIT");
printf1(tag,"\r\n");
#endif
}
void ams_print_int1(uint8_t int0)
{
#if DEBUG_LEVEL
uint32_t tag = (TAG_NFC)|(TAG_NO_TAG);
printf1(TAG_NFC," ");
if (int0 & AMS_INT_ACC_ERR)
printf1(tag," ACC_ERR");
if (int0 & AMS_INT_EEAC_ERR)
printf1(tag," EEAC_ERR");
if (int0 & AMS_INT_IO_EEWR)
printf1(tag," IO_EEWR");
if (int0 & AMS_INT_BF_ERR)
printf1(tag," BF_ERR");
if (int0 & AMS_INT_CRC_ERR)
printf1(tag," CRC_ERR");
if (int0 & AMS_INT_PAR_ERR)
printf1(tag," PAR_ERR");
if (int0 & AMS_INT_FRM_ERR)
printf1(tag," FRM_ERR");
if (int0 & AMS_INT_RXS)
printf1(tag," RXS");
printf1(tag,"\r\n");
#endif
}
void ams_init()
{
LL_GPIO_SetPinMode(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN,LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN);
LL_SPI_SetClockPolarity(SPI1,LL_SPI_POLARITY_LOW);
LL_SPI_SetClockPhase(SPI1,LL_SPI_PHASE_2EDGE);
LL_SPI_SetRxFIFOThreshold(SPI1,LL_SPI_RX_FIFO_TH_QUARTER);
LL_SPI_Enable(SPI1);
// delay(10);
SELECT();
delay(1);
}
void ams_configure()
{
// Should not be used during passive operation.
uint8_t block[4];
// check connection
uint8_t productType = ams_read_reg(AMS_REG_PRODUCT_TYPE);
if (productType != 0x14)
{
printf1(TAG_ERR, "Have wrong product type [0x%02x]. AMS3956 connection error.\n", productType);
}
printf1(TAG_NFC,"AMS3956 product type 0x%02x.\n", productType);
ams_read_eeprom_block(AMS_CONFIG_UID_ADDR, block);
printf1(TAG_NFC,"UID: 3F 14 02 - "); dump_hex1(TAG_NFC,block,4);
ams_read_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
printf1(TAG_NFC,"conf0: "); dump_hex1(TAG_NFC,block,4);
uint8_t sense1 = 0x44;
uint8_t sense2 = 0x00;
uint8_t selr = 0x20; // SAK
if(block[0] != sense1 || block[1] != sense2 || block[2] != selr)
{
printf1(TAG_NFC,"Writing config block 0\r\n");
block[0] = sense1;
block[1] = sense2;
block[2] = selr;
block[3] = 0x00;
ams_write_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
UNSELECT();
delay(10);
SELECT();
delay(10);
ams_read_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
printf1(TAG_NFC,"conf0: "); dump_hex1(TAG_NFC,block,4);
}
ams_read_eeprom_block(AMS_CONFIG_BLOCK1_ADDR, block);
printf1(TAG_NFC,"conf1: "); dump_hex1(TAG_NFC,block,4);
uint8_t ic_cfg1 = AMS_CFG1_OUTPUT_RESISTANCE_100 | AMS_CFG1_VOLTAGE_LEVEL_2V0;
uint8_t ic_cfg2 = AMS_CFG2_TUN_MOD;
if (block[0] != ic_cfg1 || block[1] != ic_cfg2)
{
printf1(TAG_NFC,"Writing config block 1\r\n");
ams_write_reg(AMS_REG_IC_CONF1,ic_cfg1);
ams_write_reg(AMS_REG_IC_CONF2,ic_cfg2);
// set IC_CFG1
block[0] = ic_cfg1;
// set IC_CFG2
block[1] = ic_cfg2;
// mask interrupt bits
block[2] = 0x80;
block[3] = 0;
ams_write_eeprom_block(AMS_CONFIG_BLOCK1_ADDR, block);
UNSELECT();
delay(10);
SELECT();
delay(10);
ams_read_eeprom_block(0x7F, block);
printf1(TAG_NFC,"conf1: "); dump_hex1(TAG_NFC,block,4);
}
}

