Merge branch 'master' into ccid

This commit is contained in:
Conor Patrick 2019-08-22 17:13:55 +08:00
commit a5aff478dd
46 changed files with 3423 additions and 2586 deletions

178
.all-contributorsrc Normal file
View File

@ -0,0 +1,178 @@
{
"files": [
"README.md"
],
"imageSize": 100,
"commit": false,
"contributors": [
{
"login": "szszszsz",
"name": "Szczepan Zalega",
"avatar_url": "https://avatars0.githubusercontent.com/u/17005426?v=4",
"profile": "https://github.com/szszszsz",
"contributions": [
"code",
"doc",
"ideas"
]
},
{
"login": "Wesseldr",
"name": "Wessel dR",
"avatar_url": "https://avatars1.githubusercontent.com/u/4012809?v=4",
"profile": "https://github.com/Wesseldr",
"contributions": [
"doc"
]
},
{
"login": "agl",
"name": "Adam Langley",
"avatar_url": "https://avatars3.githubusercontent.com/u/21203?v=4",
"profile": "https://www.imperialviolet.org",
"contributions": [
"bug",
"code"
]
},
{
"login": "merlokk",
"name": "Oleg Moiseenko",
"avatar_url": "https://avatars2.githubusercontent.com/u/807634?v=4",
"profile": "http://www.lotteam.com",
"contributions": [
"code"
]
},
{
"login": "aseigler",
"name": "Alex Seigler",
"avatar_url": "https://avatars1.githubusercontent.com/u/6605560?v=4",
"profile": "https://github.com/aseigler",
"contributions": [
"bug"
]
},
{
"login": "dschuermann",
"name": "Dominik Schürmann",
"avatar_url": "https://avatars3.githubusercontent.com/u/321888?v=4",
"profile": "https://www.cotech.de/services/",
"contributions": [
"bug"
]
},
{
"login": "ehershey",
"name": "Ernie Hershey",
"avatar_url": "https://avatars0.githubusercontent.com/u/286008?v=4",
"profile": "https://github.com/ehershey",
"contributions": [
"doc"
]
},
{
"login": "YakBizzarro",
"name": "Andrea Corna",
"avatar_url": "https://avatars1.githubusercontent.com/u/767740?v=4",
"profile": "https://github.com/YakBizzarro",
"contributions": [
"infra"
]
},
{
"login": "pjz",
"name": "Paul Jimenez",
"avatar_url": "https://avatars3.githubusercontent.com/u/11100?v=4",
"profile": "https://place.org/~pj/",
"contributions": [
"infra",
"code"
]
},
{
"login": "yparitcher",
"name": "yparitcher",
"avatar_url": "https://avatars0.githubusercontent.com/u/38916402?v=4",
"profile": "https://github.com/yparitcher",
"contributions": [
"ideas",
"maintenance"
]
},
{
"login": "StoyanDimitrov",
"name": "StoyanDimitrov",
"avatar_url": "https://avatars1.githubusercontent.com/u/10962709?v=4",
"profile": "https://github.com/StoyanDimitrov",
"contributions": [
"doc"
]
},
{
"login": "alphathegeek",
"name": "alphathegeek",
"avatar_url": "https://avatars2.githubusercontent.com/u/51253712?v=4",
"profile": "https://github.com/alphathegeek",
"contributions": [
"ideas"
]
},
{
"login": "rgerganov",
"name": "Radoslav Gerganov",
"avatar_url": "https://avatars2.githubusercontent.com/u/271616?v=4",
"profile": "https://xakcop.com",
"contributions": [
"ideas",
"code"
]
},
{
"login": "manuel-domke",
"name": "Manuel Domke",
"avatar_url": "https://avatars3.githubusercontent.com/u/10274356?v=4",
"profile": "http://13-37.org",
"contributions": [
"ideas",
"code",
"business"
]
},
{
"login": "esden",
"name": "Piotr Esden-Tempski",
"avatar_url": "https://avatars3.githubusercontent.com/u/17334?v=4",
"profile": "http://1bitsquared.com",
"contributions": [
"business"
]
},
{
"login": "m3hm00d",
"name": "f.m3hm00d",
"avatar_url": "https://avatars1.githubusercontent.com/u/42179593?v=4",
"profile": "https://github.com/m3hm00d",
"contributions": [
"doc"
]
},
{
"login": "hughsie",
"name": "Richard Hughes",
"avatar_url": "https://avatars0.githubusercontent.com/u/151380?v=4",
"profile": "http://blogs.gnome.org/hughsie/",
"contributions": [
"ideas",
"code",
"infra",
"tool"
]
}
],
"contributorsPerLine": 7,
"projectName": "solo",
"projectOwner": "solokeys",
"repoType": "github",
"repoHost": "https://github.com"
}

2
.gitignore vendored
View File

@ -83,3 +83,5 @@ targets/*/docs/
main main
builds/* builds/*
tools/testing/.idea/*
tools/testing/tests/__pycache__/*

