Merge branch 'master' into ccid

This commit is contained in:
Conor Patrick
2019-08-22 17:13:55 +08:00
46 changed files with 3423 additions and 2586 deletions

View File

@@ -21,6 +21,9 @@ firmware-hacker-debug-1:
firmware-hacker-debug-2:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=2 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0'
firmware-secure-non-solokeys:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DFLASH_ROP=2'
firmware-secure:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DUSE_SOLOKEYS_CERT -DFLASH_ROP=2'
@@ -59,7 +62,6 @@ boot-no-sig:
build-release-locked: cbor clean2 boot-sig-checking clean all-locked
$(VENV) $(merge_hex) solo.hex bootloader.hex all.hex
rm -f solo.hex bootloader.hex # don't program solo.hex ...
build-release: cbor clean2 boot-sig-checking clean all
$(VENV) $(merge_hex) solo.hex bootloader.hex all.hex

View File

@@ -7,7 +7,7 @@ SRC += src/startup_stm32l432xx.s src/system_stm32l4xx.c
SRC += $(DRIVER_LIBS) $(USB_LIB)
# FIDO2 lib
SRC += ../../fido2/util.c ../../fido2/u2f.c ../../fido2/test_power.c
SRC += ../../fido2/apdu.c ../../fido2/util.c ../../fido2/u2f.c ../../fido2/test_power.c
SRC += ../../fido2/stubs.c ../../fido2/log.c ../../fido2/ctaphid.c ../../fido2/ctap.c
SRC += ../../fido2/ctap_parse.c ../../fido2/main.c
SRC += ../../fido2/extensions/extensions.c ../../fido2/extensions/solo.c

View File

@@ -6,7 +6,7 @@ AR=$(PREFIX)arm-none-eabi-ar
DRIVER_LIBS := lib/stm32l4xx_hal_pcd.c lib/stm32l4xx_hal_pcd_ex.c lib/stm32l4xx_ll_gpio.c \
lib/stm32l4xx_ll_rcc.c lib/stm32l4xx_ll_rng.c lib/stm32l4xx_ll_tim.c \
lib/stm32l4xx_ll_usb.c lib/stm32l4xx_ll_utils.c lib/stm32l4xx_ll_pwr.c \
lib/stm32l4xx_ll_usart.c lib/stm32l4xx_ll_spi.c
lib/stm32l4xx_ll_usart.c lib/stm32l4xx_ll_spi.c lib/stm32l4xx_ll_exti.c
USB_LIB := lib/usbd/usbd_cdc.c lib/usbd/usbd_cdc_if.c lib/usbd/usbd_composite.c \
lib/usbd/usbd_conf.c lib/usbd/usbd_core.c lib/usbd/usbd_ioreq.c \