162
targets/stm32l432/src/ams.h Normal file
View File

@ -0,0 +1,162 @@
// AS3956 interface
// https://ams.com/as3956
// https://ams.com/documents/20143/36005/AS3956_DS000546_7-00.pdf
#ifndef _AMS_H_
#define _AMS_H_
#include <stdint.h>
#include <stdbool.h>
#include "stm32l4xx_ll_gpio.h"
typedef union
{
uint8_t buf[0x20];
struct {
uint8_t io_conf; // 0x00
uint8_t ic_conf0; // 0x01
uint8_t ic_conf1; // 0x02
uint8_t ic_conf2; // 0x03
uint8_t rfid_status; // 0x04
uint8_t ic_status; // 0x05
uint8_t _nc0[2]; // 0x06 - 0x07
uint8_t mask_int0; // 0x08
uint8_t mask_int1; // 0x09
uint8_t int0; // 0x0a
uint8_t int1; // 0x0b
uint8_t buffer_status2; // 0x0c
uint8_t buffer_status1; // 0x0d
uint8_t last_nfc_addr; // 0x0e
uint8_t _nc1[0x1b - 0x0f + 1]; // 0x0f - 0x1b
uint8_t product_type; // 0x1c
uint8_t product_subtype; // 0x1d
uint8_t version_maj; // 0x1e
uint8_t version_min; // 0x1f
} regs;
} __attribute__((packed)) AMS_DEVICE;
#define SELECT() LL_GPIO_ResetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
#define UNSELECT() LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
void ams_init();
void ams_configure();
void ams_read_buffer(uint8_t * data, int len);
void ams_write_buffer(uint8_t * data, int len);
void ams_write_command(uint8_t cmd);
void read_reg_block(AMS_DEVICE * dev);
uint8_t ams_read_reg(uint8_t addr);
void ams_write_reg(uint8_t addr, uint8_t tx);
const char * ams_get_state_string(uint8_t regval);
int ams_state_is_valid(uint8_t regval);
#define AMS_REG_IO_CONF 0x00
#define AMS_REG_IC_CONF0 0x01
#define AMS_REG_IC_CONF1 0x02
#define AMS_REG_IC_CONF2 0x03
#define AMS_RFCFG_EN 0x80
#define AMS_TUN_MOD 0x40
#define AMS_REG_RFID_STATUS 0x04
#define AMS_HF_PON 0x80
#define AMS_STATE_MASK 0x78
#define AMS_STATE_INVALID 0x04
#define AMS_STATE_OFF (0 << 3)
#define AMS_STATE_SENSE (1 << 3)
#define AMS_STATE_RESOLUTION (3 << 3)
#define AMS_STATE_RESOLUTION_L2 (2 << 3)
#define AMS_STATE_SELECTED (6 << 3)
#define AMS_STATE_SECTOR2 (7 << 3)
#define AMS_STATE_SECTORX_2 (0xf << 3)
#define AMS_STATE_SELECTEDX (0xe << 3)
#define AMS_STATE_SENSEX_L2 (0xa << 3)
#define AMS_STATE_SENSEX (0xb << 3)
#define AMS_STATE_SLEEP (0x9 << 3)
// ... //
#define AMS_REG_MASK_INT0 0x08
#define AMS_MASK0_PU (1<<7) // power up
#define AMS_MASK0_WU_A (1<<6) // selected INT
#define AMS_MASK0_SLP (1<<5)
#define AMS_MASK0_EEW_RF (1<<4)
#define AMS_MASK0_EER_RF (1<<3)
#define AMS_MASK0_RXE (1<<2)
#define AMS_MASK0_TXE (1<<1)
#define AMS_MASK0_XRF (1<<0)
#define AMS_REG_MASK_INT1 0x09
#define AMS_REG_INT0 0x0a
#define AMS_INT_XRF (1<<0)
#define AMS_INT_TXE (1<<1)
#define AMS_INT_RXE (1<<2)
#define AMS_INT_EER_RF (1<<3)
#define AMS_INT_EEW_RF (1<<4)
#define AMS_INT_SLP (1<<5)
#define AMS_INT_WU_A (1<<6)
#define AMS_INT_INIT (1<<7)
#define AMS_REG_INT1 0x0b
#define AMS_INT_ACC_ERR (1<<0)
#define AMS_INT_EEAC_ERR (1<<1)
#define AMS_INT_IO_EEWR (1<<2)
#define AMS_INT_BF_ERR (1<<3)
#define AMS_INT_CRC_ERR (1<<4)
#define AMS_INT_PAR_ERR (1<<5)
#define AMS_INT_FRM_ERR (1<<6)
#define AMS_INT_RXS (1<<7)
#define AMS_REG_BUF2 0x0c
#define AMS_BUF_LEN_MASK 0x1f
#define AMS_BUF_INVALID 0x80
#define AMS_REG_BUF1 0x0d
// ... //
#define AMS_REG_PRODUCT_TYPE 0x1c
#define AMS_REG_PRODUCT_SUBTYPE 0x1d
#define AMS_REG_VERSION_MAJOR 0x1e
#define AMS_REG_VERSION_MINOR 0x1f
#define AMS_CONFIG_UID_ADDR 0x00
#define AMS_CONFIG_BLOCK0_ADDR 0x7e
#define AMS_CONFIG_BLOCK1_ADDR 0x7f
#define AMS_CFG1_VOLTAGE_LEVEL_1V9 (0x00<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V0 (0x01<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V1 (0x02<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V2 (0x03<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V3 (0x04<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V4 (0x05<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V5 (0x06<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V6 (0x07<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V7 (0x08<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V8 (0x09<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V9 (0x0a<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_3V0 (0x0b<<2)
#define AMS_CFG1_OUTPUT_RESISTANCE_ZZ 0x00
#define AMS_CFG1_OUTPUT_RESISTANCE_100 0x01
#define AMS_CFG1_OUTPUT_RESISTANCE_50 0x02
#define AMS_CFG1_OUTPUT_RESISTANCE_25 0x03
#define AMS_CFG2_RFCFG_EN (1<<7)
#define AMS_CFG2_TUN_MOD (1<<6)
#define AMS_CMD_DEFAULT 0x02
#define AMS_CMD_CLEAR_BUFFER 0x04
#define AMS_CMD_RESTART_TRANSCEIVER 0x06
#define AMS_CMD_DIS_EN_TRANSCEIVER 0x07
#define AMS_CMD_TRANSMIT_BUFFER 0x08
#define AMS_CMD_TRANSMIT_ACK 0x09
#define AMS_CMD_TRANSMIT_NACK0 0x0A
#define AMS_CMD_TRANSMIT_NACK1 0x0B
#define AMS_CMD_TRANSMIT_NACK4 0x0D
#define AMS_CMD_TRANSMIT_NACK5 0x0C
#define AMS_CMD_SLEEP 0x10
#define AMS_CMD_SENSE 0x11
#define AMS_CMD_SENSE_SLEEP 0x12
#endif

View File

@ -30,6 +30,7 @@
// #define DISABLE_CTAPHID_WINK
// #define DISABLE_CTAPHID_CBOR
#define ENABLE_SERIAL_PRINTING
#if defined(SOLO_HACKER)
#define SOLO_PRODUCT_NAME "Solo Hacker " SOLO_VERSION
@ -38,7 +39,7 @@
#endif
void printing_init();
void hw_init(void);
void hw_init(int lf);
//#define TEST
//#define TEST_POWER
@ -63,6 +64,12 @@ void hw_init(void);
#define SOLO_BUTTON_PORT GPIOA
#define SOLO_BUTTON_PIN LL_GPIO_PIN_0
#define SOLO_AMS_CS_PORT GPIOB
#define SOLO_AMS_CS_PIN LL_GPIO_PIN_0
#define SOLO_AMS_IRQ_PORT GPIOC
#define SOLO_AMS_IRQ_PIN LL_GPIO_PIN_15
#define SKIP_BUTTON_CHECK_WITH_DELAY 0
#define SKIP_BUTTON_CHECK_FAST 0

View File

@ -10,6 +10,7 @@
#include "stm32l4xx_ll_gpio.h"
#include "stm32l4xx_ll_tim.h"
#include "stm32l4xx_ll_usart.h"
#include "stm32l4xx_ll_pwr.h"
#include "usbd_hid.h"
#include APP_CONFIG
@ -26,6 +27,11 @@
#include "memory_layout.h"
#include "stm32l4xx_ll_iwdg.h"
#include "usbd_cdc_if.h"
#include "nfc.h"
#include "init.h"
#define LOW_FREQUENCY 1
#define HIGH_FREQUENCY 0
void wait_for_usb_tether();
@ -34,6 +40,8 @@ uint32_t __90_ms = 0;
uint32_t __device_status = 0;
uint32_t __last_update = 0;
extern PCD_HandleTypeDef hpcd;
static bool haveNFC = 0;
static bool isLowFreq = 0;
#define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN))
@ -50,6 +58,13 @@ void TIM6_DAC_IRQHandler()
ctaphid_update_status(__device_status);
}
}
#ifndef IS_BOOTLOADER
// NFC sending WTX if needs
if (device_is_nfc())
{
WTX_timer_exec();
}
#endif
}
// Global USB interrupt handler
@ -91,32 +106,45 @@ void device_reboot()
{
NVIC_SystemReset();
}
void device_init()
{
hw_init();
LL_GPIO_SetPinMode(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinPull(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_PULL_UP);
#ifndef IS_BOOTLOADER
hw_init(LOW_FREQUENCY);
isLowFreq = 1;
haveNFC = nfc_init();
if (haveNFC)
{
printf1(TAG_NFC, "Have NFC\r\n");
}
else
{
printf1(TAG_NFC, "Have NO NFC\r\n");
hw_init(HIGH_FREQUENCY);
isLowFreq = 0;
}
usbhid_init();
ctaphid_init();
ctap_init( !haveNFC );
#if BOOT_TO_DFU
flash_option_bytes_init(1);
#else
flash_option_bytes_init(0);
#endif
#endif
printf1(TAG_GEN,"hello solo\r\n");
}
void usb_init(void);
void usbhid_init()
bool device_is_nfc()
{
usb_init();
#if DEBUG_LEVEL>1
wait_for_usb_tether();
#endif
return haveNFC;
}
void wait_for_usb_tether()
@ -130,6 +158,26 @@ void wait_for_usb_tether()
;
}
void usbhid_init()
{
if (!isLowFreq)
{
init_usb();
#if DEBUG_LEVEL>1
wait_for_usb_tether();
#endif
}
else
{
}
}
int usbhid_recv(uint8_t * msg)
{
if (fifo_hidmsg_size())
@ -366,6 +414,7 @@ uint32_t ctap_atomic_count(int sel)
}
void device_manage()
{
#if NON_BLOCK_PRINTING
@ -386,6 +435,10 @@ void device_manage()
}
}
#endif
#ifndef IS_BOOTLOADER
// if(device_is_nfc())
nfc_loop();
#endif
}
static int handle_packets()