View File

@ -1,23 +1,18 @@
[![License](https://img.shields.io/github/license/solokeys/solo.svg)](https://github.com/solokeys/solo/blob/master/LICENSE) **NEW!** We launched a new tiny security key called Somu, it's live on Crowd Supply and you can [pre-order it now](https://solokeys.com/somu)!
[![Build Status](https://travis-ci.com/solokeys/solo.svg?branch=master)](https://travis-ci.com/solokeys/solo)
[![Discourse Users](https://img.shields.io/discourse/https/discourse.solokeys.com/users.svg)](https://discourse.solokeys.com) [<img src="https://miro.medium.com/max/1400/1*PnzCPLqq_5nt1gjgSEY2LQ.png" width="600">](https://solokeys.com/somu)
Somu is the micro version of Solo. We were inspired to make a secure Tomu, so we took its tiny form factor, we added the secure microcontroller and firmware of Solo, et voilà! Here we have Somu.
[![latest release](https://img.shields.io/github/release/solokeys/solo.svg)](https://update.solokeys.com/)
[![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public) [![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public)
[![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fsolokeys%2Fsolo.svg?type=shield)](https://app.fossa.io/projects/git%2Bgithub.com%2Fsolokeys%2Fsolo?ref=badge_shield) [![Build Status](https://travis-ci.com/solokeys/solo.svg?style=flat-square&branch=master)](https://travis-ci.com/solokeys/solo)
[![latest release](https://img.shields.io/github/release/solokeys/solo.svg)](https://github.com/solokeys/solo/releases)
[![commits since last release](https://img.shields.io/github/commits-since/solokeys/solo/latest.svg)](https://github.com/solokeys/solo/commits/master)
[![last commit](https://img.shields.io/github/last-commit/solokeys/solo.svg)](https://github.com/solokeys/solo/commits/master)
[![commit activity](https://img.shields.io/github/commit-activity/m/solokeys/solo.svg)](https://github.com/solokeys/solo/commits/master)
[![contributors](https://img.shields.io/github/contributors/solokeys/solo.svg)](https://github.com/solokeys/solo/graphs/contributors)
# Solo
Solo is an open source security key, and you can get one at [solokeys.com](https://solokeys.com). Solo is an open source security key, and you can get one at [solokeys.com](https://solokeys.com).
Solo supports FIDO2 and U2F standards for strong two-factor authentication and password-less login, and it will protect you against phishing and other online attacks. With colored cases and multilingual guides we want to make secure login more personable and accessible to everyone around the globe. [<img src="https://static.solokeys.com/images/photos/hero-on-white-cropped.png" width="600">](https://solokeys.com)
<img src="https://static.solokeys.com/images/photos/hero-on-white-cropped.png" width="600"> Solo supports FIDO2 and U2F standards for strong two-factor authentication and password-less login, and it will protect you against phishing and other online attacks. With colored cases and multilingual guides we want to make secure login more personable and accessible to everyone around the globe.
This repo contains the Solo firmware, including implementations of FIDO2 and U2F (CTAP2 and CTAP) over USB and NFC. The main implementation is for STM32L432, but it is easily portable. This repo contains the Solo firmware, including implementations of FIDO2 and U2F (CTAP2 and CTAP) over USB and NFC. The main implementation is for STM32L432, but it is easily portable.
@ -41,7 +36,7 @@ Solo for Hacker is a special version of Solo that let you customize its firmware
Check out [solokeys.com](https://solokeys.com), for options on where to buy Solo. Solo Hacker can be converted to a secure version, but normal Solo cannot be converted to a Hacker version. Check out [solokeys.com](https://solokeys.com), for options on where to buy Solo. Solo Hacker can be converted to a secure version, but normal Solo cannot be converted to a Hacker version.
If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.io/solo/building/). We only support Python3. If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.io/solo/building/). We support Python3.
```bash ```bash
git clone --recurse-submodules https://github.com/solokeys/solo git clone --recurse-submodules https://github.com/solokeys/solo
@ -94,10 +89,7 @@ Run the Solo application:
./main ./main
``` ```
In another shell, you can run client software, for example our tests: In another shell, you can run our [test suite](https://github.com/solokeys/fido2-tests).
```bash
python tools/ctap_test.py sim fido2
```
You can find more details in our [documentation](https://docs.solokeys.io/solo/), including how to build on the the NUCLEO-L432KC development board. You can find more details in our [documentation](https://docs.solokeys.io/solo/), including how to build on the the NUCLEO-L432KC development board.
@ -107,14 +99,46 @@ You can find more details in our [documentation](https://docs.solokeys.io/solo/)
Check out our [official documentation](https://docs.solokeys.io/solo/). Check out our [official documentation](https://docs.solokeys.io/solo/).
# Contributors # Contributors
Solo is an upgrade to [U2F Zero](https://github.com/conorpp/u2f-zero). It was born from Conor's passion for making secure hardware, and from our shared belief that security should be open to be trustworthy, in hardware like in software. Solo is an upgrade to [U2F Zero](https://github.com/conorpp/u2f-zero). It was born from Conor's passion for making secure hardware, and from our shared belief that security should be open to be trustworthy, in hardware like in software.
Contributors are welcome. The ultimate goal is to have a FIDO2 security key supporting USB, NFC, and BLE interfaces, that can run on a variety of MCUs. This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!
The ultimate goal is to have a FIDO2 security key supporting USB, NFC, and BLE interfaces, that can run on a variety of MCUs.
Look at the issues to see what is currently being worked on. Feel free to add issues as well. Look at the issues to see what is currently being worked on. Feel free to add issues as well.
Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):
<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore -->
<table>
<tr>
<td align="center"><a href="https://github.com/szszszsz"><img src="https://avatars0.githubusercontent.com/u/17005426?v=4" width="100px;" alt="Szczepan Zalega"/><br /><sub><b>Szczepan Zalega</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=szszszsz" title="Code">💻</a> <a href="https://github.com/solokeys/solo/commits?author=szszszsz" title="Documentation">📖</a> <a href="#ideas-szszszsz" title="Ideas, Planning, & Feedback">🤔</a></td>
<td align="center"><a href="https://github.com/Wesseldr"><img src="https://avatars1.githubusercontent.com/u/4012809?v=4" width="100px;" alt="Wessel dR"/><br /><sub><b>Wessel dR</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=Wesseldr" title="Documentation">📖</a></td>
<td align="center"><a href="https://www.imperialviolet.org"><img src="https://avatars3.githubusercontent.com/u/21203?v=4" width="100px;" alt="Adam Langley"/><br /><sub><b>Adam Langley</b></sub></a><br /><a href="https://github.com/solokeys/solo/issues?q=author%3Aagl" title="Bug reports">🐛</a> <a href="https://github.com/solokeys/solo/commits?author=agl" title="Code">💻</a></td>
