Merge pull request #64 from Nitrokey/code-comments

Describe operations done in the bootloader
This commit is contained in:
Conor Patrick 2019-02-12 20:34:16 -05:00 committed by GitHub
commit a32bea2697
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -44,7 +44,9 @@ typedef struct {
uint8_t payload[255 - 10]; uint8_t payload[255 - 10];
} __attribute__((packed)) BootloaderReq; } __attribute__((packed)) BootloaderReq;
/**
* Erase all application pages. **APPLICATION_END_PAGE excluded**.
*/
static void erase_application() static void erase_application()
{ {
int page; int page;
@ -58,6 +60,7 @@ static void erase_application()
#define LAST_PAGE (APPLICATION_END_PAGE-1) #define LAST_PAGE (APPLICATION_END_PAGE-1)
static void disable_bootloader() static void disable_bootloader()
{ {
// Clear last 4 bytes of the last application page-1, which is 108th
uint8_t page[PAGE_SIZE]; uint8_t page[PAGE_SIZE];
memmove(page, (uint8_t*)LAST_ADDR, PAGE_SIZE); memmove(page, (uint8_t*)LAST_ADDR, PAGE_SIZE);
memset(page+PAGE_SIZE -4, 0, 4); memset(page+PAGE_SIZE -4, 0, 4);
@ -67,6 +70,9 @@ static void disable_bootloader()
static void authorize_application() static void authorize_application()
{ {
// Do nothing, if is_authorized_to_boot() returns true, otherwise
// clear first 4 bytes of the last 8 bytes of the page 108.
// uint32_t zero = 0; // uint32_t zero = 0;
// uint32_t * ptr; // uint32_t * ptr;
// ptr = (uint32_t *)AUTH_WORD_ADDR; // ptr = (uint32_t *)AUTH_WORD_ADDR;
@ -74,6 +80,7 @@ static void authorize_application()
uint8_t page[PAGE_SIZE]; uint8_t page[PAGE_SIZE];
if (is_authorized_to_boot()) if (is_authorized_to_boot())
return; return;
// FIXME refactor: code same as in disable_bootloader(), except clearing start address (-8)
memmove(page, (uint8_t*)LAST_ADDR, PAGE_SIZE); memmove(page, (uint8_t*)LAST_ADDR, PAGE_SIZE);
memset(page+PAGE_SIZE -8, 0, 4); memset(page+PAGE_SIZE -8, 0, 4);
flash_erase_page(LAST_PAGE); flash_erase_page(LAST_PAGE);
@ -82,16 +89,26 @@ static void authorize_application()
int is_authorized_to_boot() int is_authorized_to_boot()
{ {
// return true, if (uint32_t)AUTH_WORD_ADDR is equal 0
// Page -4 -> 124
uint32_t * auth = (uint32_t *)AUTH_WORD_ADDR; uint32_t * auth = (uint32_t *)AUTH_WORD_ADDR;
return *auth == 0; return *auth == 0;
} }
int is_bootloader_disabled() int is_bootloader_disabled()
{ {
// return true, if (uint32_t)AUTH_WORD_ADDR+4 is equal 0
// Page -4 -> 124
uint32_t * auth = (uint32_t *)(AUTH_WORD_ADDR+4); uint32_t * auth = (uint32_t *)(AUTH_WORD_ADDR+4);
return *auth == 0; return *auth == 0;
} }
/**
* Execute bootloader commands
* @param klen key length - length of the bootloader request
* @param keyh key handle - bootloader request, packeted as key handle
* @return
*/
int bootloader_bridge(int klen, uint8_t * keyh) int bootloader_bridge(int klen, uint8_t * keyh)
{ {
static int has_erased = 0; static int has_erased = 0;
@ -107,42 +124,52 @@ int bootloader_bridge(int klen, uint8_t * keyh)
printf1(TAG_BOOT,"Invalid length %d / %d\r\n", len, klen-9); printf1(TAG_BOOT,"Invalid length %d / %d\r\n", len, klen-9);
return CTAP1_ERR_INVALID_LENGTH; return CTAP1_ERR_INVALID_LENGTH;
} }
#ifndef SOLO_HACKER #ifndef SOLO_HACKER
uint8_t * pubkey = (uint8_t*)"\xd2\xa4\x2f\x8f\xb2\x31\x1c\xc1\xf7\x0c\x7e\x64\x32\xfb\xbb\xb4\xa3\xdd\x32\x20\x0f\x1b\x88\x9c\xda\x62\xc2\x83\x25\x93\xdd\xb8\x75\x9d\xf9\x86\xee\x03\x6c\xce\x34\x47\x71\x36\xb3\xb2\xad\x6d\x12\xb7\xbe\x49\x3e\x20\xa4\x61\xac\xc7\x71\xc7\x1f\xa8\x14\xf2"; uint8_t * pubkey = (uint8_t*)"\xd2\xa4\x2f\x8f\xb2\x31\x1c\xc1\xf7\x0c\x7e\x64\x32\xfb\xbb\xb4\xa3\xdd\x32\x20"
"\x0f\x1b\x88\x9c\xda\x62\xc2\x83\x25\x93\xdd\xb8\x75\x9d\xf9\x86\xee\x03\x6c\xce"
"\x34\x47\x71\x36\xb3\xb2\xad\x6d\x12\xb7\xbe\x49\x3e\x20\xa4\x61\xac\xc7\x71\xc7"
"\x1f\xa8\x14\xf2";
const struct uECC_Curve_t * curve = NULL; const struct uECC_Curve_t * curve = NULL;
#endif #endif
// Translate and enclose the requested address in the MCU flash space, starting from 0x8000000
uint32_t addr = ((*((uint32_t*)req->addr)) & 0xffffff) | 0x8000000; uint32_t addr = ((*((uint32_t*)req->addr)) & 0xffffff) | 0x8000000;
uint32_t * ptr = (uint32_t *)addr; uint32_t * ptr = (uint32_t *)addr;
switch(req->op){ switch(req->op){
case BootWrite: case BootWrite:
// Write to MCU's flash.