View File

@ -18,6 +18,7 @@
#include "stm32l4xx_ll_bus.h"
#include "stm32l4xx_ll_tim.h"
#include "stm32l4xx_ll_rng.h"
#include "stm32l4xx_ll_spi.h"
#include "stm32l4xx_ll_usb.h"
#include "stm32l4xx_hal_pcd.h"
#include "stm32l4xx_hal.h"
@ -29,57 +30,86 @@
#include "usbd_composite.h"
#include "usbd_cdc_if.h"
#include "device.h"
#include "init.h"
#include APP_CONFIG
/* USER CODE BEGIN Includes */
// KHz
#define MAX_CLOCK_RATE 24000
/* USER CODE END Includes */
#define SET_CLOCK_RATE2() SystemClock_Config()
/* Private variables ---------------------------------------------------------*/
#if MAX_CLOCK_RATE == 48000
#define SET_CLOCK_RATE0() SystemClock_Config_LF32()
#define SET_CLOCK_RATE1() SystemClock_Config_LF48()
#elif MAX_CLOCK_RATE == 32000
#define SET_CLOCK_RATE0() SystemClock_Config_LF24()
#define SET_CLOCK_RATE1() SystemClock_Config_LF32()
#elif MAX_CLOCK_RATE == 28000
#define SET_CLOCK_RATE0() SystemClock_Config_LF24()
#define SET_CLOCK_RATE1() SystemClock_Config_LF28()
#elif MAX_CLOCK_RATE == 24000
#define SET_CLOCK_RATE0() SystemClock_Config_LF16()
#define SET_CLOCK_RATE1() SystemClock_Config_LF24()
#elif MAX_CLOCK_RATE == 20000
#define SET_CLOCK_RATE0() SystemClock_Config_LF16()
#define SET_CLOCK_RATE1() SystemClock_Config_LF20()
#elif MAX_CLOCK_RATE == 16000
#define SET_CLOCK_RATE0() SystemClock_Config_LF8()
#define SET_CLOCK_RATE1() SystemClock_Config_LF16()
#else
#error "Invalid clock rate selected"
#endif
USBD_HandleTypeDef Solo_USBD_Device;
/* Private function prototypes -----------------------------------------------*/
static void LL_Init(void);
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
#if DEBUG_LEVEL > 0
static void MX_USART1_UART_Init(void);
#endif
static void MX_TIM2_Init(void);
static void MX_TIM6_Init(void);
static void MX_RNG_Init(void);
#define Error_Handler() _Error_Handler(__FILE__,__LINE__)
void _Error_Handler(char *file, int line);
void SystemClock_Config(void);
void SystemClock_Config_LF16(void);
void SystemClock_Config_LF20(void);
void SystemClock_Config_LF24(void);
void SystemClock_Config_LF28(void);
void SystemClock_Config_LF48(void);
void hw_init(void)
void hw_init(int lowfreq)
{
#ifdef IS_BOOTLOADER
SCB->VTOR = FLASH_BASE;
#else
#endif
LL_Init();
init_gpio();
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
if (lowfreq)
{
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2); // Under voltage
device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
}
else
{
SystemClock_Config();
}
SystemClock_Config(); // TODO bootloader should not change clk freq.
MX_GPIO_Init();
MX_TIM2_Init(); // PWM for LEDs
MX_TIM6_Init(); // ~1 ms timer
if (!lowfreq)
{
init_pwm();
}
init_millisecond_timer(lowfreq);
#if DEBUG_LEVEL > 0
MX_USART1_UART_Init();// debug uart
init_debug_uart();
#endif
MX_RNG_Init();
init_rng();
init_spi();
TIM6->SR = 0;
__enable_irq();
NVIC_EnableIRQ(TIM6_IRQn);
}
static void LL_Init(void)
@ -107,12 +137,29 @@ static void LL_Init(void)
}
void device_set_clock_rate(DEVICE_CLOCK_RATE param)
{
switch(param)
{
case DEVICE_LOW_POWER_IDLE:
SET_CLOCK_RATE0();
break;
case DEVICE_LOW_POWER_FAST:
SET_CLOCK_RATE1();
break;
case DEVICE_FAST:
SET_CLOCK_RATE2();
break;
}
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
LL_FLASH_SetLatency(LL_FLASH_LATENCY_2);
@ -129,8 +176,15 @@ void SystemClock_Config(void)
{
}
LL_RCC_MSI_Enable();
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while(LL_RCC_MSI_IsReady() != 1)
{
@ -187,7 +241,463 @@ void SystemClock_Config(void)
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
}
void usb_init()
void SystemClock_Config_LF4(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
LL_FLASH_SetLatency(LL_FLASH_LATENCY_0);
if(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_0)
{
Error_Handler();
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while(LL_RCC_MSI_IsReady() != 1)
{
}
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6);
LL_RCC_MSI_SetCalibTrimming(0);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
LL_Init1msTick(4000000);
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
LL_SetSystemCoreClock(4000000);
LL_RCC_SetUSARTClockSource(LL_RCC_USART1_CLKSOURCE_PCLK2);
LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_MSI);
/* SysTick_IRQn interrupt configuration */
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
}
// 8MHz
void SystemClock_Config_LF8(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
LL_FLASH_SetLatency(LL_FLASH_LATENCY_0);
if(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_0)
{
Error_Handler();
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
// while(LL_RCC_LSI_IsReady() != 1)
// {
//
// }
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
// while(LL_RCC_MSI_IsReady() != 1)
// {
//
// }
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_7);
LL_RCC_MSI_SetCalibTrimming(0);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
/* Wait till System clock is ready */
// while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI)
// {
//
// }
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
LL_Init1msTick(8000000);
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
LL_SetSystemCoreClock(8000000);
LL_RCC_SetUSARTClockSource(LL_RCC_USART1_CLKSOURCE_PCLK2);
LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_MSI);
/* SysTick_IRQn interrupt configuration */
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
}
// 16MHz
void SystemClock_Config_LF16(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
LL_FLASH_SetLatency(LL_FLASH_LATENCY_0);
if(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_0)
{
Error_Handler();
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while(LL_RCC_MSI_IsReady() != 1)
{
}
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_8);
LL_RCC_MSI_SetCalibTrimming(0);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_1);
LL_Init1msTick(16000000);
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
LL_SetSystemCoreClock(16000000);
LL_RCC_SetUSARTClockSource(LL_RCC_USART1_CLKSOURCE_PCLK2);
LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_MSI);
/* SysTick_IRQn interrupt configuration */
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
}
// 24 MHz
void SystemClock_Config_LF24(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
LL_FLASH_SetLatency(LL_FLASH_LATENCY_1);
if(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_1)
{
Error_Handler();
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while(LL_RCC_MSI_IsReady() != 1)
{
}
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_9);
LL_RCC_MSI_SetCalibTrimming(0);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_8);
LL_Init1msTick(24000000);
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
LL_SetSystemCoreClock(24000000);
LL_RCC_SetUSARTClockSource(LL_RCC_USART1_CLKSOURCE_PCLK2);
LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_MSI);
/* SysTick_IRQn interrupt configuration */
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
}
// 32 MHz
void SystemClock_Config_LF32(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
LL_FLASH_SetLatency(LL_FLASH_LATENCY_1);
if(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_1)
{
Error_Handler();