<td align="center"><a href="http://www.lotteam.com"><img src="https://avatars2.githubusercontent.com/u/807634?v=4" width="100px;" alt="Oleg Moiseenko"/><br /><sub><b>Oleg Moiseenko</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=merlokk" title="Code">💻</a></td>
<td align="center"><a href="https://github.com/aseigler"><img src="https://avatars1.githubusercontent.com/u/6605560?v=4" width="100px;" alt="Alex Seigler"/><br /><sub><b>Alex Seigler</b></sub></a><br /><a href="https://github.com/solokeys/solo/issues?q=author%3Aaseigler" title="Bug reports">🐛</a></td>
<td align="center"><a href="https://www.cotech.de/services/"><img src="https://avatars3.githubusercontent.com/u/321888?v=4" width="100px;" alt="Dominik Schürmann"/><br /><sub><b>Dominik Schürmann</b></sub></a><br /><a href="https://github.com/solokeys/solo/issues?q=author%3Adschuermann" title="Bug reports">🐛</a></td>
<td align="center"><a href="https://github.com/ehershey"><img src="https://avatars0.githubusercontent.com/u/286008?v=4" width="100px;" alt="Ernie Hershey"/><br /><sub><b>Ernie Hershey</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=ehershey" title="Documentation">📖</a></td>
</tr>
<tr>
<td align="center"><a href="https://github.com/YakBizzarro"><img src="https://avatars1.githubusercontent.com/u/767740?v=4" width="100px;" alt="Andrea Corna"/><br /><sub><b>Andrea Corna</b></sub></a><br /><a href="#infra-YakBizzarro" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a></td>
<td align="center"><a href="https://place.org/~pj/"><img src="https://avatars3.githubusercontent.com/u/11100?v=4" width="100px;" alt="Paul Jimenez"/><br /><sub><b>Paul Jimenez</b></sub></a><br /><a href="#infra-pjz" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="https://github.com/solokeys/solo/commits?author=pjz" title="Code">💻</a></td>
<td align="center"><a href="https://github.com/yparitcher"><img src="https://avatars0.githubusercontent.com/u/38916402?v=4" width="100px;" alt="yparitcher"/><br /><sub><b>yparitcher</b></sub></a><br /><a href="#ideas-yparitcher" title="Ideas, Planning, & Feedback">🤔</a> <a href="#maintenance-yparitcher" title="Maintenance">🚧</a></td>
<td align="center"><a href="https://github.com/StoyanDimitrov"><img src="https://avatars1.githubusercontent.com/u/10962709?v=4" width="100px;" alt="StoyanDimitrov"/><br /><sub><b>StoyanDimitrov</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=StoyanDimitrov" title="Documentation">📖</a></td>
<td align="center"><a href="https://github.com/alphathegeek"><img src="https://avatars2.githubusercontent.com/u/51253712?v=4" width="100px;" alt="alphathegeek"/><br /><sub><b>alphathegeek</b></sub></a><br /><a href="#ideas-alphathegeek" title="Ideas, Planning, & Feedback">🤔</a></td>
<td align="center"><a href="https://xakcop.com"><img src="https://avatars2.githubusercontent.com/u/271616?v=4" width="100px;" alt="Radoslav Gerganov"/><br /><sub><b>Radoslav Gerganov</b></sub></a><br /><a href="#ideas-rgerganov" title="Ideas, Planning, & Feedback">🤔</a> <a href="https://github.com/solokeys/solo/commits?author=rgerganov" title="Code">💻</a></td>
<td align="center"><a href="http://13-37.org"><img src="https://avatars3.githubusercontent.com/u/10274356?v=4" width="100px;" alt="Manuel Domke"/><br /><sub><b>Manuel Domke</b></sub></a><br /><a href="#ideas-manuel-domke" title="Ideas, Planning, & Feedback">🤔</a> <a href="https://github.com/solokeys/solo/commits?author=manuel-domke" title="Code">💻</a> <a href="#business-manuel-domke" title="Business development">💼</a></td>
</tr>
<tr>
<td align="center"><a href="http://1bitsquared.com"><img src="https://avatars3.githubusercontent.com/u/17334?v=4" width="100px;" alt="Piotr Esden-Tempski"/><br /><sub><b>Piotr Esden-Tempski</b></sub></a><br /><a href="#business-esden" title="Business development">💼</a></td>
<td align="center"><a href="https://github.com/m3hm00d"><img src="https://avatars1.githubusercontent.com/u/42179593?v=4" width="100px;" alt="f.m3hm00d"/><br /><sub><b>f.m3hm00d</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=m3hm00d" title="Documentation">📖</a></td>
<td align="center"><a href="http://blogs.gnome.org/hughsie/"><img src="https://avatars0.githubusercontent.com/u/151380?v=4" width="100px;" alt="Richard Hughes"/><br /><sub><b>Richard Hughes</b></sub></a><br /><a href="#ideas-hughsie" title="Ideas, Planning, & Feedback">🤔</a> <a href="https://github.com/solokeys/solo/commits?author=hughsie" title="Code">💻</a> <a href="#infra-hughsie" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="#tool-hughsie" title="Tools">🔧</a></td>
</tr>
</table>
<!-- ALL-CONTRIBUTORS-LIST:END -->
# License # License
@ -123,6 +147,8 @@ Solo is fully open source.
All software, unless otherwise noted, is dual licensed under Apache 2.0 and MIT. All software, unless otherwise noted, is dual licensed under Apache 2.0 and MIT.
You may use Solo software under the terms of either the Apache 2.0 license or MIT license. You may use Solo software under the terms of either the Apache 2.0 license or MIT license.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
All hardware, unless otherwise noted, is dual licensed under CERN and CC-BY-SA. All hardware, unless otherwise noted, is dual licensed under CERN and CC-BY-SA.
You may use Solo hardware under the terms of either the CERN 2.1 license or CC-BY-SA 4.0 license. You may use Solo hardware under the terms of either the CERN 2.1 license or CC-BY-SA 4.0 license.
@ -135,3 +161,20 @@ You may use Solo documentation under the terms of the CC-BY-SA 4.0 license
# Where To Buy Solo # Where To Buy Solo
You can buy Solo, Solo Tap, and Solo for Hackers at [solokeys.com](https://solokeys.com). You can buy Solo, Solo Tap, and Solo for Hackers at [solokeys.com](https://solokeys.com).
<br/>
<hr/>
<br/>
[![License](https://img.shields.io/github/license/solokeys/solo.svg)](https://github.com/solokeys/solo/blob/master/LICENSE)
[![All Contributors](https://img.shields.io/badge/all_contributors-17-orange.svg?style=flat-square)](#contributors)
[![Build Status](https://travis-ci.com/solokeys/solo.svg?branch=master)](https://travis-ci.com/solokeys/solo)
[![Discourse Users](https://img.shields.io/discourse/https/discourse.solokeys.com/users.svg)](https://discourse.solokeys.com)
[![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public)
[![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fsolokeys%2Fsolo.svg?type=shield)](https://app.fossa.io/projects/git%2Bgithub.com%2Fsolokeys%2Fsolo?ref=badge_shield)
[![latest release](https://img.shields.io/github/release/solokeys/solo.svg)](https://github.com/solokeys/solo/releases)
[![commits since last release](https://img.shields.io/github/commits-since/solokeys/solo/latest.svg)](https://github.com/solokeys/solo/commits/master)
[![last commit](https://img.shields.io/github/last-commit/solokeys/solo.svg)](https://github.com/solokeys/solo/commits/master)
[![commit activity](https://img.shields.io/github/commit-activity/m/solokeys/solo.svg)](https://github.com/solokeys/solo/commits/master)
[![contributors](https://img.shields.io/github/contributors/solokeys/solo.svg)](https://github.com/solokeys/solo/graphs/contributors)