View File

@@ -0,0 +1,290 @@
/**
******************************************************************************
* @file stm32l4xx_ll_exti.c
* @author MCD Application Team
* @brief EXTI LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_ll_exti.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32L4xx_LL_Driver
* @{
*/
#if defined (EXTI)
/** @defgroup EXTI_LL EXTI
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup EXTI_LL_Private_Macros
* @{
*/
#define IS_LL_EXTI_LINE_0_31(__VALUE__) (((__VALUE__) & ~LL_EXTI_LINE_ALL_0_31) == 0x00000000U)
#define IS_LL_EXTI_LINE_32_63(__VALUE__) (((__VALUE__) & ~LL_EXTI_LINE_ALL_32_63) == 0x00000000U)
#define IS_LL_EXTI_MODE(__VALUE__) (((__VALUE__) == LL_EXTI_MODE_IT) \
|| ((__VALUE__) == LL_EXTI_MODE_EVENT) \
|| ((__VALUE__) == LL_EXTI_MODE_IT_EVENT))
#define IS_LL_EXTI_TRIGGER(__VALUE__) (((__VALUE__) == LL_EXTI_TRIGGER_NONE) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_RISING) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_FALLING) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_RISING_FALLING))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup EXTI_LL_Exported_Functions
* @{
*/
/** @addtogroup EXTI_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the EXTI registers to their default reset values.
* @retval An ErrorStatus enumeration value:
* - 0x00: EXTI registers are de-initialized
*/
uint32_t LL_EXTI_DeInit(void)
{
/* Interrupt mask register set to default reset values */
LL_EXTI_WriteReg(IMR1, 0xFF820000U);
/* Event mask register set to default reset values */
LL_EXTI_WriteReg(EMR1, 0x00000000U);
/* Rising Trigger selection register set to default reset values */
LL_EXTI_WriteReg(RTSR1, 0x00000000U);
/* Falling Trigger selection register set to default reset values */
LL_EXTI_WriteReg(FTSR1, 0x00000000U);
/* Software interrupt event register set to default reset values */
LL_EXTI_WriteReg(SWIER1, 0x00000000U);
/* Pending register clear */
LL_EXTI_WriteReg(PR1, 0x007DFFFFU);
/* Interrupt mask register 2 set to default reset values */
#if defined(LL_EXTI_LINE_40)
LL_EXTI_WriteReg(IMR2, 0x00000187U);
#else
LL_EXTI_WriteReg(IMR2, 0x00000087U);
#endif
/* Event mask register 2 set to default reset values */
LL_EXTI_WriteReg(EMR2, 0x00000000U);
/* Rising Trigger selection register 2 set to default reset values */
LL_EXTI_WriteReg(RTSR2, 0x00000000U);
/* Falling Trigger selection register 2 set to default reset values */
LL_EXTI_WriteReg(FTSR2, 0x00000000U);
/* Software interrupt event register 2 set to default reset values */
LL_EXTI_WriteReg(SWIER2, 0x00000000U);
/* Pending register 2 clear */
LL_EXTI_WriteReg(PR2, 0x00000078U);
return 0x00u;
}
/**
* @brief Initialize the EXTI registers according to the specified parameters in EXTI_InitStruct.
* @param EXTI_InitStruct pointer to a @ref LL_EXTI_InitTypeDef structure.
* @retval An ErrorStatus enumeration value:
* - 0x00: EXTI registers are initialized
* - any other calue : wrong configuration
*/
uint32_t LL_EXTI_Init(LL_EXTI_InitTypeDef *EXTI_InitStruct)
{
uint32_t status = 0x00u;
/* Check the parameters */
assert_param(IS_LL_EXTI_LINE_0_31(EXTI_InitStruct->Line_0_31));
assert_param(IS_LL_EXTI_LINE_32_63(EXTI_InitStruct->Line_32_63));
assert_param(IS_FUNCTIONAL_STATE(EXTI_InitStruct->LineCommand));
assert_param(IS_LL_EXTI_MODE(EXTI_InitStruct->Mode));
/* ENABLE LineCommand */
if (EXTI_InitStruct->LineCommand != DISABLE)
{
assert_param(IS_LL_EXTI_TRIGGER(EXTI_InitStruct->Trigger));
/* Configure EXTI Lines in range from 0 to 31 */
if (EXTI_InitStruct->Line_0_31 != LL_EXTI_LINE_NONE)
{
switch (EXTI_InitStruct->Mode)
{
case LL_EXTI_MODE_IT:
/* First Disable Event on provided Lines */
LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable IT on provided Lines */
LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_MODE_EVENT:
/* First Disable IT on provided Lines */
LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Event on provided Lines */
LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_MODE_IT_EVENT:
/* Directly Enable IT & Event on provided Lines */
LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31);
break;
default:
status = 0x01u;
break;
}
if (EXTI_InitStruct->Trigger != LL_EXTI_TRIGGER_NONE)
{
switch (EXTI_InitStruct->Trigger)
{
case LL_EXTI_TRIGGER_RISING:
/* First Disable Falling Trigger on provided Lines */
LL_EXTI_DisableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Rising Trigger on provided Lines */
LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_TRIGGER_FALLING:
/* First Disable Rising Trigger on provided Lines */
LL_EXTI_DisableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Falling Trigger on provided Lines */
LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_TRIGGER_RISING_FALLING:
LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
default:
status |= 0x02u;
break;
}
}
}
/* Configure EXTI Lines in range from 32 to 63 */
if (EXTI_InitStruct->Line_32_63 != LL_EXTI_LINE_NONE)
{
switch (EXTI_InitStruct->Mode)
{
case LL_EXTI_MODE_IT:
/* First Disable Event on provided Lines */
LL_EXTI_DisableEvent_32_63(EXTI_InitStruct->Line_32_63);
/* Then Enable IT on provided Lines */
LL_EXTI_EnableIT_32_63(EXTI_InitStruct->Line_32_63);
break;
case LL_EXTI_MODE_EVENT:
/* First Disable IT on provided Lines */
LL_EXTI_DisableIT_32_63(EXTI_InitStruct->Line_32_63);
/* Then Enable Event on provided Lines */
LL_EXTI_EnableEvent_32_63(EXTI_InitStruct->Line_32_63);
break;
case LL_EXTI_MODE_IT_EVENT:
/* Directly Enable IT & Event on provided Lines */
LL_EXTI_EnableIT_32_63(EXTI_InitStruct->Line_32_63);
LL_EXTI_EnableEvent_32_63(EXTI_InitStruct->Line_32_63);
break;
default:
status |= 0x04u;
break;
}
if (EXTI_InitStruct->Trigger != LL_EXTI_TRIGGER_NONE)
{
switch (EXTI_InitStruct->Trigger)
{
case LL_EXTI_TRIGGER_RISING:
/* First Disable Falling Trigger on provided Lines */
LL_EXTI_DisableFallingTrig_32_63(EXTI_InitStruct->Line_32_63);
/* Then Enable IT on provided Lines */
LL_EXTI_EnableRisingTrig_32_63(EXTI_InitStruct->Line_32_63);
break;
case LL_EXTI_TRIGGER_FALLING:
/* First Disable Rising Trigger on provided Lines */
LL_EXTI_DisableRisingTrig_32_63(EXTI_InitStruct->Line_32_63);
/* Then Enable Falling Trigger on provided Lines */
LL_EXTI_EnableFallingTrig_32_63(EXTI_InitStruct->Line_32_63);
break;
case LL_EXTI_TRIGGER_RISING_FALLING:
LL_EXTI_EnableRisingTrig_32_63(EXTI_InitStruct->Line_32_63);
LL_EXTI_EnableFallingTrig_32_63(EXTI_InitStruct->Line_32_63);
break;
default:
status = ERROR;
break;
}
}
}
}
/* DISABLE LineCommand */
else
{
/* De-configure EXTI Lines in range from 0 to 31 */
LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31);
/* De-configure EXTI Lines in range from 32 to 63 */
LL_EXTI_DisableIT_32_63(EXTI_InitStruct->Line_32_63);
LL_EXTI_DisableEvent_32_63(EXTI_InitStruct->Line_32_63);
}
return status;
}
/**
* @brief Set each @ref LL_EXTI_InitTypeDef field to default value.
* @param EXTI_InitStruct Pointer to a @ref LL_EXTI_InitTypeDef structure.
* @retval None
*/
void LL_EXTI_StructInit(LL_EXTI_InitTypeDef *EXTI_InitStruct)
{
EXTI_InitStruct->Line_0_31 = LL_EXTI_LINE_NONE;
EXTI_InitStruct->Line_32_63 = LL_EXTI_LINE_NONE;
EXTI_InitStruct->LineCommand = DISABLE;
EXTI_InitStruct->Mode = LL_EXTI_MODE_IT;
EXTI_InitStruct->Trigger = LL_EXTI_TRIGGER_FALLING;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (EXTI) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@@ -27,229 +27,256 @@ static uint8_t *USBD_Composite_GetOtherSpeedCfgDesc (uint16_t *length);
static uint8_t *USBD_Composite_GetDeviceQualifierDescriptor (uint16_t *length);
#define NUM_INTERFACES 3
#define NUM_CLASSES 3
#if NUM_INTERFACES>2
#if NUM_CLASSES>2
#define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (90 + 8+9 + 4 + 84)
#define NUM_INTERFACES 4
#elif NUM_CLASSES>1
#define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (90 + 84)
#elif NUM_INTERFACES>1
#define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (90)
#define NUM_INTERFACES 2
#else
#define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (41)
#define NUM_INTERFACES 1
#endif
#define HID_INTF_NUM 0
#define CDC_INTF_NUM 1
#define CCID_INTF_NUM 2
#define HID_INTF_NUM 0
#define CCID_INTF_NUM 1
#define CDC_MASTER_INTF_NUM 2
#define CDC_SLAVE_INTF_NUM 3
__ALIGN_BEGIN uint8_t COMPOSITE_CDC_HID_DESCRIPTOR[COMPOSITE_CDC_HID_DESCRIPTOR_SIZE] __ALIGN_END =
{
/*Configuration Descriptor*/
0x09, /* bLength: Configuration Descriptor size */
USB_DESC_TYPE_CONFIGURATION, /* bDescriptorType: Configuration */
COMPOSITE_CDC_HID_DESCRIPTOR_SIZE, /* wTotalLength:no of returned bytes */