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while(LL_RCC_MSI_IsReady() != 1)
{
}
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_10);
LL_RCC_MSI_SetCalibTrimming(0);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_16);
LL_Init1msTick(32000000);
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
LL_SetSystemCoreClock(32000000);
LL_RCC_SetUSARTClockSource(LL_RCC_USART1_CLKSOURCE_PCLK2);
LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_MSI);
/* SysTick_IRQn interrupt configuration */
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
}
// 28 MHz
void SystemClock_Config_LF28(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
LL_FLASH_SetLatency(LL_FLASH_LATENCY_1);
if(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_1)
{
Error_Handler();
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
LL_RCC_HSI_Enable();
/* Wait till HSI is ready */
while(LL_RCC_HSI_IsReady() != 1)
{
}
LL_RCC_HSI_SetCalibTrimming(16);
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while(LL_RCC_MSI_IsReady() != 1)
{
}
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6);
LL_RCC_MSI_SetCalibTrimming(0);
LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI, LL_RCC_PLLM_DIV_2, 28, LL_RCC_PLLR_DIV_8);
LL_RCC_PLL_EnableDomain_SYS();
LL_RCC_PLL_Enable();
/* Wait till PLL is ready */
while(LL_RCC_PLL_IsReady() != 1)
{
}
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_8);
LL_Init1msTick(28000000);
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
LL_SetSystemCoreClock(28000000);
LL_RCC_SetUSARTClockSource(LL_RCC_USART1_CLKSOURCE_PCLK2);
LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_MSI);
/* SysTick_IRQn interrupt configuration */
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
}
// 48 MHz
void SystemClock_Config_LF48(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
LL_FLASH_SetLatency(LL_FLASH_LATENCY_2);
if(LL_FLASH_GetLatency() != LL_FLASH_LATENCY_2)
{
Error_Handler();
}
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
LL_RCC_LSI_Enable();
/* Wait till LSI is ready */
while(LL_RCC_LSI_IsReady() != 1)
{
}
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while(LL_RCC_MSI_IsReady() != 1)
{
}
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_11);
LL_RCC_MSI_SetCalibTrimming(0);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
/* Wait till System clock is ready */
while(LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI)
{
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_1);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_16);
LL_Init1msTick(48000000);
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
LL_SetSystemCoreClock(48000000);
LL_RCC_SetUSARTClockSource(LL_RCC_USART1_CLKSOURCE_PCLK2);
LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_MSI);
/* SysTick_IRQn interrupt configuration */
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),0, 0));
}
// 20 MHz
void SystemClock_Config_LF20(void)
{
SET_BIT(RCC->APB1ENR1, RCC_APB1ENR1_PWREN);
}
void init_usb()
{
// enable USB power
SET_BIT(PWR->CR2, PWR_CR2_USV);
@ -217,8 +727,7 @@ void usb_init()
USBD_Start(&Solo_USBD_Device);
}
/* TIM2 init function */
static void MX_TIM2_Init(void)
void init_pwm(void)
{
LL_TIM_InitTypeDef TIM_InitStruct;
@ -289,9 +798,7 @@ static void MX_TIM2_Init(void)
}
#if DEBUG_LEVEL > 0
/* USART1 init function */
static void MX_USART1_UART_Init(void)
void init_debug_uart(void)
{
LL_USART_InitTypeDef USART_InitStruct;
@ -301,6 +808,8 @@ static void MX_USART1_UART_Init(void)
/* Peripheral clock enable */
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_USART1);
LL_USART_DeInit(USART1);
/**USART1 GPIO Configuration
PB6 ------> USART1_TX
PB7 ------> USART1_RX
@ -327,22 +836,37 @@ static void MX_USART1_UART_Init(void)
LL_USART_Enable(USART1);
}
#endif
/** Pinout Configuration
*/
static void MX_GPIO_Init(void)
void init_gpio(void)
{
/* GPIO Ports Clock Enable */
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB);
LL_GPIO_SetPinMode(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinPull(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_PULL_UP);
#ifdef SOLO_AMS_IRQ_PORT
// SAVE POWER
// LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOC);
// /**/
// LL_GPIO_InitTypeDef GPIO_InitStruct;
// GPIO_InitStruct.Pin = SOLO_AMS_IRQ_PIN;
// GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
// GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
// LL_GPIO_Init(SOLO_AMS_IRQ_PORT, &GPIO_InitStruct);
//
//
// LL_GPIO_SetPinMode(SOLO_AMS_IRQ_PORT,SOLO_AMS_IRQ_PIN,LL_GPIO_MODE_INPUT);
// LL_GPIO_SetPinPull(SOLO_AMS_IRQ_PORT,SOLO_AMS_IRQ_PIN,LL_GPIO_PULL_UP);
#endif
}
/* TIM6 init function */
static void MX_TIM6_Init(void)
void init_millisecond_timer(int lf)
{
LL_TIM_InitTypeDef TIM_InitStruct;
@ -352,7 +876,11 @@ static void MX_TIM6_Init(void)
// 48 MHz sys clock --> 6 MHz timer clock
// 48 MHz / 48000 == 1000 Hz
if (!lf)
TIM_InitStruct.Prescaler = 48000;
else
TIM_InitStruct.Prescaler = MAX_CLOCK_RATE;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 90;
LL_TIM_Init(TIM6, &TIM_InitStruct);
@ -368,39 +896,14 @@ static void MX_TIM6_Init(void)
// Start immediately
LL_TIM_EnableCounter(TIM6);
TIM6->SR = 0;
__enable_irq();
NVIC_EnableIRQ(TIM6_IRQn);
}
/* TIM7 init function */
// static void MX_TIM7_Init(void)
// {
//
// LL_TIM_InitTypeDef TIM_InitStruct;
//
// /* Peripheral clock enable */
// LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM7);
//
// // 48 MHz sys clock --> 6 MHz timer clock
// // 6 MHz / 6000 == 1000 Hz
// TIM_InitStruct.Prescaler = 48000;
// TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
// TIM_InitStruct.Autoreload = 0xffff;
// LL_TIM_Init(TIM6, &TIM_InitStruct);
//
// LL_TIM_DisableARRPreload(TIM7);
//
// LL_TIM_SetTriggerOutput(TIM7, LL_TIM_TRGO_RESET);
//
// LL_TIM_DisableMasterSlaveMode(TIM7);
//
// // enable interrupt
// TIM7->DIER |= 1;
//
// // Start immediately
// LL_TIM_EnableCounter(TIM7);
// }
/* RNG init function */
static void MX_RNG_Init(void)
void init_rng(void)
{
/* Peripheral clock enable */
@ -409,3 +912,45 @@ static void MX_RNG_Init(void)
LL_RNG_Enable(RNG);
}
/* SPI1 init function */
void init_spi(void)
{
LL_SPI_InitTypeDef SPI_InitStruct;
LL_GPIO_InitTypeDef GPIO_InitStruct;
/* Peripheral clock enable */
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SPI1);
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA6 ------> SPI1_MISO
PA7 ------> SPI1_MOSI
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_5|LL_GPIO_PIN_6|LL_GPIO_PIN_7;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_5;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* SPI1 parameter configuration*/
SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;
SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;
SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;
SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;
SPI_InitStruct.ClockPhase = LL_SPI_PHASE_2EDGE;
SPI_InitStruct.NSS = LL_SPI_NSS_SOFT;
SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV8;
SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;
SPI_InitStruct.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;
SPI_InitStruct.CRCPoly = 7;
LL_SPI_Init(SPI1, &SPI_InitStruct);
LL_SPI_SetStandard(SPI1, LL_SPI_PROTOCOL_MOTOROLA);
}