32
SECURITY.md Normal file
View File

@ -0,0 +1,32 @@
# Security Policy
## Supported Versions
We fix security issues as soon as they are found, and release firmware updates.
Each such release is accompanied by release notes, see <https://github.com/solokeys/solo/releases>.
The latest version can be determined using the file <https://github.com/solokeys/solo/blob/master/STABLE_VERSION>.
To update your key:
- either visit <https://update.solokeys.com>, or
- use our commandline tool <https://github.com/solokeys/solo-python>:
```
solo key update [--secure|--hacker]
```
## Reporting a Vulnerability
To report vulnerabilities you have found:
- preferably contact [@conor1](https://keybase.io/conor1), [@0x0ece](https://keybase.io/0x0ece) or [@nickray](https://keybase.io/nickray) via Keybase, or
- send us e-mail using OpenPGP to [security@solokeys.com](mailto:security@solokeys.com).
<https://keys.openpgp.org/vks/v1/by-fingerprint/85AFA2769F4381E5712C36A04DDFC46FEF1F7F3F>
We do not currently run a paid bug bounty program, but are happy to provide you with a bunch of Solo keys in recognition of your findings.
## Mailing List
Join our release notification mailing list to be informed about each release:
https://sendy.solokeys.com/subscription?f=9MLIqMDmox1Ucz89C892Kq09IqYMM7OB8UrBrkvtTkDI763QF3L5PMYlRhlVNo2AI892mO

View File

@ -1 +1 @@
2.3.0 2.4.3

View File

@ -0,0 +1,51 @@
# Booting into bootloader mode
You can put Solo into bootloader mode by holding down the button, and plugging in Solo. After 2 seconds, bootloader mode will activate.
You'll see a yellowish flashing light and you can let go of the button.
Now Solo is ready to [accept firmware updates](/solo/signed-updates). If the Solo is a secured model, it can only accept signed updates, typically in the `firmware-*.json` format.
If Solo is running a hacker build, it can be put into bootloader mode on command. This makes it easier for development.
```bash
solo program aux enter-bootloader
```
# The boot stages of Solo
Solo has 3 boot stages.
## DFU
The first stage is the DFU (Device Firmware Update) which is in a ROM on Solo. It is baked into the chip and is not implemented by us.
This is what allows the entire firmware of Solo to be programmed. **It's not recommended to develop for Solo using the DFU because
if you program broken firmware, you could brick your device**.
On hacker devices, you can boot into the DFU by holding down the button for 5 seconds, when Solo is already in bootloader mode.
You can also run this command when Solo is in bootloader mode to put it in DFU mode.
```bash
solo program aux enter-dfu
```
Note it will stay in DFU mode until to tell it to boot again. You can boot it again by running the following.
```bash
solo program aux leave-dfu
```
*Warning*: If you change the firmware to something broken, and you tell the DFU to boot it, you could brick your device.
## Solo Bootloader
The next boot stage is the "Solo bootloader". So when we say to put your Solo into bootloader mode, it is this stage.
This bootloader is written by us and allows signed firmware updates to be written. On Solo Hackers, there is no signature checking
and will allow any firmware updates.
It is safe to develop for Solo using our Solo bootloader. If broken firmware is uploaded to the device, then the Solo
bootloader can always be booted again by holding down the button when plugging in.
## Solo application
This is what contains all the important functionality of Solo. FIDO2, U2F, etc. This is what Solo will boot to by default.