0x00,
NUM_INTERFACES, /* bNumInterfaces: 1 interface */
0x01, /* bConfigurationValue: Configuration value */
0x00, /* iConfiguration: Index of string descriptor describing the configuration */
0x80, /* bmAttributes: self powered */
0x32, /* MaxPower 100 mA */
{
/*Configuration Descriptor*/
0x09, /* bLength: Configuration Descriptor size */
USB_DESC_TYPE_CONFIGURATION, /* bDescriptorType: Configuration */
COMPOSITE_CDC_HID_DESCRIPTOR_SIZE, /* wTotalLength:no of returned bytes */
0x00,
NUM_INTERFACES, /* bNumInterfaces */
0x01, /* bConfigurationValue: Configuration value */
0x00, /* iConfiguration: Index of string descriptor describing the configuration */
0x80, /* bmAttributes: self powered */
0x32, /* MaxPower 100 mA */
/*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/* */
/* HID */
/* */
/************** Descriptor of Joystick Mouse interface ****************/
0x09, /*bLength: Interface Descriptor size*/
USB_DESC_TYPE_INTERFACE,/*bDescriptorType: Interface descriptor type*/
HID_INTF_NUM, /*bInterfaceNumber: Number of Interface*/
0x00, /*bAlternateSetting: Alternate setting*/
0x02, /*bNumEndpoints*/
0x03, /*bInterfaceClass: HID*/
0x00, /*bInterfaceSubClass : 1=BOOT, 0=no boot*/
0x00, /*nInterfaceProtocol : 0=none, 1=keyboard, 2=mouse*/
2, /*iInterface: Index of string descriptor*/
/******************** Descriptor of Joystick Mouse HID ********************/
0x09, /*bLength: HID Descriptor size*/
HID_DESCRIPTOR_TYPE, /*bDescriptorType: HID*/
0x11, /*bcdHID: HID Class Spec release number*/
0x01,
0x00, /*bCountryCode: Hardware target country*/
0x01, /*bNumDescriptors: Number of HID class descriptors to follow*/
0x22, /*bDescriptorType*/
HID_FIDO_REPORT_DESC_SIZE,/*wItemLength: Total length of Report descriptor*/
0,
/******************** Descriptor of Mouse endpoint ********************/
0x07, /*bLength: Endpoint Descriptor size*/
USB_DESC_TYPE_ENDPOINT, /*bDescriptorType:*/
HID_EPIN_ADDR, /*bEndpointAddress: Endpoint Address (IN)*/
0x03, /*bmAttributes: Interrupt endpoint*/
HID_EPIN_SIZE, /*wMaxPacketSize: 4 Byte max */
0x00,
HID_BINTERVAL, /*bInterval: Polling Interval */
0x07, /*bLength: Endpoint Descriptor size*/
USB_DESC_TYPE_ENDPOINT, /*bDescriptorType:*/
HID_EPOUT_ADDR, /*bEndpointAddress: Endpoint Address (IN)*/
0x03, /*bmAttributes: Interrupt endpoint*/
HID_EPOUT_SIZE, /*wMaxPacketSize: 4 Byte max */
0x00,
HID_BINTERVAL, /*bInterval: Polling Interval */
/* */
/* HID */
/* */
/************** Descriptor of Joystick Mouse interface ****************/
0x09, /*bLength: Interface Descriptor size*/
USB_DESC_TYPE_INTERFACE, /*bDescriptorType: Interface descriptor type*/
HID_INTF_NUM, /*bInterfaceNumber: Number of Interface*/
0x00, /*bAlternateSetting: Alternate setting*/
0x02, /*bNumEndpoints*/
0x03, /*bInterfaceClass: HID*/
0x00, /*bInterfaceSubClass : 1=BOOT, 0=no boot*/
0x00, /*nInterfaceProtocol : 0=none, 1=keyboard, 2=mouse*/
2, /*iInterface: Index of string descriptor*/
/******************** Descriptor of Joystick Mouse HID ********************/
0x09, /*bLength: HID Descriptor size*/
HID_DESCRIPTOR_TYPE, /*bDescriptorType: HID*/
0x11, /*bcdHID: HID Class Spec release number*/
0x01,
0x00, /*bCountryCode: Hardware target country*/
0x01, /*bNumDescriptors: Number of HID class descriptors to follow*/
0x22, /*bDescriptorType*/
HID_FIDO_REPORT_DESC_SIZE, /*wItemLength: Total length of Report descriptor*/
0,
/******************** Descriptor of Mouse endpoint ********************/
0x07, /*bLength: Endpoint Descriptor size*/
USB_DESC_TYPE_ENDPOINT, /*bDescriptorType:*/
HID_EPIN_ADDR, /*bEndpointAddress: Endpoint Address (IN)*/
0x03, /*bmAttributes: Interrupt endpoint*/
HID_EPIN_SIZE, /*wMaxPacketSize: 4 Byte max */
0x00,
HID_BINTERVAL, /*bInterval: Polling Interval */
0x07, /*bLength: Endpoint Descriptor size*/
USB_DESC_TYPE_ENDPOINT, /*bDescriptorType:*/
HID_EPOUT_ADDR, /*bEndpointAddress: Endpoint Address (IN)*/
0x03, /*bmAttributes: Interrupt endpoint*/
HID_EPOUT_SIZE, /*wMaxPacketSize: 4 Byte max */
0x00,
HID_BINTERVAL, /*bInterval: Polling Interval */
#if NUM_INTERFACES>1
/* */
/* CDC */
/* */
/* CCID Interface Descriptor */
9, /* bLength: Interface Descriptor size */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType: Interface */
CCID_INTF_NUM, /* bInterfaceNumber: CCID Interface */
0, /* Alternate setting for this interface */
3, /* bNumEndpoints: Bulk-IN, Bulk-OUT, Intr-IN */
0x0B, /* CCID class */
0x00, /* CCID subclass */
0x00, /* CCID protocol */
0, /* string index for interface */
/* ICC Descriptor */
54, /* bLength: */
0x21, /* bDescriptorType: USBDESCR_ICC */
0x10, 0x01, /* bcdCCID: revision 1.1 (of CCID) */
0, /* bMaxSlotIndex: */
1, /* bVoltageSupport: 5V-only */
0x02, 0, 0, 0, /* dwProtocols: T=1 */
0xa0, 0x0f, 0, 0, /* dwDefaultClock: 4000 */
0xa0, 0x0f, 0, 0, /* dwMaximumClock: 4000 */
0, /* bNumClockSupported: 0x00 */
0x80, 0x25, 0, 0, /* dwDataRate: 9600 */
0x80, 0x25, 0, 0, /* dwMaxDataRate: 9600 */
0, /* bNumDataRateSupported: 0x00 */
0xfe, 0, 0, 0, /* dwMaxIFSD: 254 */
0, 0, 0, 0, /* dwSynchProtocols: 0 */
0, 0, 0, 0, /* dwMechanical: 0 */
0x7a, 0x04, 0x02, 0x00, /* dwFeatures:
* Short and extended APDU level: 0x40000 ----
* Short APDU level : 0x20000 *
* (ICCD?) : 0x00800 ----
* Automatic IFSD : 0x00400 *
* NAD value other than 0x00 : 0x00200
* Can set ICC in clock stop : 0x00100
* Automatic PPS CUR : 0x00080
* Automatic PPS PROP : 0x00040 *
* Auto baud rate change : 0x00020 *
* Auto clock change : 0x00010 *
* Auto voltage selection : 0x00008 *
* Auto activaction of ICC : 0x00004
* Automatic conf. based on ATR : 0x00002 *
*/
0x0f, 0x01, 0, 0, /* dwMaxCCIDMessageLength: 271 */
0xff, /* bClassGetResponse: 0xff */
0x00, /* bClassEnvelope: 0 */
0, 0, /* wLCDLayout: 0 */
0, /* bPinSupport: No PIN pad */
/*Interface Descriptor */
0x09, /* bLength: Interface Descriptor size */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType: Interface */
/* Interface descriptor type */
/*!*/ CDC_INTF_NUM, /* bInterfaceNumber: Number of Interface */
0x00, /* bAlternateSetting: Alternate setting */
0x03, /* bNumEndpoints: 3 endpoints used */
0x02, /* bInterfaceClass: Communication Interface Class */
0x02, /* bInterfaceSubClass: Abstract Control Model */
0x00, /* bInterfaceProtocol: Common AT commands */
0x00, /* iInterface: */
/*Header Functional Descriptor*/
0x05, /* bLength: Endpoint Descriptor size */
0x24, /* bDescriptorType: CS_INTERFACE */
0x00, /* bDescriptorSubtype: Header Func Desc */
0x10, /* bcdCDC: spec release number */
0x01,
/*Call Management Functional Descriptor*/
0x05, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x01, /* bDescriptorSubtype: Call Management Func Desc */
0x00, /* bmCapabilities: D0+D1 */
/*!*/ CDC_INTF_NUM, /* bDataInterface: 0 */
/*ACM Functional Descriptor*/
0x04, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x02, /* bDescriptorSubtype: Abstract Control Management desc */
0x02, /* bmCapabilities */
/*Union Functional Descriptor*/
0x05, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x06, /* bDescriptorSubtype: Union func desc */
/*!*/ CDC_INTF_NUM, /* bMasterInterface: Communication class interface */
/*!*/ CDC_INTF_NUM, /* bSlaveInterface0: Data Class Interface */
/*Endpoint 2 Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_CMD_EP, /* bEndpointAddress */
0x03, /* bmAttributes: Interrupt */
LOBYTE(CDC_CMD_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_CMD_PACKET_SIZE),
0x10, /* bInterval: */
/*Endpoint OUT Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_OUT_EP, /* bEndpointAddress */
0x02, /* bmAttributes: Bulk */
LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
0x00, /* bInterval: ignore for Bulk transfer */
/*Endpoint IN Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_IN_EP, /* bEndpointAddress */
0x02, /* bmAttributes: Bulk */
LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
0x00, /* bInterval: ignore for Bulk transfer */
1, /* bMaxCCIDBusySlots: 1 */
/*Endpoint IN1 Descriptor*/
7, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CCID_IN_EP, /* bEndpointAddress: (IN1) */
0x02, /* bmAttributes: Bulk */
HID_FIDO_REPORT_DESC_SIZE, 0x00, /* wMaxPacketSize: */
0x00, /* bInterval */
/*Endpoint OUT1 Descriptor*/
7, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CCID_OUT_EP, /* bEndpointAddress: (OUT1) */
0x02, /* bmAttributes: Bulk */
HID_FIDO_REPORT_DESC_SIZE, 0x00, /* wMaxPacketSize: */
0x00, /* bInterval */
/*Endpoint IN2 Descriptor*/
7, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CCID_CMD_EP, /* bEndpointAddress: (IN2) */