printf1(TAG_BOOT, "BootWrite: %08lx\r\n",(uint32_t)ptr); printf1(TAG_BOOT, "BootWrite: %08lx\r\n",(uint32_t)ptr);
if ((uint32_t)ptr < APPLICATION_START_ADDR || (uint32_t)ptr >= APPLICATION_END_ADDR // Validate write range.
if ( (uint32_t)ptr < APPLICATION_START_ADDR
|| (uint32_t)ptr >= APPLICATION_END_ADDR
|| ((uint32_t)ptr+len) > APPLICATION_END_ADDR) || ((uint32_t)ptr+len) > APPLICATION_END_ADDR)
{ {
printf1(TAG_BOOT,"Bound exceeded [%08lx, %08lx]\r\n",APPLICATION_START_ADDR,APPLICATION_END_ADDR); printf1(TAG_BOOT,"Bound exceeded [%08lx, %08lx]\r\n",APPLICATION_START_ADDR,APPLICATION_END_ADDR);
return CTAP2_ERR_NOT_ALLOWED; return CTAP2_ERR_NOT_ALLOWED;
} }
// Clear all application pages, if not done already.
if (!has_erased || is_authorized_to_boot()) if (!has_erased || is_authorized_to_boot())
{ {
erase_application(); erase_application();
has_erased = 1; has_erased = 1;
} }
// Fail, if the validation procedure passes.
if (is_authorized_to_boot()) if (is_authorized_to_boot())
{ {
printf2(TAG_ERR, "Error, boot check bypassed\n"); printf2(TAG_ERR, "Error, boot check bypassed\n");
exit(1); exit(1);
} }
// Do the actual write
flash_write((uint32_t)ptr,req->payload, len); flash_write((uint32_t)ptr,req->payload, len);
break; break;
case BootDone: case BootDone:
// Writing to flash finished. Request code validation.
printf1(TAG_BOOT, "BootDone: "); printf1(TAG_BOOT, "BootDone: ");
#ifndef SOLO_HACKER #ifndef SOLO_HACKER
if (len != 64) if (len != 64)
@ -151,12 +178,13 @@ int bootloader_bridge(int klen, uint8_t * keyh)
return CTAP1_ERR_INVALID_LENGTH; return CTAP1_ERR_INVALID_LENGTH;
} }
dump_hex1(TAG_BOOT, req->payload, 32); dump_hex1(TAG_BOOT, req->payload, 32);
// Hash all code, included in the application pages, SHA256
ptr = (uint32_t *)APPLICATION_START_ADDR; ptr = (uint32_t *)APPLICATION_START_ADDR;
crypto_sha256_init(); crypto_sha256_init();
crypto_sha256_update((uint8_t*)ptr, APPLICATION_END_ADDR-APPLICATION_START_ADDR); crypto_sha256_update((uint8_t*)ptr, APPLICATION_END_ADDR-APPLICATION_START_ADDR);
crypto_sha256_final(hash); crypto_sha256_final(hash);
curve = uECC_secp256r1(); curve = uECC_secp256r1();
// Verify incoming signature made over the SHA256 hash
if (! uECC_verify(pubkey, if (! uECC_verify(pubkey,
hash, hash,
32, 32,
@ -166,6 +194,7 @@ int bootloader_bridge(int klen, uint8_t * keyh)
return CTAP2_ERR_OPERATION_DENIED; return CTAP2_ERR_OPERATION_DENIED;
} }
#endif #endif
// Set the application validated, and mark for reboot.
authorize_application(); authorize_application();
REBOOT_FLAG = 1; REBOOT_FLAG = 1;
break; break;
@ -192,6 +221,7 @@ int bootloader_bridge(int klen, uint8_t * keyh)
REBOOT_FLAG = 1; REBOOT_FLAG = 1;
break; break;
case BootDisable: case BootDisable:
// Disable bootloader using a magic bytes as a confirmation phrase.
printf1(TAG_BOOT, "BootDisable %08lx.\r\n", *(uint32_t *)(AUTH_WORD_ADDR+4)); printf1(TAG_BOOT, "BootDisable %08lx.\r\n", *(uint32_t *)(AUTH_WORD_ADDR+4));
if (req->payload[0] == 0xcd && req->payload[1] == 0xde if (req->payload[0] == 0xcd && req->payload[1] == 0xde
&& req->payload[2] == 0xba && req->payload[3] == 0xaa) && req->payload[2] == 0xba && req->payload[3] == 0xaa)
@ -208,6 +238,7 @@ int bootloader_bridge(int klen, uint8_t * keyh)
break; break;
#ifdef SOLO_HACKER #ifdef SOLO_HACKER
case BootBootloader: case BootBootloader:
// Boot ST bootloader
printf1(TAG_BOOT, "BootBootloader.\r\n"); printf1(TAG_BOOT, "BootBootloader.\r\n");
flash_option_bytes_init(1); flash_option_bytes_init(1);
boot_st_bootloader(); boot_st_bootloader();
@ -219,6 +250,9 @@ int bootloader_bridge(int klen, uint8_t * keyh)
return 0; return 0;
} }
/**
* Control LEDs while in the bootloader.
*/
void bootloader_heartbeat() void bootloader_heartbeat()
{ {
static int state = 0; static int state = 0;