View File

@ -1,22 +1,34 @@
# Building solo
To build, develop and debug the firmware for the STM32L432. This will work To build, develop and debug the firmware for the STM32L432. This will work
for Solo Hacker, the Nucleo development board, or your own homemade Solo. for Solo Hacker, the Nucleo development board, or your own homemade Solo.
There exists a development board [NUCLEO-L432KC](https://www.st.com/en/evaluation-tools/nucleo-l432kc.html) you can use; The board does contain a debugger, so all you need is a USB cable (and some [udev](/udev) [rules](https://rust-embedded.github.io/book/intro/install/linux.html#udev-rules)). There exists a development board [NUCLEO-L432KC](https://www.st.com/en/evaluation-tools/nucleo-l432kc.html) you can use; The board does contain a debugger, so all you need is a USB cable (and some [udev](/udev) [rules](https://rust-embedded.github.io/book/intro/install/linux.html#udev-rules)).
# Prerequisites ## Prerequisites
Install the [latest ARM compiler toolchain](https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads) for your system. We recommend getting the latest compilers from ARM. Install the [latest ARM compiler toolchain](https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads) for your system. We recommend getting the latest compilers from ARM.
You can also install the ARM toolchain using a package manager like `apt-get` or `pacman`, You can also install the ARM toolchain using a package manager like `apt-get` or `pacman`,
but be warned they might be out of date. Typically it will be called `gcc-arm-none-eabi binutils-arm-none-eabi`. but be warned they might be out of date. Typically it will be called `gcc-arm-none-eabi binutils-arm-none-eabi`.
To program your build, you'll need one of the following programs. Install `solo-python` usually with `pip3 install solo-python`. The `solo` python application may also be used for [programming](#programming).
- [openocd](http://openocd.org) ## Obtain source code and solo tool
- [stlink](https://github.com/texane/stlink)
- [STM32CubeProg](https://www.st.com/en/development-tools/stm32cubeprog.html)
# Compilation Source code can be downloaded from:
- [github releases list](https://github.com/solokeys/solo/releases)
- [github repository](https://github.com/solokeys/solo)
**solo** tool can be downloaded from:
- from python programs [repository](https://pypi.org/project/solo-python/) `pip install solo-python`
- from installing prerequisites `pip3 install -r tools/requirements.txt`
- github repository: [repository](https://github.com/solokeys/solo-python)
- installation python enviroment with command `make venv` from root directory of source code
## Compilation
Enter the `stm32l4xx` target directory. Enter the `stm32l4xx` target directory.
@ -36,7 +48,7 @@ enabled, like being able to jump to the bootloader on command. It then merges b
and solo builds into the same binary. I.e. it combines `bootloader.hex` and `solo.hex` and solo builds into the same binary. I.e. it combines `bootloader.hex` and `solo.hex`
into `all.hex`. into `all.hex`.
If you're just planning to do development, please don't try to reprogram the bootloader, If you're just planning to do development, **please don't try to reprogram the bootloader**,
as this can be risky if done often. Just use `solo.hex`. as this can be risky if done often. Just use `solo.hex`.
### Building with debug messages ### Building with debug messages
@ -68,6 +80,8 @@ solo monitor <serial-port>
### Building a Solo release ### Building a Solo release
To build Solo
If you want to build a release of Solo, we recommend trying a Hacker build first If you want to build a release of Solo, we recommend trying a Hacker build first
just to make sure that it's working. Otherwise it may not be as easy or possible to just to make sure that it's working. Otherwise it may not be as easy or possible to
fix any mistakes. fix any mistakes.
@ -78,106 +92,13 @@ If you're ready to program a full release, run this recipe to build.
make build-release-locked make build-release-locked
``` ```
Programming `all.hex` will cause the device to permanently lock itself. This outputs bootloader.hex, solo.hex, and the combined all.hex.
Programming `all.hex` will cause the device to permanently lock itself. This means debuggers cannot be used and signature checking
will be enforced on all future updates.
# Programming Note if you program a secured `solo.hex` file onto a Solo Hacker, it will lock the flash, but the bootloader
will still accept unsigned firmware updates. So you can switch it back to being a hacker, but you will
not be able to replace the unlocked bootloader anymore, since the permanently locked flash also disables the DFU.
[Read more on Solo's boot stages](/solo/bootloader-mode).
It's recommended to test a debug/hacker build first to make sure Solo is working as expected.
Then you can switch to a locked down build, which cannot be reprogrammed as easily (or not at all!).
We recommend using our `solo` tool to manage programming. It is cross platform. First you must
install the prerequisites:
```
pip3 install -r tools/requirements.txt
```
If you're on Windows, you must also install [libusb](https://sourceforge.net/projects/libusb-win32/files/libusb-win32-releases/1.2.6.0/).
## Pre-programmed Solo Hacker
If your Solo device is already programmed (it flashes green when powered), we recommend
programming it using the Solo bootloader.
```
solo program aux enter-bootloader
solo program bootloader solo.hex
```
Make sure to program `solo.hex` and not `all.hex`. Nothing bad would happen, but you'd
see errors.
If something bad happens, you can always boot the Solo bootloader by doing the following.
1. Unplug device.
2. Hold down button.
3. Plug in device while holding down button.
4. Wait about 2 seconds for flashing yellow light. Release button.
If you hold the button for an additional 5 seconds, it will boot to the ST DFU (device firmware update).
Don't use the ST DFU unless you know what you're doing.
## ST USB DFU
If your Solo has never been programmed, it will boot the ST USB DFU. The LED is turned
off and it enumerates as "STM BOOTLOADER".
You can program it by running the following.
```
solo program aux enter-bootloader
solo program aux enter-dfu
# powercycle key
solo program dfu all.hex
```
Make sure to program `all.hex`, as this contains both the bootloader and the Solo application.
If all goes well, you should see a slow-flashing green light.
## Solo Hacker vs Solo
A Solo hacker device doesn't need to be in bootloader mode to be programmed, it will automatically switch.
Solo (locked) needs the button to be held down when plugged in to boot to the bootloader.
A locked Solo will only accept signed updates.
## Signed updates
If this is not a device with a hacker build, you can only program signed updates.
```
solo program bootloader /path/to/firmware.json
```
If you've provisioned the Solo bootloader with your own secp256r1 public key, you can sign your
firmware by running the following command.
```
solo sign /path/to/signing-key.pem /path/to/solo.hex /output-path/to/firmware.json
```
If your Solo isn't locked, you can always reprogram it using a debugger connected directly
to the token.
# Permanently locking the device
If you plan to be using your Solo for real, you should lock it permanently. This prevents
someone from connecting a debugger to your token and stealing credentials.
To do this, build the locked release firmware.
```
make build-release-locked
```
Now when you program `all.hex`, the device will lock itself when it first boots. You can only update it
with signed updates.
If you'd like to also permanently disable signed updates, plug in your programmed Solo and run the following:
```
# WARNING: No more signed updates.
solo program disable-bootloader
```

141
docs/solo/customization.md Normal file
View File

@ -0,0 +1,141 @@
# Customization
If you are interested in customizing parts of your Solo, and you have a Solo Hacker, this page is for you.
## Custom Attestation key
The attestation key is used in the FIDO2 *makeCredential* or U2F *register* requests. It signs
newly generated credentials. The certificate associated with the attestation key is output with newly created credentials.
Platforms or services can use the attestation feature to enforce specific authenticators to be used.
This is typically a use case for organizations and isn't seen in the wild for consumer use cases.
Attestation keys are typically the same for at least 100K units of a particular authenticator model.
This is so they don't contribute a significant fingerprint that platforms could use to identify the user.
If you don't want to use the default attestation key that Solo builds with, you can create your own
and program it.
### Creating your attestation key pair
Since we are generating keys, it's important to use a good entropy source.
You can use the [True RNG on your Solo](/solo/solo-extras) to generate some good random numbers.
```
# Run for 1 second, then hit control-c
solo key rng raw > seed.bin