0x03, /* bmAttributes: Interrupt */
0x04, 0x00, /* wMaxPacketSize: 4 */
0xFF, /* bInterval (255ms) */
#endif
#if NUM_INTERFACES>2
/* CCID Interface Descriptor */
9, /* bLength: Interface Descriptor size */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType: Interface */
CCID_INTF_NUM, /* bInterfaceNumber: CCID Interface */
0, /* Alternate setting for this interface */
3, /* bNumEndpoints: Bulk-IN, Bulk-OUT, Intr-IN */
0x0B, /* CCID class */
0x00, /* CCID subclass */
0x00, /* CCID protocol */
0, /* string index for interface */
#if NUM_INTERFACES > 2
/* ICC Descriptor */
54, /* bLength: */
0x21, /* bDescriptorType: USBDESCR_ICC */
0x10, 0x01, /* bcdCCID: revision 1.1 (of CCID) */
0, /* bMaxSlotIndex: */
1, /* bVoltageSupport: 5V-only */
0x02, 0, 0, 0, /* dwProtocols: T=1 */
0xa0, 0x0f, 0, 0, /* dwDefaultClock: 4000 */
0xa0, 0x0f, 0, 0, /* dwMaximumClock: 4000 */
0, /* bNumClockSupported: 0x00 */
0x80, 0x25, 0, 0, /* dwDataRate: 9600 */
0x80, 0x25, 0, 0, /* dwMaxDataRate: 9600 */
0, /* bNumDataRateSupported: 0x00 */
0xfe, 0, 0, 0, /* dwMaxIFSD: 254 */
0, 0, 0, 0, /* dwSynchProtocols: 0 */
0, 0, 0, 0, /* dwMechanical: 0 */
0x7a, 0x04, 0x02, 0x00, /* dwFeatures:
* Short and extended APDU level: 0x40000 ----
* Short APDU level : 0x20000 *
* (ICCD?) : 0x00800 ----
* Automatic IFSD : 0x00400 *
* NAD value other than 0x00 : 0x00200
* Can set ICC in clock stop : 0x00100
* Automatic PPS CUR : 0x00080
* Automatic PPS PROP : 0x00040 *
* Auto baud rate change : 0x00020 *
* Auto clock change : 0x00010 *
* Auto voltage selection : 0x00008 *
* Auto activaction of ICC : 0x00004
* Automatic conf. based on ATR : 0x00002 *
*/
0x0f, 0x01, 0, 0, /* dwMaxCCIDMessageLength: 271 */
0xff, /* bClassGetResponse: 0xff */
0x00, /* bClassEnvelope: 0 */
0, 0, /* wLCDLayout: 0 */
0, /* bPinSupport: No PIN pad */
/* */
/* CDC */
/* */
// This "IAD" is needed for Windows since it ignores the standard Union Functional Descriptor
0x08, // bLength
0x0B, // IAD type
CDC_MASTER_INTF_NUM, // First interface
CDC_SLAVE_INTF_NUM, // Next interface
0x02, // bInterfaceClass of the first interface
0x02, // bInterfaceSubClass of the first interface
0x00, // bInterfaceProtocol of the first interface
0x00, // Interface string index
1, /* bMaxCCIDBusySlots: 1 */
/*Endpoint IN1 Descriptor*/
7, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CCID_IN_EP, /* bEndpointAddress: (IN1) */
0x02, /* bmAttributes: Bulk */
HID_FIDO_REPORT_DESC_SIZE, 0x00, /* wMaxPacketSize: */
0x00, /* bInterval */
/*Endpoint OUT1 Descriptor*/
7, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CCID_OUT_EP, /* bEndpointAddress: (OUT1) */
0x02, /* bmAttributes: Bulk */
HID_FIDO_REPORT_DESC_SIZE, 0x00, /* wMaxPacketSize: */
0x00, /* bInterval */
/*Endpoint IN2 Descriptor*/
7, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CCID_CMD_EP, /* bEndpointAddress: (IN2) */
0x03, /* bmAttributes: Interrupt */
0x04, 0x00, /* wMaxPacketSize: 4 */
0xFF, /* bInterval (255ms) */
/*Interface Descriptor */
0x09, /* bLength: Interface Descriptor size */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType: Interface */
/* Interface descriptor type */
/*!*/ CDC_MASTER_INTF_NUM, /* bInterfaceNumber: Number of Interface */
0x00, /* bAlternateSetting: Alternate setting */
0x01, /* bNumEndpoints: 1 endpoint used */
0x02, /* bInterfaceClass: Communication Interface Class */
0x02, /* bInterfaceSubClass: Abstract Control Model */
0x00, /* bInterfaceProtocol: Common AT commands */
0x00, /* iInterface: */
/*Header Functional Descriptor*/
0x05, /* bLength: Endpoint Descriptor size */
0x24, /* bDescriptorType: CS_INTERFACE */
0x00, /* bDescriptorSubtype: Header Func Desc */
0x10, /* bcdCDC: spec release number */
0x01,
/*Call Management Functional Descriptor*/
0x05, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x01, /* bDescriptorSubtype: Call Management Func Desc */
0x00, /* bmCapabilities: D0+D1 */
/*!*/ CDC_SLAVE_INTF_NUM, /* bDataInterface: 0 */
/*ACM Functional Descriptor*/
0x04, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x02, /* bDescriptorSubtype: Abstract Control Management desc */
0x02, /* bmCapabilities */
/*Union Functional Descriptor*/
0x05, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x06, /* bDescriptorSubtype: Union func desc */
/*!*/ CDC_MASTER_INTF_NUM, /* bMasterInterface: Communication class interface */
/*!*/ CDC_SLAVE_INTF_NUM, /* bSlaveInterface0: Data Class Interface */
/* Control Endpoint Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_CMD_EP, /* bEndpointAddress */
0x03, /* bmAttributes: Interrupt */
LOBYTE(CDC_CMD_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_CMD_PACKET_SIZE),
0x10, /* bInterval: */
/* Interface descriptor */
0x09, /* bLength */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType */
CDC_SLAVE_INTF_NUM, /* bInterfaceNumber */
0x00, /* bAlternateSetting */
0x02, /* bNumEndpoints */
0x0A, /* bInterfaceClass: Communication class data */
0x00, /* bInterfaceSubClass */
0x00, /* bInterfaceProtocol */
0x00,
/*Endpoint OUT Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_OUT_EP, /* bEndpointAddress */
0x02, /* bmAttributes: Bulk */
LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
0x00, /* bInterval: ignore for Bulk transfer */
/*Endpoint IN Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_IN_EP, /* bEndpointAddress */
0x02, /* bmAttributes: Bulk */
LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
0x00, /* bInterval: ignore for Bulk transfer */
4, /* Descriptor size */
3, /* Descriptor type */
0x09,
0x04,
#endif
};
USBD_ClassTypeDef USBD_Composite =
{
USBD_Composite_Init,
@@ -274,21 +301,31 @@ int in_endpoint_to_class[MAX_ENDPOINTS];
int out_endpoint_to_class[MAX_ENDPOINTS];
void USBD_Composite_Set_Classes(USBD_ClassTypeDef *class0, USBD_ClassTypeDef *class1, USBD_ClassTypeDef *class2)
void USBD_Composite_Set_Classes(USBD_ClassTypeDef *hid_class, USBD_ClassTypeDef *ccid_class, USBD_ClassTypeDef *cdc_class)) {
USBD_Classes[0] = hid_class;
USBD_Classes[1] = ccid_class;
USBD_Classes[2] = cdc_class;
}
static USBD_ClassTypeDef * getClass(uint8_t index)
{
//Y
USBD_Classes[0] = class0;
USBD_Classes[1] = class1;
USBD_Classes[2] = class2;
//Y
switch(index)
{
case HID_INTF_NUM:
return USBD_Classes[0];
case CCID_INTF_NUM:
return USBD_Classes[2];
case CDC_MASTER_INTF_NUM:
case CDC_SLAVE_INTF_NUM:
return USBD_Classes[3];
}
return NULL;
}
static uint8_t USBD_Composite_Init (USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
int i;
//N
for(i = 0; i < NUM_INTERFACES; i++) {
for(i = 0; i < NUM_CLASSES; i++) {
if (USBD_Classes[i]->Init(pdev, cfgidx) != USBD_OK) {
return USBD_FAIL;
}
@@ -299,7 +336,7 @@ static uint8_t USBD_Composite_Init (USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
static uint8_t USBD_Composite_DeInit (USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
int i;
for(i = 0; i < NUM_INTERFACES; i++) {
for(i = 0; i < NUM_CLASSES; i++) {
if (USBD_Classes[i]->DeInit(pdev, cfgidx) != USBD_OK) {
return USBD_FAIL;
}
@@ -310,11 +347,13 @@ static uint8_t USBD_Composite_DeInit (USBD_HandleTypeDef *pdev, uint8_t cfgidx)
static uint8_t USBD_Composite_Setup (USBD_HandleTypeDef *pdev, USBD_SetupReqTypedef *req) {
int i;
//N
USBD_ClassTypeDef * device_class;
device_class = getClass(req->wIndex);
switch (req->bmRequest & USB_REQ_TYPE_MASK) {
case USB_REQ_TYPE_CLASS :
if (req->wIndex < NUM_INTERFACES)
return USBD_Classes[req->wIndex]->Setup(pdev, req);
if (device_class != NULL)
return device_class->Setup(pdev, req);
else
return USBD_FAIL;
@@ -323,7 +362,7 @@ static uint8_t USBD_Composite_Setup (USBD_HandleTypeDef *pdev, USBD_SetupReqType
switch (req->bRequest) {
case USB_REQ_GET_DESCRIPTOR :
for(i = 0; i < NUM_INTERFACES; i++) {
for(i = 0; i < NUM_CLASSES; i++) {
if (USBD_Classes[i]->Setup(pdev, req) != USBD_OK) {
return USBD_FAIL;
}
@@ -333,8 +372,8 @@ static uint8_t USBD_Composite_Setup (USBD_HandleTypeDef *pdev, USBD_SetupReqType
case USB_REQ_GET_INTERFACE :
case USB_REQ_SET_INTERFACE :
if (req->wIndex < NUM_INTERFACES)
return USBD_Classes[req->wIndex]->Setup(pdev, req);
if (device_class != NULL)
return device_class->Setup(pdev, req);
else
return USBD_FAIL;
}
@@ -361,7 +400,7 @@ static uint8_t USBD_Composite_DataOut (USBD_HandleTypeDef *pdev, uint8_t epnum)
static uint8_t USBD_Composite_EP0_RxReady (USBD_HandleTypeDef *pdev) {
int i;
for(i = 0; i < NUM_INTERFACES; i++) {
for(i = 0; i < NUM_CLASSES; i++) {
if (USBD_Classes[i]->EP0_RxReady != NULL) {
if (USBD_Classes[i]->EP0_RxReady(pdev) != USBD_OK) {
return USBD_FAIL;