View File

@ -0,0 +1,34 @@
/*
* Copyright (C) 2018 SoloKeys, Inc. <https://solokeys.com/>
*
* This file is part of Solo.
*
* Solo is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Solo is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Solo. If not, see <https://www.gnu.org/licenses/>
*
* This code is available under licenses for commercial use.
* Please contact SoloKeys for more information.
*/
#ifndef _INIT_H_
#define _INIT_H_
void init_usb();
void init_gpio(void);
void init_debug_uart(void);
void init_pwm(void);
void init_millisecond_timer(int lf);
void init_rng(void);
void init_spi(void);
#endif

799
targets/stm32l432/src/nfc.c Normal file
View File

@ -0,0 +1,799 @@
#include <string.h>
#include "stm32l4xx.h"
#include "nfc.h"
#include "ams.h"
#include "log.h"
#include "util.h"
#include "device.h"
#include "u2f.h"
#include "crypto.h"
#include "ctap_errors.h"
#define IS_IRQ_ACTIVE() (1 == (LL_GPIO_ReadInputPort(SOLO_AMS_IRQ_PORT) & SOLO_AMS_IRQ_PIN))
// Capability container
const CAPABILITY_CONTAINER NFC_CC = {
.cclen_hi = 0x00, .cclen_lo = 0x0f,
.version = 0x20,
.MLe_hi = 0x00, .MLe_lo = 0x7f,
.MLc_hi = 0x00, .MLc_lo = 0x7f,
.tlv = { 0x04,0x06,
0xe1,0x04,
0x00,0x7f,
0x00,0x00 }
};
// 13 chars
uint8_t NDEF_SAMPLE[] = "\x00\x14\xd1\x01\x0eU\x04solokeys.com/";
// Poor way to get some info while in passive operation
#include <stdarg.h>
void nprintf(const char *format, ...)
{
memmove((char*)NDEF_SAMPLE + sizeof(NDEF_SAMPLE) - 1 - 13," ", 13);
va_list args;
va_start (args, format);
vsnprintf ((char*)NDEF_SAMPLE + sizeof(NDEF_SAMPLE) - 1 - 13, 13, format, args);
va_end (args);
}
static struct
{
uint8_t max_frame_size;
uint8_t cid;
uint8_t block_num;
uint8_t selected_applet;
} NFC_STATE;
void nfc_state_init()
{
memset(&NFC_STATE,0,sizeof(NFC_STATE));
NFC_STATE.max_frame_size = 32;
NFC_STATE.block_num = 1;
}
bool nfc_init()
{
uint32_t t1;
nfc_state_init();
ams_init();
// Detect if we are powered by NFC field by listening for a message for
// first 25 ms.
t1 = millis();
while ((millis() - t1) < 25)
{
if (nfc_loop() > 0)
return 1;
}
// Under USB power. Configure AMS chip.
ams_configure();
return 0;
}
void process_int0(uint8_t int0)
{
}
bool ams_wait_for_tx(uint32_t timeout_ms)
{
uint32_t tstart = millis();
while (tstart + timeout_ms > millis())
{
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
if (int0) process_int0(int0);
if (int0 & AMS_INT_TXE)
return true;
delay(1);
}
return false;
}
bool ams_receive_with_timeout(uint32_t timeout_ms, uint8_t * data, int maxlen, int *dlen)
{
uint8_t buf[32];
*dlen = 0;
uint32_t tstart = millis();
while (tstart + timeout_ms > millis())
{
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
uint8_t buffer_status2 = ams_read_reg(AMS_REG_BUF2);
if (buffer_status2 && (int0 & AMS_INT_RXE))
{
if (buffer_status2 & AMS_BUF_INVALID)
{
printf1(TAG_NFC,"Buffer being updated!\r\n");
}
else
{
uint8_t len = buffer_status2 & AMS_BUF_LEN_MASK;
ams_read_buffer(buf, len);
printf1(TAG_NFC_APDU, ">> ");
dump_hex1(TAG_NFC_APDU, buf, len);
*dlen = MIN(32, MIN(maxlen, len));
memcpy(data, buf, *dlen);
return true;
}
}
delay(1);
}
return false;
}
void nfc_write_frame(uint8_t * data, uint8_t len)
{
if (len > 32)
{
len = 32;
}
ams_write_command(AMS_CMD_CLEAR_BUFFER);
ams_write_buffer(data,len);
ams_write_command(AMS_CMD_TRANSMIT_BUFFER);
printf1(TAG_NFC_APDU, "<< ");
dump_hex1(TAG_NFC_APDU, data, len);
}
bool nfc_write_response_ex(uint8_t req0, uint8_t * data, uint8_t len, uint16_t resp)
{
uint8_t res[32];
if (len > 32 - 3)
return false;
res[0] = NFC_CMD_IBLOCK | (req0 & 3);
if (len && data)
memcpy(&res[1], data, len);
res[len + 1] = resp >> 8;
res[len + 2] = resp & 0xff;
nfc_write_frame(res, 3 + len);
return true;
}
bool nfc_write_response(uint8_t req0, uint16_t resp)
{
return nfc_write_response_ex(req0, NULL, 0, resp);
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
{
uint8_t res[32 + 2];
int sendlen = 0;
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 3);
if (len <= 31)
{
uint8_t res[32] = {0};
res[0] = iBlock;
if (len && data)
memcpy(&res[1], data, len);
nfc_write_frame(res, len + 1);
} else {
do {
// transmit I block
int vlen = MIN(31, len - sendlen);
res[0] = iBlock;
memcpy(&res[1], &data[sendlen], vlen);
// if not a last block
if (vlen + sendlen < len)
{
res[0] |= 0x10;
}
// send data
nfc_write_frame(res, vlen + 1);
sendlen += vlen;
// wait for transmit (32 bytes aprox 2,5ms)
// if (!ams_wait_for_tx(10))
// {
// printf1(TAG_NFC, "TX timeout. slen: %d \r\n", sendlen);
// break;
// }
// if needs to receive R block (not a last block)
if (res[0] & 0x10)
{
uint8_t recbuf[32] = {0};
int reclen;
if (!ams_receive_with_timeout(100, recbuf, sizeof(recbuf), &reclen))
{
printf1(TAG_NFC, "R block RX timeout %d/%d.\r\n",sendlen,len);
break;
}
if (reclen != 1)
{
printf1(TAG_NFC, "R block length error. len: %d. %d/%d \r\n", reclen,sendlen,len);
dump_hex1(TAG_NFC, recbuf, reclen);
break;
}
if (((recbuf[0] & 0x01) == (res[0] & 1)) && ((recbuf[0] & 0xf6) == 0xa2))
{
printf1(TAG_NFC, "R block error. txdata: %02x rxdata: %02x \r\n", res[0], recbuf[0]);
break;
}
}
iBlock ^= 0x01;
} while (sendlen < len);
}
}
// WTX on/off:
// sends/receives WTX frame to reader every `WTX_time` time in ms