```
First we will create a self signed key pair that acts as the root of trust. This
won't go on the authenticator, but will sign the keypair that does.
Please change the root certification information as needed. You may change the ECC curve.
```
curve=prime256v1
country=US
state=Maine
organization=OpenSourceSecurity
unit="Root CA"
CN=example.com
email=example@example.com
# generate EC private key
openssl ecparam -genkey -name "$curve" -out root_key.pem -rand seed.bin
# generate a "signing request"
openssl req -new -key root_key.pem -out root_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=example.com/emailAddress=$email"
# self sign the request
openssl x509 -trustout -req -days 18250 -in root_key.pem.csr -signkey root_key.pem -out root_cert.pem -sha256
# convert to smaller size format DER
openssl x509 -in root_cert.pem -outform der -out root_cert.der
# print out information and verify
openssl x509 -in root_cert.pem -text -noout
```
You need to create a extended certificate for the device certificate to work with FIDO2. You need to create this
file, `v3.ext`, and add these options to it.
```
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer
basicConstraints=CA:FALSE
keyUsage = digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment
```
Now to generate & sign the attestation key pair that will go on your device, or maybe 100,000 devices :).
Note you must use a prime256v1 curve for this step, and you must leave the unit/OU as "Authenticator Attestation".
```
country=US
state=Maine
organization=OpenSourceSecurity
unit="Authenticator Attestation"
CN=example.com
email=example@example.com
# generate EC private key
openssl ecparam -genkey -name "$curve" -out device_key.pem -rand seed.bin
# generate a "signing request"
openssl req -new -key device_key.pem -out device_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=example.com/emailAddress=$email"
# sign the request
openssl x509 -req -days 18250 -in device_key.pem.csr -extfile v3.ext -CA root_cert.pem -CAkey root_key.pem -set_serial 01 -out device_cert.pem -sha256
# convert to smaller size format DER
openssl x509 -in device_cert.pem -outform der -out device_cert.der
# Verify the device certificate details
openssl x509 -in device_cert.pem -text -noout
```
Let's verify that the attestation key and certificate are valid, and that they can be verified with the root key pair.
```
echo 'challenge $RANDOM' > chal.txt
# check that they are valid key pairs
openssl dgst -sha256 -sign device_key.pem -out sig.txt chal.txt
openssl dgst -sha256 -verify <(openssl x509 -in device_cert.pem -pubkey -noout) -signature sig.txt chal.txt
openssl dgst -sha256 -sign "root_key.pem" -out sig.txt chal.txt
openssl dgst -sha256 -verify <(openssl x509 -in root_cert.pem -pubkey -noout) -signature sig.txt chal.txt
# Check they are a chain
openssl verify -verbose -CAfile "root_cert.pem" "device_cert.pem"
```
If the checks succeed, you are ready to program the device attestation key and certificate.
### Programming an attestation key and certificate
Convert the DER format of the device attestation certificate to "C" bytes using our utility script. You may first need to
first install prerequisite python modules (pip install -r tools/requirements.txt).
```
python tools/gencert/cbytes.py device_cert.der
```
Copy the byte string portion into the [`attestation.c` source file of Solo](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/attestation.c). Overwrite the development or "default" certificate that is already there.
Now [build the Solo firmware](/solo/building), either a secure or hacker build. You will need to produce a bootloader.hex file and a solo.hex file.
Print your attestation key in a hex string format.
```
python tools/print_x_y.py device_key.pem
```
Merge the bootloader.hex, solo.hex, and attestion key into one firmware file.
```
solo mergehex --attestation-key <attestation-key-hex-string> bootloader.hex solo.hex all.hex
```
Now you have a newly create `all.hex` file with a custom attestation key. You can [program this all.hex file
with Solo in DFU mode](/solo/programming#procedure).

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 129 KiB

258
docs/solo/nucleo32-board.md Normal file
View File

@ -0,0 +1,258 @@
# Nucleo32 board preparation
Additional steps are required to run the firmware on the Nucleo32 board.
## USB-A cable
Board does not provide an USB cable / socket for the target MCU communication.
Own provided USB plug has to be connected in the following way:
| PIN / Arduino PIN | MCU leg | USB wire color | Signal |
| ----------------- | ------- | -------------- | ------ |
| D10 / PA11 | 21 | white | D- |
| D2 / PA12 | 22 | green | D+ |
| GND (near D2) | ------- | black | GND |
| **not connected** | ------- | red | 5V |
Each USB plug pin should be connected via the wire in a color defined by the standard. It might be confirmed with a
multimeter for additional safety. USB plug description:
| PIN | USB wire color | Signal |
| --- | -------------- | ------ |
| 4 | black | GND |
| 3 | green | D+ |
| 2 | white | D- |
| 1 | red | 5V |
See this [USB plug] image, and Wikipedia's [USB plug description].
Plug in [USB-A_schematic.pdf] has wrong wire order, registered as [solo-hw#1].
The power is taken from the debugger / board (unless the board is configured in another way).
Make sure 5V is not connected, and is covered from contacting with the board elements.
Based on [USB-A_schematic.pdf].
## Firmware modification
Following patch has to be applied to skip the user presence confirmation, for tests. Might be applied at a later stage.
```text
diff --git a/targets/stm32l432/src/app.h b/targets/stm32l432/src/app.h
index c14a7ed..c89c3b5 100644
--- a/targets/stm32l432/src/app.h
+++ b/targets/stm32l432/src/app.h
@@ -71,6 +71,6 @@ void hw_init(void);
#define SOLO_BUTTON_PIN LL_GPIO_PIN_0
#define SKIP_BUTTON_CHECK_WITH_DELAY 0
-#define SKIP_BUTTON_CHECK_FAST 0
+#define SKIP_BUTTON_CHECK_FAST 1
#endif
```
It is possible to provide a button and connect it to the MCU pins, as instructed in [USB-A_schematic.pdf]&#x3A;
```text
PA0 / pin 6 --> button --> GND
```
In that case the mentioned patch would not be required.
## Development environment setup
Environment: Fedora 29 x64, Linux 4.19.9
See <https://docs.solokeys.io/solo/building/> for the original guide. Here details not included there will be covered.
### Install ARM tools Linux
1. Download current [ARM tools] package: [gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2].
2. Extract the archive.
3. Add full path to the `./bin` directory as first entry to the `$PATH` variable,
as in `~/gcc-arm/gcc-arm-none-eabi-8-2018-q4-major/bin/:$PATH`.
### Install ARM tools OsX using brew package manager
```bash
brew tap ArmMbed/homebrew-formulae
brew install arm-none-eabi-gcc
```
### Install flashing software
ST provides a CLI flashing tool - `STM32_Programmer_CLI`. It can be downloaded directly from the vendor's site:
1\. Go to [download site URL](https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/stm32cubeprog.html),
go to bottom page and from STM32CubeProg row select Download button.
2\. Unzip contents of the archive.
3\. Run \*Linux setup
4\. In installation directory go to ./bin - there the ./STM32_Programmer_CLI is located
5\. Add symlink to the STM32 CLI binary to .local/bin. Make sure the latter it is in $PATH.
If you're on OsX and installed the STM32CubeProg, you need to add the following to your path:
```bash
# ~/.bash_profile
export PATH="/Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM32CubeProgrammer.app/Contents/MacOs/bin/":$PATH
```
## Building and flashing
### Building
Please follow <https://docs.solokeys.io/solo/building/>, as the build way changes rapidly.
Currently (8.1.19) to build the firmware, following lines should be executed
```bash
# while in the main project directory
cd targets/stm32l432
make cbor
make build-hacker DEBUG=1
```
Note: `DEBUG=2` stops the device initialization, until a serial client will be attached to its virtual port.
Do not use it, if you do not plan to do so.
### Flashing via the Makefile command
```bash
# while in the main project directory
# create Python virtual environment with required packages, and activate
make venv
. venv/bin/activate
# Run flashing
cd ./targets/stm32l432
make flash
# which runs:
# flash: solo.hex bootloader.hex
# python merge_hex.py solo.hex bootloader.hex all.hex (intelhex library required)
# STM32_Programmer_CLI -c port=SWD -halt -e all --readunprotect
# STM32_Programmer_CLI -c port=SWD -halt -d all.hex -rst
```
### Manual flashing
In case you already have a firmware to flash (named `all.hex`), please run the following:
```bash
STM32_Programmer_CLI -c port=SWD -halt -e all --readunprotect
STM32_Programmer_CLI -c port=SWD -halt -d all.hex -rst
```
## Testing
### Internal
Project-provided tests.
#### Simulated device
A simulated device is provided to test the HID layer.
##### Build
```bash
make clean
cd tinycbor
make
cd ..
make env2
```
##### Execution
```bash
# run simulated device (will create a network UDP server)
./main