View File

@@ -342,6 +342,7 @@ static uint8_t USBD_HID_Setup (USBD_HandleTypeDef *pdev,
uint8_t *pbuf = NULL;
uint16_t status_info = 0U;
USBD_StatusTypeDef ret = USBD_OK;
req->wLength = req->wLength & 0x7f;
switch (req->bmRequest & USB_REQ_TYPE_MASK)
{
@@ -386,6 +387,7 @@ static uint8_t USBD_HID_Setup (USBD_HandleTypeDef *pdev,
break;
case USB_REQ_GET_DESCRIPTOR:
req->wLength = req->wLength & 0x7f;
if(req->wValue >> 8 == HID_REPORT_DESC)
{
len = MIN(HID_FIDO_REPORT_DESC_SIZE , req->wLength);

View File

@@ -31,7 +31,7 @@
// #define DISABLE_CTAPHID_WINK
// #define DISABLE_CTAPHID_CBOR
#define ENABLE_SERIAL_PRINTING
// #define ENABLE_SERIAL_PRINTING
#if defined(SOLO_HACKER)
#define SOLO_PRODUCT_NAME "Solo Hacker " SOLO_VERSION

View File

@@ -157,6 +157,11 @@ void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac)
key = master_secret;
klen = sizeof(master_secret)/2;
}
else if (key == CRYPTO_TRANSPORT_KEY2)
{
key = transport_secret;
klen = 32;
}
if(klen > 64)
@@ -277,6 +282,11 @@ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8
memmove(x,pubkey,32);
memmove(y,pubkey+32,32);
}
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len)
{

View File

@@ -38,11 +38,14 @@ void wait_for_usb_tether();
uint32_t __90_ms = 0;
uint32_t __last_button_press_time = 0;
uint32_t __last_button_bounce_time = 0;
uint32_t __device_status = 0;
uint32_t __last_update = 0;
extern PCD_HandleTypeDef hpcd;
static int _NFC_status = 0;
static bool isLowFreq = 0;
static bool _RequestComeFromNFC = false;
// #define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN))
static int is_physical_button_pressed()
@@ -57,6 +60,10 @@ static int is_touch_button_pressed()
int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed;
void request_from_nfc(bool request_active) {
_RequestComeFromNFC = request_active;
}
// Timer6 overflow handler. happens every ~90ms.
void TIM6_DAC_IRQHandler()
{
@@ -70,6 +77,21 @@ void TIM6_DAC_IRQHandler()
ctaphid_update_status(__device_status);
}
}
if (is_touch_button_pressed == IS_BUTTON_PRESSED)
{
if (IS_BUTTON_PRESSED())
{
// Only allow 1 press per 25 ms.
if ((millis() - __last_button_bounce_time) > 25)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
}
}
#ifndef IS_BOOTLOADER
// NFC sending WTX if needs
if (device_is_nfc() == NFC_IS_ACTIVE)
@@ -79,6 +101,21 @@ void TIM6_DAC_IRQHandler()
#endif
}
// Interrupt on rising edge of button (button released)
void EXTI0_IRQHandler(void)
{
EXTI->PR1 = EXTI->PR1;
if (is_physical_button_pressed == IS_BUTTON_PRESSED)
{
// Only allow 1 press per 25 ms.
if ((millis() - __last_button_bounce_time) > 25)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
}
}
// Global USB interrupt handler
void USB_IRQHandler(void)
{
@@ -488,13 +525,49 @@ static int handle_packets()
return 0;
}
static int wait_for_button_activate(uint32_t wait)
{
int ret;
uint32_t start = millis();
do
{
if ((start + wait) < millis())
{
return 0;
}
delay(1);
ret = handle_packets();
if (ret)
return ret;
} while (!IS_BUTTON_PRESSED());
return 0;
}
static int wait_for_button_release(uint32_t wait)
{
int ret;
uint32_t start = millis();
do
{
if ((start + wait) < millis())
{
return 0;
}
delay(1);
ret = handle_packets();
if (ret)
return ret;
} while (IS_BUTTON_PRESSED());
return 0;
}
int ctap_user_presence_test(uint32_t up_delay)
{
int ret;
if (device_is_nfc() == NFC_IS_ACTIVE)
if (device_is_nfc() == NFC_IS_ACTIVE || _RequestComeFromNFC)
{
return 1;
}
#if SKIP_BUTTON_CHECK_WITH_DELAY
int i=500;
while(i--)
@@ -507,53 +580,41 @@ int ctap_user_presence_test(uint32_t up_delay)
#elif SKIP_BUTTON_CHECK_FAST
delay(2);
ret = handle_packets();
if (ret) return ret;
if (ret)
return ret;
goto done;
#endif
uint32_t t1 = millis();
// If button was pressed within last [2] seconds, succeed.
if (__last_button_press_time && (millis() - __last_button_press_time < 2000))
{
goto done;
}
// Set LED status and wait.
led_rgb(0xff3520);
if (IS_BUTTON_PRESSED == is_touch_button_pressed)
{
// Wait for user to release touch button if it's already pressed
while (IS_BUTTON_PRESSED())
{
if (t1 + up_delay < millis())
{
printf1(TAG_GEN,"Button not pressed\n");
goto fail;
}
ret = handle_packets();
if (ret) return ret;
}
}
t1 = millis();
do
{
if (t1 + up_delay < millis())
{
goto fail;
}
delay(1);
ret = handle_packets();
// Block and wait for some time.
ret = wait_for_button_activate(up_delay);
if (ret) return ret;
ret = wait_for_button_release(up_delay);
if (ret) return ret;
}
while (! IS_BUTTON_PRESSED());
led_rgb(0x001040);
delay(50);
// If button was pressed within last [2] seconds, succeed.
if (__last_button_press_time && (millis() - __last_button_press_time < 2000))
{
goto done;
}
return 0;
#if SKIP_BUTTON_CHECK_WITH_DELAY || SKIP_BUTTON_CHECK_FAST
done:
#endif
return 1;
ret = wait_for_button_release(up_delay);
__last_button_press_time = 0;
return 1;
fail:
return 0;
}
int ctap_generate_rng(uint8_t * dst, size_t num)