// works via timer interrupts
// WTX: f2 01 91 40 === f2(S-block + WTX, frame without CID) 01(from iso - multiply WTX from ATS by 1) <2b crc16>
static bool WTX_sent;
static bool WTX_fail;
static uint32_t WTX_timer;
bool WTX_process(int read_timeout);
void WTX_clear()
{
WTX_sent = false;
WTX_fail = false;
WTX_timer = 0;
}
bool WTX_on(int WTX_time)
{
WTX_clear();
WTX_timer = millis();
return true;
}
bool WTX_off()
{
WTX_timer = 0;
// read data if we sent WTX
if (WTX_sent)
{
if (!WTX_process(100))
{
printf1(TAG_NFC, "WTX-off get last WTX error\n");
return false;
}
}
if (WTX_fail)
{
printf1(TAG_NFC, "WTX-off fail\n");
return false;
}
WTX_clear();
return true;
}
void WTX_timer_exec()
{
// condition: (timer on) or (not expired[300ms])
if ((WTX_timer <= 0) || WTX_timer + 300 > millis())
return;
WTX_process(10);
WTX_timer = millis();
}
// executes twice a period. 1st for send WTX, 2nd for check the result
// read timeout must be 10 ms to call from interrupt
bool WTX_process(int read_timeout)
{
uint8_t wtx[] = {0xf2, 0x01};
if (WTX_fail)
return false;
if (!WTX_sent)
{
nfc_write_frame(wtx, sizeof(wtx));
WTX_sent = true;
return true;
}
else
{
uint8_t data[32];
int len;
if (!ams_receive_with_timeout(read_timeout, data, sizeof(data), &len))
{
WTX_fail = true;
return false;
}
if (len != 2 || data[0] != 0xf2 || data[1] != 0x01)
{
WTX_fail = true;
return false;
}
WTX_sent = false;
return true;
}
}
int answer_rats(uint8_t parameter)
{
uint8_t fsdi = (parameter & 0xf0) >> 4;
uint8_t cid = (parameter & 0x0f);
NFC_STATE.cid = cid;
if (fsdi == 0)
NFC_STATE.max_frame_size = 16;
else if (fsdi == 1)
NFC_STATE.max_frame_size = 24;
else
NFC_STATE.max_frame_size = 32;
uint8_t res[3 + 11];
res[0] = sizeof(res);
res[1] = 2 | (1<<5); // 2 FSCI == 32 byte frame size, TB is enabled
// frame wait time = (256 * 16 / 13.56MHz) * 2^FWI
// FWI=0, FMT=0.3ms (min)
// FWI=4, FMT=4.8ms (default)
// FWI=10, FMT=309ms
// FWI=12, FMT=1237ms
// FWI=14, FMT=4949ms (max)
res[2] = (12<<4) | (0); // TB (FWI << 4) | (SGTI)
// historical bytes
memcpy(&res[3], (uint8_t *)"SoloKey tap", 11);
nfc_write_frame(res, sizeof(res));
ams_wait_for_tx(10);
return 0;
}
void rblock_acknowledge()
{
uint8_t buf[32];
NFC_STATE.block_num = !NFC_STATE.block_num;
buf[0] = NFC_CMD_RBLOCK | NFC_STATE.block_num;
nfc_write_frame(buf,1);
}
// Selects application. Returns 1 if success, 0 otherwise
int select_applet(uint8_t * aid, int len)
{
if (memcmp(aid,AID_FIDO,sizeof(AID_FIDO)) == 0)
{
NFC_STATE.selected_applet = APP_FIDO;
return APP_FIDO;
}
else if (memcmp(aid,AID_NDEF_TYPE_4,sizeof(AID_NDEF_TYPE_4)) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TYPE_4;
return APP_NDEF_TYPE_4;
}
else if (memcmp(aid,AID_CAPABILITY_CONTAINER,sizeof(AID_CAPABILITY_CONTAINER)) == 0)
{
NFC_STATE.selected_applet = APP_CAPABILITY_CONTAINER;
return APP_CAPABILITY_CONTAINER;
}
else if (memcmp(aid,AID_NDEF_TAG,sizeof(AID_NDEF_TAG)) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TAG;
return APP_NDEF_TAG;
}
return APP_NOTHING;
}
void nfc_process_iblock(uint8_t * buf, int len)
{
APDU_HEADER * apdu = (APDU_HEADER *)(buf + 1);
uint8_t * payload = buf + 1 + 5;
uint8_t plen = apdu->lc;
int selected;
CTAP_RESPONSE ctap_resp;
int status;
printf1(TAG_NFC,"Iblock: ");
dump_hex1(TAG_NFC, buf, len);
// TODO this needs to be organized better
switch(apdu->ins)
{
case APDU_INS_SELECT:
if (plen > len - 6)
{
printf1(TAG_ERR, "Truncating APDU length %d\r\n", apdu->lc);
plen = len-6;
}
// if (apdu->p1 == 0 && apdu->p2 == 0x0c)
// {
// printf1(TAG_NFC,"Select NDEF\r\n");
//
// NFC_STATE.selected_applet = APP_NDEF_TAG;
// // Select NDEF file!
// res[0] = NFC_CMD_IBLOCK | (buf[0] & 1);
// res[1] = SW_SUCCESS>>8;
// res[2] = SW_SUCCESS & 0xff;
// nfc_write_frame(res, 3);
// printf1(TAG_NFC,"<< "); dump_hex1(TAG_NFC,res, 3);
// }
// else
{
selected = select_applet(payload, plen);
if (selected == APP_FIDO)
{
// block = buf[0] & 1;
// block = NFC_STATE.block_num;
// block = !block;
// NFC_STATE.block_num = block;
// NFC_STATE.block_num = block;
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
printf1(TAG_NFC, "FIDO applet selected.\r\n");
}
else if (selected != APP_NOTHING)
{
nfc_write_response(buf[0], SW_SUCCESS);
printf1(TAG_NFC, "SELECTED %d\r\n", selected);
}
else
{
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected\r\n"); dump_hex1(TAG_NFC,payload, plen);
}
}
break;
case APDU_FIDO_U2F_VERSION:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F GetVersion command.\r\n");
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
break;
case APDU_FIDO_U2F_REGISTER:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F Register command.\r\n");
if (plen != 64)
{
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", plen);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
timestamp();
// WTX_on(WTX_TIME_DEFAULT);
// SystemClock_Config_LF32();
// delay(300);
device_set_clock_rate(DEVICE_LOW_POWER_FAST);;
u2f_request_nfc(&buf[1], len, &ctap_resp);
device_set_clock_rate(DEVICE_LOW_POWER_IDLE);;
// if (!WTX_off())
// return;
printf1(TAG_NFC,"U2F Register P2 took %d\r\n", timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
// printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_FIDO_U2F_AUTHENTICATE:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F Authenticate command.\r\n");
if (plen != 64 + 1 + buf[6 + 64])
{
delay(5);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", plen, buf[6 + 64]);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
timestamp();
// WTX_on(WTX_TIME_DEFAULT);
u2f_request_nfc(&buf[1], len, &ctap_resp);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Authenticate processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
printf1(TAG_NFC,"U2F Authenticate answered %d (took %d)\r\n", millis(), timestamp);
break;
case APDU_FIDO_NFCCTAP_MSG:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "FIDO2 CTAP message. %d\r\n", timestamp());
WTX_on(WTX_TIME_DEFAULT);
ctap_response_init(&ctap_resp);
status = ctap_request(payload, plen, &ctap_resp);
if (!WTX_off())
return;
printf1(TAG_NFC, "CTAP resp: 0x%02<30> len: %d\r\n", status, ctap_resp.length);
if (status == CTAP1_ERR_SUCCESS)
{
memmove(&ctap_resp.data[1], &ctap_resp.data[0], ctap_resp.length);
ctap_resp.length += 3;
} else {
ctap_resp.length = 3;
}
ctap_resp.data[0] = status;
ctap_resp.data[ctap_resp.length - 2] = SW_SUCCESS >> 8;
ctap_resp.data[ctap_resp.length - 1] = SW_SUCCESS & 0xff;
printf1(TAG_NFC,"CTAP processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
printf1(TAG_NFC,"CTAP answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_INS_READ_BINARY:
switch(NFC_STATE.selected_applet)
{
case APP_CAPABILITY_CONTAINER:
printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n");
if (plen > 15)
{
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc);
plen = 15;
}
nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, plen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
case APP_NDEF_TAG:
printf1(TAG_NFC,"APP_NDEF_TAG\r\n");
if (plen > (sizeof(NDEF_SAMPLE) - 1))
{
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc);
plen = sizeof(NDEF_SAMPLE) - 1;
}
nfc_write_response_ex(buf[0], NDEF_SAMPLE, plen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
default:
printf1(TAG_ERR, "No binary applet selected!\r\n");
return;
break;
}
break;
default:
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu->ins);
nfc_write_response(buf[0], SW_INS_INVALID);
break;
}
}
static uint8_t ibuf[1024];
static int ibuflen = 0;
void clear_ibuf()
{
ibuflen = 0;
memset(ibuf, 0, sizeof(ibuf));
}
void nfc_process_block(uint8_t * buf, unsigned int len)
{
if (!len)
return;
if (IS_PPSS_CMD(buf[0]))
{
printf1(TAG_NFC, "NFC_CMD_PPSS\r\n");
}
else if (IS_IBLOCK(buf[0]))
{
if (buf[0] & 0x10)
{
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d\r\n", ibuflen, len);
if (ibuflen + len > sizeof(ibuf))
{
printf1(TAG_NFC, "I block memory error! must have %d but have only %d\r\n", ibuflen + len, sizeof(ibuf));
nfc_write_response(buf[0], SW_INTERNAL_EXCEPTION);
return;
}
printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len);
if (len)
{
memcpy(&ibuf[ibuflen], &buf[1], len - 1);
ibuflen += len - 1;
}
// send R block
uint8_t rb = NFC_CMD_RBLOCK | NFC_CMD_RBLOCK_ACK | (buf[0] & 3);
nfc_write_frame(&rb, 1);
} else {
if (ibuflen)
{
if (len)
{
memcpy(&ibuf[ibuflen], &buf[1], len - 1);
ibuflen += len - 1;
}
memmove(&ibuf[1], ibuf, ibuflen);
ibuf[0] = buf[0];
ibuflen++;
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d\r\n", ibuflen, len);
printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len);
nfc_process_iblock(ibuf, ibuflen);
} else {
// printf1(TAG_NFC, "NFC_CMD_IBLOCK\r\n");
nfc_process_iblock(buf, len);
}
clear_ibuf();
}
}
else if (IS_RBLOCK(buf[0]))
{
rblock_acknowledge();
printf1(TAG_NFC, "NFC_CMD_RBLOCK\r\n");
}
else if (IS_SBLOCK(buf[0]))
{
if ((buf[0] & NFC_SBLOCK_DESELECT) == 0)
{
printf1(TAG_NFC, "NFC_CMD_SBLOCK, DESELECTED\r\n");
nfc_write_frame(buf, 1);
ams_wait_for_tx(2);
ams_write_command(AMS_CMD_SLEEP);
nfc_state_init();
clear_ibuf();
WTX_clear();
}
else
{
printf1(TAG_NFC, "NFC_CMD_SBLOCK, Unknown. len[%d]\r\n", len);
}
dump_hex1(TAG_NFC, buf, len);
}
else
{
printf1(TAG_NFC, "unknown NFC request\r\n len[%d]:", len);
dump_hex1(TAG_NFC, buf, len);
}
}
int nfc_loop()
{
uint8_t buf[32];
AMS_DEVICE ams;
int len = 0;
read_reg_block(&ams);
uint8_t state = AMS_STATE_MASK & ams.regs.rfid_status;
if (state != AMS_STATE_SELECTED && state != AMS_STATE_SELECTEDX)
{
// delay(1); // sleep ?
return 0;
}
if (ams.regs.rfid_status)
{
// if (state != AMS_STATE_SENSE)
// printf1(TAG_NFC," %s x%02x\r\n", ams_get_state_string(ams.regs.rfid_status), state);
}
if (ams.regs.int0 & AMS_INT_INIT)
{
nfc_state_init();
}
if (ams.regs.int1)
{
// ams_print_int1(ams.regs.int1);
}
if ((ams.regs.int0 & AMS_INT_RXE))
{
if (ams.regs.buffer_status2)
{
if (ams.regs.buffer_status2 & AMS_BUF_INVALID)
{
printf1(TAG_NFC,"Buffer being updated!\r\n");
}
else
{
len = ams.regs.buffer_status2 & AMS_BUF_LEN_MASK;
ams_read_buffer(buf, len);
}
}
}
if (len)
{
// ISO 14443-3
switch(buf[0])
{
case NFC_CMD_REQA:
printf1(TAG_NFC, "NFC_CMD_REQA\r\n");
break;
case NFC_CMD_WUPA:
printf1(TAG_NFC, "NFC_CMD_WUPA\r\n");
break;
case NFC_CMD_HLTA:
printf1(TAG_NFC, "HLTA/Halt\r\n");
break;
case NFC_CMD_RATS:
answer_rats(buf[1]);
NFC_STATE.block_num = 1;
clear_ibuf();
WTX_clear();
break;
default:
// ISO 14443-4
nfc_process_block(buf,len);
break;
}
}
return len;
}