# run test 1
./env2/bin/python tools/ctap_test.py
# run test 2 (or other files in the examples directory)
./env2/bin/python python-fido2/examples/credential.py
```
#### Real device
```bash
# while in the main project directory
# not passing as of 8.1.19, due to test solution issues
make fido2-test
```
### External
#### FIDO2 test sites
1. <https://www.passwordless.dev/overview>
2. <https://webauthn.bin.coffee/>
3. <https://webauthn.org/>
#### U2F test sites
1. <https://u2f.bin.coffee/>
2. <https://demo.yubico.com/u2f>
#### FIDO2 standalone clients
1. <https://github.com/Nitrokey/u2f-ref-code>
2. <https://github.com/Yubico/libfido2>
3. <https://github.com/Yubico/python-fido2>
4. <https://github.com/google/pyu2f>
## USB serial console reading
Device opens an USB-emulated serial port to output its messages. While Nucleo board offers such already,
the Solo device provides its own.
- Provided Python tool
```bash
python3 ../../tools/solotool.py monitor /dev/solokey-serial
```
- External application
```bash
sudo picocom -b 115200 /dev/solokey-serial
```
where `/dev/solokey-serial` is an udev symlink to `/dev/ttyACM1`.
## Other
### Dumping firmware
Size is calculated using bash arithmetic.
```bash
STM32_Programmer_CLI -c port=SWD -halt -u 0x0 $((256*1024)) current.hex
```
### Software reset
```bash
STM32_Programmer_CLI -c port=SWD -rst
```
### Installing required Python packages
Client script requires some Python packages, which could be easily installed locally to the project
via the Makefile command. It is sufficient to run:
```bash
make env3
```
[solo-hw#1]: https://github.com/solokeys/solo-hw/issues/1
[usb plug]: https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/USB.svg/1200px-USB.svg.png
[usb plug description]: https://en.wikipedia.org/wiki/USB#Receptacle_(socket)_identification
[usb-a_schematic.pdf]: https://github.com/solokeys/solo-hw/releases/download/1.2/USB-A_schematic.pdf
[arm tools]: https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
[gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2]: https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2018q4/gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2?revision=d830f9dd-cd4f-406d-8672-cca9210dd220?product=GNU%20Arm%20Embedded%20Toolchain,64-bit,,Linux,8-2018-q4-major

113
docs/solo/programming.md Normal file
View File

@ -0,0 +1,113 @@
# Programming
This page documents how to update or program your Solo.
## Prerequisites
To program Solo, you'll likely only need to use our Solo tool.
```python
pip3 install solo-python
```
## Updating the firmware
If you just want to update the firmware, you can run one of the following commands.
Make sure your key [is in bootloader mode](/solo/bootloader-mode#solo-bootloader) first.
```bash
solo key update <--secure | --hacker>
```
You can manually install the [latest release](https://github.com/solokeys/solo/releases), or use a build that you made.
```bash
# If it's a hacker, it will automatically boot into bootloader mode.
solo program bootloader <firmware.hex | firmware.json>
```
Note you won't be able to use `all.hex` or the `bundle-*.hex` builds, as these include the solo bootloader. You shouldn't
risk changing the Solo bootloader unless you want to make it a secure device, or [make other customizations]().
## Updating a Hacker to a Secure Solo
Updating a hacker to be a secure build overwrites the [Solo bootloader](/solo/bootloader-mode#solo-bootloader).
So it's important to not mess this up or you may brick your device.
You can use a firmware build from the [latest release](https://github.com/solokeys/solo/releases) or use
a build that you made yourself.
You need to use a firmware file that has the combined bootloader and application (or at the very least just the bootloader).
This means using the `bundle-*.hex` file or the `all.hex` from your build. If you overwrite the Solo flash with a missing bootloader,
it will be bricked.
We provide two types of bundled builds. The `bundle-hacker-*.hex` build is the hacker build. If you update with this,
you will update the bootloader and application, but nothing will be secured. The `bundle-secure-non-solokeys.hex`
is a secured build that will lock your device and it will behave just like a Secure Solo. The main difference is that
it uses a "default" attestation key in the device, rather than the SoloKeys attestation key. There is no security
concern with using our default attestation key, aside from a privacy implication that services can distinguish it from Solo Secure.
### Procedure
1. Boot into DFU mode.
# Enter Solo bootloader
solo program aux enter-bootloader
# Enter DFU
solo program aux enter-dfu
The device should be turned off.
2. Program the device
solo program dfu <bundle-secure-non-solokeys.hex | all.hex>
Double check you programmed it with bootloader + application (or just bootloader).
If you messed it up, simply don't do the next step and repeat this step correctly.
3. Boot the device
Once Solo boots a secure build, it will lock the flash permantly from debugger access. Also the bootloader
will only accept signed firmware updates.
solo program aux leave-dfu
If you are having problems with solo tool and DFU mode, you could alternatively try booting into DFU
by holding down the button while Solo is in bootloader mode. Then try another programming tool that works
with ST DFU:
* STM32CubeProg
* openocd
* stlink
Windows users need to install [libusb](https://sourceforge.net/projects/libusb-win32/files/libusb-win32-releases/1.2.6.0/)
for solo-python to work with Solo's DFU.
## Programming a Solo that hasn't been programmed
A Solo that hasn't been programmed will boot into DFU mode. You can program
it by following a bootloader, or combined bootloader + application.
```
solo program dfu <bundle-*.hex | all.hex>
```
Then boot the device. Make sure it has a bootloader to boot to.
```
solo program aux leave-dfu
```
## Disable signed firmware updates
If you'd like to also permanently disable signed updates, plug in your programmed Solo and run the following:
```bash
# WARNING: No more signed updates.
solo program disable-bootloader
```
You won't be able to update to any new releases.

19
docs/solo/solo-extras.md Normal file
View File

@ -0,0 +1,19 @@
# Solo Extras
## Random number generation
Solo contains a True Random Number Generator (TRNG). A TRNG is a hardware based mechanism
that leverages natural phenomenon to generate random numbers, which is can be better than a traditional
RNG that has state and updates deterministically using cryptographic methods.
You can easily access the TRNG stream on Solo using our python tool [solo-python](https://github.com/solokeys/solo-python).
```
solo key rng raw > random.bin
```
Or you can seed the state of the RNG on your kernel (/dev/random).
```
solo key rng feedkernel
```

View File

@ -1,20 +1,21 @@
# Summary # Summary
On Linux, by default USB dongles can't be accessed by users, for security reasons. To allow user access, so-called "udev rules" must be installed. (Under Fedora, your key may work without such a rule.) On Linux, by default USB dongles can't be accessed by users, for security reasons. To allow user access, so-called "udev rules" must be installed.
Create a file like [`70-solokeys-access.rules`](https://github.com/solokeys/solo/blob/master/udev/70-solokeys-access.rules) in your `/etc/udev/rules.d` directory, for instance the following rule should cover normal access (it has to be on one line): For some users, things will work automatically:
``` - Fedora seems to use a ["universal" udev rule for FIDO devices](https://github.com/amluto/u2f-hidraw-policy)
SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0483", ATTRS{idProduct}=="a2ca", TAG+="uaccess", MODE="0660", GROUP="plugdev" - Our udev rule made it into [libu2f-host](https://github.com/Yubico/libu2f-host/) v1.1.10
``` - Arch Linux [has this package](https://www.archlinux.org/packages/community/x86_64/libu2f-host/)
- [Debian sid](https://packages.debian.org/sid/libu2f-udev) and [Ubuntu Eon](https://packages.ubuntu.com/eoan/libu2f-udev) can use the `libu2f-udev` package
- Debian Buster and Ubuntu Disco still distribute v1.1.10, so need the manual rule
- FreeBSD has support in [u2f-devd](https://github.com/solokeys/solo/issues/144#issuecomment-500216020)
Additionally, run the following command after you create this file (it is not necessary to do this again in the future): There is hope that `udev` itself will adopt the Fedora approach (which is to check for HID usage page `F1D0`, and avoids manually whitelisting each U2F/FIDO2 key): <https://github.com/systemd/systemd/issues/11996>.
``` Further progress is tracked in: <https://github.com/solokeys/solo/issues/144>.
sudo udevadm control --reload-rules && sudo udevadm trigger
```
A simple way to setup both the udev rule and the udevadm reload is: If you still need to setup a rule, a simple way to do it is:
``` ```
git clone git@github.com:solokeys/solo.git git clone git@github.com:solokeys/solo.git
@ -22,9 +23,11 @@ cd solo/udev
make setup make setup