View File

@@ -20,6 +20,7 @@
#include "stm32l4xx_ll_rng.h"
#include "stm32l4xx_ll_spi.h"
#include "stm32l4xx_ll_usb.h"
#include "stm32l4xx_ll_exti.h"
#include "stm32l4xx_hal_pcd.h"
#include "stm32l4xx_hal.h"
@@ -851,19 +852,17 @@ void init_gpio(void)
LL_GPIO_SetPinMode(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinPull(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_PULL_UP);
#ifdef SOLO_AMS_IRQ_PORT
// SAVE POWER
// LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOC);
// /**/
// LL_GPIO_InitTypeDef GPIO_InitStruct;
// GPIO_InitStruct.Pin = SOLO_AMS_IRQ_PIN;
// GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
// GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
// LL_GPIO_Init(SOLO_AMS_IRQ_PORT, &GPIO_InitStruct);
//
//
// LL_GPIO_SetPinMode(SOLO_AMS_IRQ_PORT,SOLO_AMS_IRQ_PIN,LL_GPIO_MODE_INPUT);
// LL_GPIO_SetPinPull(SOLO_AMS_IRQ_PORT,SOLO_AMS_IRQ_PIN,LL_GPIO_PULL_UP);
#ifndef IS_BOOTLOADER
LL_SYSCFG_SetEXTISource(LL_SYSCFG_EXTI_PORTA, LL_SYSCFG_EXTI_LINE0);
LL_EXTI_InitTypeDef EXTI_InitStruct;
EXTI_InitStruct.Line_0_31 = LL_EXTI_LINE_0; // GPIOA_0
EXTI_InitStruct.Line_32_63 = LL_EXTI_LINE_NONE;
EXTI_InitStruct.LineCommand = ENABLE;
EXTI_InitStruct.Mode = LL_EXTI_MODE_IT;
EXTI_InitStruct.Trigger = LL_EXTI_TRIGGER_RISING;
LL_EXTI_Init(&EXTI_InitStruct);
NVIC_EnableIRQ(EXTI0_IRQn);
#endif
}