View File

@ -0,0 +1,64 @@
#ifndef _NFC_H_
#define _NFC_H_
#include <stdint.h>
#include <stdbool.h>
#include "apdu.h"
// Return number of bytes read if any.
int nfc_loop();
bool nfc_init();
typedef struct
{
uint8_t cclen_hi;
uint8_t cclen_lo;
uint8_t version;
uint8_t MLe_hi;
uint8_t MLe_lo;
uint8_t MLc_hi;
uint8_t MLc_lo;
uint8_t tlv[8];
} __attribute__((packed)) CAPABILITY_CONTAINER;
// WTX time in ms
#define WTX_TIME_DEFAULT 300
#define NFC_CMD_REQA 0x26
#define NFC_CMD_WUPA 0x52
#define NFC_CMD_HLTA 0x50
#define NFC_CMD_RATS 0xe0
#define NFC_CMD_PPSS 0xd0
#define IS_PPSS_CMD(x) (((x) & 0xf0) == NFC_CMD_PPSS)
#define NFC_CMD_IBLOCK 0x00
#define IS_IBLOCK(x) ( (((x) & 0xc0) == NFC_CMD_IBLOCK) && (((x) & 0x02) == 0x02) )
#define NFC_CMD_RBLOCK 0x80
#define NFC_CMD_RBLOCK_ACK 0x20
#define IS_RBLOCK(x) ( (((x) & 0xc0) == NFC_CMD_RBLOCK) && (((x) & 0x02) == 0x02) )
#define NFC_CMD_SBLOCK 0xc0
#define IS_SBLOCK(x) ( (((x) & 0xc0) == NFC_CMD_SBLOCK) && (((x) & 0x02) == 0x02) )
#define NFC_SBLOCK_DESELECT 0x30
#define NFC_SBLOCK_WTX 0x30
#define AID_NDEF_TYPE_4 "\xD2\x76\x00\x00\x85\x01\x01"
#define AID_NDEF_MIFARE_TYPE_4 "\xD2\x76\x00\x00\x85\x01\x00"
#define AID_CAPABILITY_CONTAINER "\xE1\x03"
#define AID_NDEF_TAG "\xE1\x04"
#define AID_FIDO "\xa0\x00\x00\x06\x47\x2f\x00\x01"
typedef enum
{
APP_NOTHING = 0,
APP_NDEF_TYPE_4 = 1,
APP_MIFARE_TYPE_4,
APP_CAPABILITY_CONTAINER,
APP_NDEF_TAG,
APP_FIDO,
} APPLETS;
void WTX_timer_exec();
#endif

View File

@ -24,19 +24,33 @@ void _putchar(char c)
}
int _write (int fd, const void *buf, long int len)
int _write (int fd, const void *buf, unsigned long int len)
{
uint8_t * data = (uint8_t *) buf;
#if DEBUG_LEVEL>1
static uint8_t logbuf[1000] = {0};
static int logbuflen = 0;
if (logbuflen + len > sizeof(logbuf)) {
int mlen = logbuflen + len - sizeof(logbuf);
memmove(logbuf, &logbuf[mlen], sizeof(logbuf) - mlen);
logbuflen -= mlen;
}
memcpy(&logbuf[logbuflen], data, len);
logbuflen += len;
// Send out USB serial
CDC_Transmit_FS(data, len);
uint8_t res = CDC_Transmit_FS(logbuf, logbuflen);
if (res == USBD_OK)
logbuflen = 0;
#endif
#ifdef ENABLE_SERIAL_PRINTING
// Send out UART serial
while(len--)
{
_putchar(*data++);
}
#endif
return 0;
}
#endif

View File

@ -79,6 +79,8 @@ Reset_Handler:
ldr sp, =_estack /* Atollic update: set stack pointer */
/* Copy the data segment initializers from flash to SRAM */
/* Call the clock system intitialization function.*/
bl SystemInit
movs r1, #0
b LoopCopyDataInit
@ -106,8 +108,7 @@ LoopFillZerobss:
cmp r2, r3
bcc FillZerobss
/* Call the clock system intitialization function.*/
bl SystemInit
/* Call static constructors */
bl __libc_init_array
/* Call the application's entry point.*/

View File

@ -106,6 +106,8 @@
*/
#include "stm32l4xx.h"
#include "device.h"
#include "init.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */
@ -219,6 +221,8 @@ void SystemInit(void)
/* Disable all interrupts */
RCC->CIER = 0x00000000U;
device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
}
/**