View File

@@ -14,6 +14,20 @@
#define IS_IRQ_ACTIVE() (1 == (LL_GPIO_ReadInputPort(SOLO_AMS_IRQ_PORT) & SOLO_AMS_IRQ_PIN))
// chain buffer for 61XX responses
static uint8_t resp_chain_buffer[2048] = {0};
static size_t resp_chain_buffer_len = 0;
uint8_t p14443_block_offset(uint8_t pcb) {
uint8_t offset = 1;
// NAD following
if (pcb & 0x04) offset++;
// CID following
if (pcb & 0x08) offset++;
return offset;
}
// Capability container
const CAPABILITY_CONTAINER NFC_CC = {
.cclen_hi = 0x00, .cclen_lo = 0x0f,
@@ -82,19 +96,27 @@ int nfc_init()
return NFC_IS_NA;
}
static uint8_t gl_int0 = 0;
void process_int0(uint8_t int0)
{
gl_int0 = int0;
}
bool ams_wait_for_tx(uint32_t timeout_ms)
{
if (gl_int0 & AMS_INT_TXE) {
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
process_int0(int0);
return true;
}
uint32_t tstart = millis();
while (tstart + timeout_ms > millis())
{
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
if (int0) process_int0(int0);
if (int0 & AMS_INT_TXE)
process_int0(int0);
if (int0 & AMS_INT_TXE || int0 & AMS_INT_RXE)
return true;
delay(1);
@@ -111,7 +133,13 @@ bool ams_receive_with_timeout(uint32_t timeout_ms, uint8_t * data, int maxlen, i
uint32_t tstart = millis();
while (tstart + timeout_ms > millis())
{
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
uint8_t int0 = 0;
if (gl_int0 & AMS_INT_RXE) {
int0 = gl_int0;
} else {
int0 = ams_read_reg(AMS_REG_INT0);
process_int0(int0);
}
uint8_t buffer_status2 = ams_read_reg(AMS_REG_BUF2);
if (buffer_status2 && (int0 & AMS_INT_RXE))
@@ -161,14 +189,25 @@ bool nfc_write_response_ex(uint8_t req0, uint8_t * data, uint8_t len, uint16_t r
if (len > 32 - 3)
return false;
res[0] = NFC_CMD_IBLOCK | (req0 & 3);
res[0] = NFC_CMD_IBLOCK | (req0 & 0x0f);
res[1] = 0;
res[2] = 0;
uint8_t block_offset = p14443_block_offset(req0);
if (len && data)
memcpy(&res[1], data, len);
memcpy(&res[block_offset], data, len);
res[len + 1] = resp >> 8;
res[len + 2] = resp & 0xff;
nfc_write_frame(res, 3 + len);
res[len + block_offset + 0] = resp >> 8;
res[len + block_offset + 1] = resp & 0xff;
nfc_write_frame(res, block_offset + len + 2);
if (!ams_wait_for_tx(1))
{
printf1(TAG_NFC, "TX resp timeout. len: %d \r\n", len);
return false;
}
return true;
}
@@ -178,25 +217,28 @@ bool nfc_write_response(uint8_t req0, uint16_t resp)
return nfc_write_response_ex(req0, NULL, 0, resp);
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
void nfc_write_response_chaining_plain(uint8_t req0, uint8_t * data, int len)
{
uint8_t res[32 + 2];
int sendlen = 0;
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 3);
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 0x0f);
uint8_t block_offset = p14443_block_offset(req0);
if (len <= 31)
{
uint8_t res[32] = {0};
res[0] = iBlock;
res[0] = iBlock;
if (len && data)
memcpy(&res[1], data, len);
nfc_write_frame(res, len + 1);
memcpy(&res[block_offset], data, len);
nfc_write_frame(res, len + block_offset);
} else {
int sendlen = 0;
do {
// transmit I block
int vlen = MIN(31, len - sendlen);
res[0] = iBlock;
memcpy(&res[1], &data[sendlen], vlen);
int vlen = MIN(32 - block_offset, len - sendlen);
res[0] = iBlock;
res[1] = 0;
res[2] = 0;
memcpy(&res[block_offset], &data[sendlen], vlen);
// if not a last block
if (vlen + sendlen < len)
@@ -205,15 +247,15 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
}
// send data
nfc_write_frame(res, vlen + 1);
nfc_write_frame(res, vlen + block_offset);
sendlen += vlen;
// wait for transmit (32 bytes aprox 2,5ms)
// if (!ams_wait_for_tx(10))
// {
// printf1(TAG_NFC, "TX timeout. slen: %d \r\n", sendlen);
// break;
// }
if (!ams_wait_for_tx(5))
{
printf1(TAG_NFC, "TX timeout. slen: %d \r\n", sendlen);
break;
}
// if needs to receive R block (not a last block)
if (res[0] & 0x10)
@@ -226,9 +268,10 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
break;
}
if (reclen != 1)
uint8_t rblock_offset = p14443_block_offset(recbuf[0]);
if (reclen != rblock_offset)
{
printf1(TAG_NFC, "R block length error. len: %d. %d/%d \r\n", reclen,sendlen,len);
printf1(TAG_NFC, "R block length error. len: %d. %d/%d \r\n", reclen, sendlen, len);
dump_hex1(TAG_NFC, recbuf, reclen);
break;
}
@@ -245,6 +288,37 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
}
}
void append_get_response(uint8_t *data, size_t rest_len)
{
data[0] = 0x61;
data[1] = 0x00;
if (rest_len <= 0xff)
data[1] = rest_len & 0xff;
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len, bool extapdu)
{
resp_chain_buffer_len = 0;
// if we dont need to break data to parts that need to exchange via GET RESPONSE command (ISO 7816-4 7.1.3)
if (len <= 255 || extapdu)
{
nfc_write_response_chaining_plain(req0, data, len);
} else {
size_t pcklen = MIN(253, len);
resp_chain_buffer_len = len - pcklen;
printf1(TAG_NFC, "61XX chaining %d/%d.\r\n", pcklen, resp_chain_buffer_len);
memmove(resp_chain_buffer, data, pcklen);
append_get_response(&resp_chain_buffer[pcklen], resp_chain_buffer_len);
nfc_write_response_chaining_plain(req0, resp_chain_buffer, pcklen + 2); // 2 for 61XX
// put the rest data into chain buffer
memmove(resp_chain_buffer, &data[pcklen], resp_chain_buffer_len);
}
}
// WTX on/off:
// sends/receives WTX frame to reader every `WTX_time` time in ms
// works via timer interrupts
@@ -297,7 +371,7 @@ bool WTX_off()
void WTX_timer_exec()
{
// condition: (timer on) or (not expired[300ms])
if ((WTX_timer <= 0) || WTX_timer + 300 > millis())
if ((WTX_timer == 0) || WTX_timer + 300 > millis())
return;
WTX_process(10);
@@ -308,12 +382,12 @@ void WTX_timer_exec()
// read timeout must be 10 ms to call from interrupt
bool WTX_process(int read_timeout)
{
uint8_t wtx[] = {0xf2, 0x01};
if (WTX_fail)
return false;
if (!WTX_sent)
{
uint8_t wtx[] = {0xf2, 0x01};
nfc_write_frame(wtx, sizeof(wtx));
WTX_sent = true;
return true;
@@ -371,39 +445,72 @@ int answer_rats(uint8_t parameter)
nfc_write_frame(res, sizeof(res));
ams_wait_for_tx(10);
if (!ams_wait_for_tx(10))
{
printf1(TAG_NFC, "RATS TX timeout.\r\n");
ams_write_command(AMS_CMD_DEFAULT);
return 1;
}
return 0;
}
void rblock_acknowledge()
void rblock_acknowledge(uint8_t req0, bool ack)
{
uint8_t buf[32];
uint8_t buf[32] = {0};
uint8_t block_offset = p14443_block_offset(req0);
NFC_STATE.block_num = !NFC_STATE.block_num;
buf[0] = NFC_CMD_RBLOCK | NFC_STATE.block_num;
nfc_write_frame(buf,1);
buf[0] = NFC_CMD_RBLOCK | (req0 & 0x0f);
if (ack)
buf[0] |= NFC_CMD_RBLOCK_ACK;
nfc_write_frame(buf, block_offset);
}
// international AID = RID:PIX
// RID length == 5 bytes
// usually aid length must be between 5 and 16 bytes
int applet_cmp(uint8_t * aid, int len, uint8_t * const_aid, int const_len)
{
if (len > const_len)
return 10;
// if international AID
if ((const_aid[0] & 0xf0) == 0xa0)
{
if (len < 5)
return 11;
return memcmp(aid, const_aid, MIN(len, const_len));
} else {
if (len != const_len)
return 11;
return memcmp(aid, const_aid, const_len);
}
}
// Selects application. Returns 1 if success, 0 otherwise
int select_applet(uint8_t * aid, int len)
{
if (memcmp(aid,AID_FIDO,sizeof(AID_FIDO)) == 0)
if (applet_cmp(aid, len, (uint8_t *)AID_FIDO, sizeof(AID_FIDO) - 1) == 0)
{
NFC_STATE.selected_applet = APP_FIDO;
return APP_FIDO;
}
else if (memcmp(aid,AID_NDEF_TYPE_4,sizeof(AID_NDEF_TYPE_4)) == 0)
else if (applet_cmp(aid, len, (uint8_t *)AID_NDEF_TYPE_4, sizeof(AID_NDEF_TYPE_4) - 1) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TYPE_4;
return APP_NDEF_TYPE_4;
}
else if (memcmp(aid,AID_CAPABILITY_CONTAINER,sizeof(AID_CAPABILITY_CONTAINER)) == 0)
else if (applet_cmp(aid, len, (uint8_t *)AID_CAPABILITY_CONTAINER, sizeof(AID_CAPABILITY_CONTAINER) - 1) == 0)
{
NFC_STATE.selected_applet = APP_CAPABILITY_CONTAINER;
return APP_CAPABILITY_CONTAINER;
}
else if (memcmp(aid,AID_NDEF_TAG,sizeof(AID_NDEF_TAG)) == 0)
else if (applet_cmp(aid, len, (uint8_t *)AID_NDEF_TAG, sizeof(AID_NDEF_TAG) - 1) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TAG;
return APP_NDEF_TAG;
@@ -413,25 +520,80 @@ int select_applet(uint8_t * aid, int len)
void nfc_process_iblock(uint8_t * buf, int len)
{
APDU_HEADER * apdu = (APDU_HEADER *)(buf + 1);
uint8_t * payload = buf + 1 + 5;
uint8_t plen = apdu->lc;
int selected;
CTAP_RESPONSE ctap_resp;
int status;
uint16_t reslen;
printf1(TAG_NFC,"Iblock: ");
dump_hex1(TAG_NFC, buf, len);
uint8_t block_offset = p14443_block_offset(buf[0]);
APDU_STRUCT apdu;
if (apdu_decode(buf + block_offset, len - block_offset, &apdu)) {
printf1(TAG_NFC,"apdu decode error\r\n");
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
return;
}
printf1(TAG_NFC,"apdu ok. %scase=%02x cla=%02x ins=%02x p1=%02x p2=%02x lc=%d le=%d\r\n",
apdu.extended_apdu ? "[e]":"", apdu.case_type, apdu.cla, apdu.ins, apdu.p1, apdu.p2, apdu.lc, apdu.le);
// check CLA
if (apdu.cla != 0x00 && apdu.cla != 0x80) {
printf1(TAG_NFC, "Unknown CLA %02x\r\n", apdu.cla);
nfc_write_response(buf[0], SW_CLA_INVALID);
return;
}
// TODO this needs to be organized better
switch(apdu->ins)
switch(apdu.ins)
{
case APDU_INS_SELECT:
if (plen > len - 6)
// ISO 7816. 7.1 GET RESPONSE command
case APDU_GET_RESPONSE:
if (apdu.p1 != 0x00 || apdu.p2 != 0x00)
{
printf1(TAG_ERR, "Truncating APDU length %d\r\n", apdu->lc);
plen = len-6;
nfc_write_response(buf[0], SW_INCORRECT_P1P2);
printf1(TAG_NFC, "P1 or P2 error\r\n");
return;
}
// too many bytes needs. 0x00 and 0x100 - any length
if (apdu.le != 0 && apdu.le != 0x100 && apdu.le > resp_chain_buffer_len)
{
uint16_t wlresp = SW_WRONG_LENGTH; // here can be 6700, 6C00, 6FXX. but the most standard way - 67XX or 6700
if (resp_chain_buffer_len <= 0xff)
wlresp += resp_chain_buffer_len & 0xff;
nfc_write_response(buf[0], wlresp);
printf1(TAG_NFC, "buffer length less than requesteds\r\n");
return;
}
// create temporary packet
uint8_t pck[255] = {0};
size_t pcklen = 253;
if (apdu.le)
pcklen = apdu.le;
if (pcklen > resp_chain_buffer_len)
pcklen = resp_chain_buffer_len;
printf1(TAG_NFC, "GET RESPONSE. pck len: %d buffer len: %d\r\n", pcklen, resp_chain_buffer_len);
// create packet and add 61XX there if we have another portion(s) of data
memmove(pck, resp_chain_buffer, pcklen);
size_t dlen = 0;
if (resp_chain_buffer_len - pcklen)
{
append_get_response(&pck[pcklen], resp_chain_buffer_len - pcklen);
dlen = 2;
}
// send
nfc_write_response_chaining_plain(buf[0], pck, pcklen + dlen); // dlen for 61XX
// shift the buffer
resp_chain_buffer_len -= pcklen;
memmove(resp_chain_buffer, &resp_chain_buffer[pcklen], resp_chain_buffer_len);
break;
case APDU_INS_SELECT:
// if (apdu->p1 == 0 && apdu->p2 == 0x0c)
// {
// printf1(TAG_NFC,"Select NDEF\r\n");
@@ -446,14 +608,9 @@ void nfc_process_iblock(uint8_t * buf, int len)
// }
// else
{
selected = select_applet(payload, plen);
selected = select_applet(apdu.data, apdu.lc);
if (selected == APP_FIDO)
{
// block = buf[0] & 1;
// block = NFC_STATE.block_num;
// block = !block;
// NFC_STATE.block_num = block;
// NFC_STATE.block_num = block;
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
printf1(TAG_NFC, "FIDO applet selected.\r\n");
}
@@ -465,7 +622,7 @@ void nfc_process_iblock(uint8_t * buf, int len)
else
{
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected\r\n"); dump_hex1(TAG_NFC,payload, plen);
printf1(TAG_NFC, "NOT selected "); dump_hex1(TAG_NFC, apdu.data, apdu.lc);
}
}
break;
@@ -478,7 +635,8 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F GetVersion command.\r\n");
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length, apdu.extended_apdu);
break;
case APDU_FIDO_U2F_REGISTER:
@@ -489,9 +647,9 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F Register command.\r\n");
if (plen != 64)
if (apdu.lc != 64)
{
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", plen);
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", apdu.lc);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
@@ -502,19 +660,15 @@ void nfc_process_iblock(uint8_t * buf, int len)
// WTX_on(WTX_TIME_DEFAULT);
// SystemClock_Config_LF32();
// delay(300);
if (device_is_nfc()) device_set_clock_rate(DEVICE_LOW_POWER_FAST);;
u2f_request_nfc(&buf[1], len, &ctap_resp);
if (device_is_nfc()) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);;
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register P2 took %d\r\n", timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
// printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length, apdu.extended_apdu);
printf1(TAG_NFC,"U2F Register answered %d (took %d)\r\n", millis(), timestamp());
break;
@@ -527,41 +681,43 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F Authenticate command.\r\n");
if (plen != 64 + 1 + buf[6 + 64])
if (apdu.lc != 64 + 1 + apdu.data[64])
{
delay(5);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", plen, buf[6 + 64]);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", apdu.lc, apdu.data[64]);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
timestamp();
// WTX_on(WTX_TIME_DEFAULT);
u2f_request_nfc(&buf[1], len, &ctap_resp);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Authenticate processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length, apdu.extended_apdu);
printf1(TAG_NFC,"U2F Authenticate answered %d (took %d)\r\n", millis(), timestamp);
break;
case APDU_FIDO_NFCCTAP_MSG:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
break;
return;
}
printf1(TAG_NFC, "FIDO2 CTAP message. %d\r\n", timestamp());
WTX_on(WTX_TIME_DEFAULT);
// WTX_on(WTX_TIME_DEFAULT);
request_from_nfc(true);
ctap_response_init(&ctap_resp);
status = ctap_request(payload, plen, &ctap_resp);
if (!WTX_off())
return;
status = ctap_request(apdu.data, apdu.lc, &ctap_resp);
request_from_nfc(false);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "CTAP resp: 0x%02<EFBFBD> len: %d\r\n", status, ctap_resp.length);
printf1(TAG_NFC, "CTAP resp: 0x%02x len: %d\r\n", status, ctap_resp.length);
if (status == CTAP1_ERR_SUCCESS)
{
@@ -575,49 +731,45 @@ void nfc_process_iblock(uint8_t * buf, int len)
ctap_resp.data[ctap_resp.length - 1] = SW_SUCCESS & 0xff;
printf1(TAG_NFC,"CTAP processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length, apdu.extended_apdu);
printf1(TAG_NFC,"CTAP answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_INS_READ_BINARY:
// response length
reslen = apdu.le & 0xffff;
switch(NFC_STATE.selected_applet)
{
case APP_CAPABILITY_CONTAINER:
printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n");
if (plen > 15)
{
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc);
plen = 15;
}
nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, plen, SW_SUCCESS);
if (reslen == 0 || reslen > sizeof(NFC_CC))
reslen = sizeof(NFC_CC);
nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, reslen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
case APP_NDEF_TAG:
printf1(TAG_NFC,"APP_NDEF_TAG\r\n");
if (plen > (sizeof(NDEF_SAMPLE) - 1))
{
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc);
plen = sizeof(NDEF_SAMPLE) - 1;
}
nfc_write_response_ex(buf[0], NDEF_SAMPLE, plen, SW_SUCCESS);
if (reslen == 0 || reslen > sizeof(NDEF_SAMPLE) - 1)
reslen = sizeof(NDEF_SAMPLE) - 1;
nfc_write_response_ex(buf[0], NDEF_SAMPLE, reslen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
default:
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_ERR, "No binary applet selected!\r\n");
return;
break;
}
break;
default:
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu->ins);
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu.ins);
nfc_write_response(buf[0], SW_INS_INVALID);
break;
}
printf1(TAG_NFC,"prev.Iblock: ");
dump_hex1(TAG_NFC, buf, len);
}
static uint8_t ibuf[1024];
@@ -631,16 +783,24 @@ void clear_ibuf()
void nfc_process_block(uint8_t * buf, unsigned int len)
{
printf1(TAG_NFC, "-----\r\n");
if (!len)
return;
if (IS_PPSS_CMD(buf[0]))
{
printf1(TAG_NFC, "NFC_CMD_PPSS\r\n");
printf1(TAG_NFC, "NFC_CMD_PPSS [%d] 0x%02x\r\n", len, (len > 2) ? buf[2] : 0);
if (buf[1] == 0x11 && (buf[2] & 0x0f) == 0x00) {
nfc_write_frame(buf, 1); // ack with correct start byte
} else {
printf1(TAG_NFC, "NFC_CMD_PPSS ERROR!!!\r\n");
nfc_write_frame((uint8_t*)"\x00", 1); // this should not happend. but iso14443-4 dont have NACK here, so just 0x00
}
}
else if (IS_IBLOCK(buf[0]))
{
uint8_t block_offset = p14443_block_offset(buf[0]);
if (buf[0] & 0x10)
{
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d\r\n", ibuflen, len);
@@ -654,27 +814,27 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len);
if (len)
if (len > block_offset)
{
memcpy(&ibuf[ibuflen], &buf[1], len - 1);
ibuflen += len - 1;
memcpy(&ibuf[ibuflen], &buf[block_offset], len - block_offset);
ibuflen += len - block_offset;
}
// send R block
uint8_t rb = NFC_CMD_RBLOCK | NFC_CMD_RBLOCK_ACK | (buf[0] & 3);
nfc_write_frame(&rb, 1);
rblock_acknowledge(buf[0], true);
} else {
if (ibuflen)
{
if (len)
if (len > block_offset)
{
memcpy(&ibuf[ibuflen], &buf[1], len - 1);
ibuflen += len - 1;
memcpy(&ibuf[ibuflen], &buf[block_offset], len - block_offset);
ibuflen += len - block_offset;
}
memmove(&ibuf[1], ibuf, ibuflen);
ibuf[0] = buf[0];
ibuflen++;
// add last chaining to top of the block
memmove(&ibuf[block_offset], ibuf, ibuflen);
memmove(ibuf, buf, block_offset);
ibuflen += block_offset;
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d\r\n", ibuflen, len);
@@ -683,7 +843,6 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
nfc_process_iblock(ibuf, ibuflen);
} else {
// printf1(TAG_NFC, "NFC_CMD_IBLOCK\r\n");
nfc_process_iblock(buf, len);
}
clear_ibuf();
@@ -691,7 +850,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
}
else if (IS_RBLOCK(buf[0]))
{
rblock_acknowledge();
rblock_acknowledge(buf[0], false);
printf1(TAG_NFC, "NFC_CMD_RBLOCK\r\n");
}
else if (IS_SBLOCK(buf[0]))
@@ -710,6 +869,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
else
{
printf1(TAG_NFC, "NFC_CMD_SBLOCK, Unknown. len[%d]\r\n", len);
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
}
dump_hex1(TAG_NFC, buf, len);
}
@@ -728,6 +888,8 @@ int nfc_loop()
read_reg_block(&ams);
uint8_t old_int0 = gl_int0;
process_int0(ams.regs.int0);
uint8_t state = AMS_STATE_MASK & ams.regs.rfid_status;
if (state != AMS_STATE_SELECTED && state != AMS_STATE_SELECTEDX)
@@ -741,7 +903,7 @@ int nfc_loop()
// if (state != AMS_STATE_SENSE)
// printf1(TAG_NFC," %s x%02x\r\n", ams_get_state_string(ams.regs.rfid_status), state);
}
if (ams.regs.int0 & AMS_INT_INIT)
if (ams.regs.int0 & AMS_INT_INIT || old_int0 & AMS_INT_INIT)
{
nfc_state_init();
}
@@ -750,7 +912,7 @@ int nfc_loop()
// ams_print_int1(ams.regs.int1);
}
if ((ams.regs.int0 & AMS_INT_RXE))
if (ams.regs.int0 & AMS_INT_RXE || old_int0 & AMS_INT_RXE)
{
if (ams.regs.buffer_status2)
{
@@ -779,6 +941,7 @@ int nfc_loop()
printf1(TAG_NFC, "NFC_CMD_WUPA\r\n");
break;
case NFC_CMD_HLTA:
ams_write_command(AMS_CMD_SLEEP);
printf1(TAG_NFC, "HLTA/Halt\r\n");
break;
case NFC_CMD_RATS:

View File

@@ -40,6 +40,8 @@ typedef struct
#define NFC_CMD_SBLOCK 0xc0
#define IS_SBLOCK(x) ( (((x) & 0xc0) == NFC_CMD_SBLOCK) && (((x) & 0x02) == 0x02) )
extern uint8_t p14443_block_offset(uint8_t pcb);
#define NFC_SBLOCK_DESELECT 0x30
#define NFC_SBLOCK_WTX 0x30