``` ```
We are working on getting user access to Solo keys enabled automatically in common Linux distributions: <https://github.com/solokeys/solo/issues/144>. Or, manually, create a file like [`70-solokeys-access.rules`](https://github.com/solokeys/solo/blob/master/udev/70-solokeys-access.rules) in your `/etc/udev/rules.d` directory.
Additionally, run the following command after you create this file (it is not necessary to do this again in the future):
```
sudo udevadm control --reload-rules && sudo udevadm trigger
```
# How do udev rules work and why are they needed # How do udev rules work and why are they needed

122
fido2/apdu.c Normal file
View File

@ -0,0 +1,122 @@
// Copyright 2019 SoloKeys Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
// iso7816:2013. 5.3.2 Decoding conventions for command bodies
#include "apdu.h"
int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu)
{
EXT_APDU_HEADER *hapdu = (EXT_APDU_HEADER *)data;
apdu->cla = hapdu->cla;
apdu->ins = hapdu->ins;
apdu->p1 = hapdu->p1;
apdu->p2 = hapdu->p2;
apdu->lc = 0;
apdu->data = NULL;
apdu->le = 0;
apdu->extended_apdu = false;
apdu->case_type = 0x00;
uint8_t b0 = hapdu->lc[0];
// case 1
if (len == 4)
{
apdu->case_type = 0x01;
}
// case 2S (Le)
if (len == 5)
{
apdu->case_type = 0x02;
apdu->le = b0;
if (!apdu->le)
apdu->le = 0x100;
}
// case 3S (Lc + data)
if (len == 5U + b0 && b0 != 0)
{
apdu->case_type = 0x03;
apdu->lc = b0;
}
// case 4S (Lc + data + Le)
if (len == 5U + b0 + 1U && b0 != 0)
{
apdu->case_type = 0x04;
apdu->lc = b0;
apdu->le = data[len - 1];
if (!apdu->le)
apdu->le = 0x100;
}
// extended length apdu
if (len >= 7 && b0 == 0)
{
uint16_t extlen = (hapdu->lc[1] << 8) + hapdu->lc[2];
// case 2E (Le) - extended
if (len == 7)
{
apdu->case_type = 0x12;
apdu->extended_apdu = true;
apdu->le = extlen;
if (!apdu->le)
apdu->le = 0x10000;
}
// case 3E (Lc + data) - extended
if (len == 7U + extlen)
{
apdu->case_type = 0x13;
apdu->extended_apdu = true;
apdu->lc = extlen;
}
// case 4E (Lc + data + Le) - extended 2-byte Le
if (len == 7U + extlen + 2U)
{
apdu->case_type = 0x14;
apdu->extended_apdu = true;
apdu->lc = extlen;
apdu->le = (data[len - 2] << 8) + data[len - 1];
if (!apdu->le)
apdu->le = 0x10000;
}
// case 4E (Lc + data + Le) - extended 3-byte Le
if (len == 7U + extlen + 3U && data[len - 3] == 0)
{
apdu->case_type = 0x24;
apdu->extended_apdu = true;
apdu->lc = extlen;
apdu->le = (data[len - 2] << 8) + data[len - 1];
if (!apdu->le)
apdu->le = 0x10000;
}
}
if (!apdu->case_type)
return 1;
if (apdu->lc)
{
if (apdu->extended_apdu)
{
apdu->data = data + 7;
} else {
apdu->data = data + 5;
}
}
return 0;
}

View File

@ -2,6 +2,8 @@
#define _APDU_H_ #define _APDU_H_
#include <stdint.h> #include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
typedef struct typedef struct
{ {
@ -12,19 +14,46 @@ typedef struct
uint8_t lc; uint8_t lc;
} __attribute__((packed)) APDU_HEADER; } __attribute__((packed)) APDU_HEADER;
typedef struct
{
uint8_t cla;
uint8_t ins;
uint8_t p1;
uint8_t p2;
uint8_t lc[3];
} __attribute__((packed)) EXT_APDU_HEADER;
typedef struct
{
uint8_t cla;
uint8_t ins;
uint8_t p1;
uint8_t p2;
uint16_t lc;
uint8_t *data;
uint32_t le;
bool extended_apdu;
uint8_t case_type;
} __attribute__((packed)) APDU_STRUCT;
extern int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu);
#define APDU_FIDO_U2F_REGISTER 0x01 #define APDU_FIDO_U2F_REGISTER 0x01
#define APDU_FIDO_U2F_AUTHENTICATE 0x02 #define APDU_FIDO_U2F_AUTHENTICATE 0x02
#define APDU_FIDO_U2F_VERSION 0x03 #define APDU_FIDO_U2F_VERSION 0x03
#define APDU_FIDO_NFCCTAP_MSG 0x10 #define APDU_FIDO_NFCCTAP_MSG 0x10
#define APDU_INS_SELECT 0xA4 #define APDU_INS_SELECT 0xA4
#define APDU_INS_READ_BINARY 0xB0 #define APDU_INS_READ_BINARY 0xB0
#define APDU_GET_RESPONSE 0xC0
#define SW_SUCCESS 0x9000 #define SW_SUCCESS 0x9000
#define SW_GET_RESPONSE 0x6100 // Command successfully executed; 'XX' bytes of data are available and can be requested using GET RESPONSE. #define SW_GET_RESPONSE 0x6100 // Command successfully executed; 'XX' bytes of data are available and can be requested using GET RESPONSE.
#define SW_WRONG_LENGTH 0x6700 #define SW_WRONG_LENGTH 0x6700
#define SW_COND_USE_NOT_SATISFIED 0x6985 #define SW_COND_USE_NOT_SATISFIED 0x6985
#define SW_FILE_NOT_FOUND 0x6a82 #define SW_FILE_NOT_FOUND 0x6a82
#define SW_INCORRECT_P1P2 0x6a86
#define SW_INS_INVALID 0x6d00 // Instruction code not supported or invalid #define SW_INS_INVALID 0x6d00 // Instruction code not supported or invalid
#define SW_CLA_INVALID 0x6e00
#define SW_INTERNAL_EXCEPTION 0x6f00 #define SW_INTERNAL_EXCEPTION 0x6f00
#endif //_APDU_H_ #endif //_APDU_H_

View File

@ -262,6 +262,11 @@ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8
memmove(y,pubkey+32,32); memmove(y,pubkey+32,32);
} }
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len) void crypto_load_external_key(uint8_t * key, int len)
{ {
_signing_key = key; _signing_key = key;

View File

@ -26,6 +26,7 @@ void crypto_sha512_final(uint8_t * hash);
void crypto_ecc256_init(); void crypto_ecc256_init();
void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8_t * y); void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8_t * y);
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey);
void crypto_ecc256_load_key(uint8_t * data, int len, uint8_t * data2, int len2); void crypto_ecc256_load_key(uint8_t * data, int len, uint8_t * data2, int len2);
void crypto_ecc256_load_attestation_key(); void crypto_ecc256_load_attestation_key();
@ -38,6 +39,7 @@ void generate_private_key(uint8_t * data, int len, uint8_t * data2, int len2, ui
void crypto_ecc256_make_key_pair(uint8_t * pubkey, uint8_t * privkey); void crypto_ecc256_make_key_pair(uint8_t * pubkey, uint8_t * privkey);
void crypto_ecc256_shared_secret(const uint8_t * pubkey, const uint8_t * privkey, uint8_t * shared_secret); void crypto_ecc256_shared_secret(const uint8_t * pubkey, const uint8_t * privkey, uint8_t * shared_secret);
#define CRYPTO_TRANSPORT_KEY2 ((uint8_t*)2)
#define CRYPTO_TRANSPORT_KEY ((uint8_t*)1) #define CRYPTO_TRANSPORT_KEY ((uint8_t*)1)
#define CRYPTO_MASTER_KEY ((uint8_t*)0) #define CRYPTO_MASTER_KEY ((uint8_t*)0)

View File

@ -256,7 +256,9 @@ static int ctap_generate_cose_key(CborEncoder * cose_key, uint8_t * hmac_input,
switch(algtype) switch(algtype)
{ {
case COSE_ALG_ES256: case COSE_ALG_ES256:
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
crypto_ecc256_derive_public_key(hmac_input, len, x, y); crypto_ecc256_derive_public_key(hmac_input, len, x, y);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
break; break;
default: default:
printf2(TAG_ERR,"Error, COSE alg %d not supported\n", algtype); printf2(TAG_ERR,"Error, COSE alg %d not supported\n", algtype);
@ -355,9 +357,9 @@ static int ctap_make_extensions(CTAP_extensions * ext, uint8_t * ext_encoder_buf
} }
// Generate credRandom // Generate credRandom
crypto_sha256_hmac_init(CRYPTO_TRANSPORT_KEY, 0, credRandom); crypto_sha256_hmac_init(CRYPTO_TRANSPORT_KEY2, 0, credRandom);
crypto_sha256_update((uint8_t*)&ext->hmac_secret.credential->id, sizeof(CredentialId)); crypto_sha256_update((uint8_t*)&ext->hmac_secret.credential->id, sizeof(CredentialId));
crypto_sha256_hmac_final(CRYPTO_TRANSPORT_KEY, 0, credRandom); crypto_sha256_hmac_final(CRYPTO_TRANSPORT_KEY2, 0, credRandom);
// Decrypt saltEnc // Decrypt saltEnc
crypto_aes256_init(shared_secret, NULL); crypto_aes256_init(shared_secret, NULL);
@ -432,6 +434,12 @@ static unsigned int get_credential_id_size(CTAP_credentialDescriptor * cred)
return sizeof(CredentialId); return sizeof(CredentialId);
} }
static int ctap2_user_presence_test()
{
device_set_status(CTAPHID_STATUS_UPNEEDED);
return ctap_user_presence_test(CTAP2_UP_DELAY_MS);
}
static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * auth_data_buf, uint32_t * len, CTAP_credInfo * credInfo) static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * auth_data_buf, uint32_t * len, CTAP_credInfo * credInfo)
{ {
CborEncoder cose_key; CborEncoder cose_key;
@ -459,11 +467,9 @@ static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * au
count = auth_data_update_count(&authData->head); count = auth_data_update_count(&authData->head);
device_set_status(CTAPHID_STATUS_UPNEEDED);
int but; int but;
but = ctap_user_presence_test(CTAP2_UP_DELAY_MS); but = ctap2_user_presence_test(CTAP2_UP_DELAY_MS);
if (!but) if (!but)
{ {
@ -473,6 +479,7 @@ static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * au
{ {
return CTAP2_ERR_KEEPALIVE_CANCEL; return CTAP2_ERR_KEEPALIVE_CANCEL;
} }
device_set_status(CTAPHID_STATUS_PROCESSING); device_set_status(CTAPHID_STATUS_PROCESSING);
authData->head.flags = (but << 0); authData->head.flags = (but << 0);
@ -605,7 +612,6 @@ int ctap_calculate_signature(uint8_t * data, int datalen, uint8_t * clientDataHa
crypto_sha256_final(hashbuf); crypto_sha256_final(hashbuf);
crypto_ecc256_sign(hashbuf, 32, sigbuf); crypto_ecc256_sign(hashbuf, 32, sigbuf);
return ctap_encode_der_sig(sigbuf,sigder); return ctap_encode_der_sig(sigbuf,sigder);
} }
@ -701,11 +707,11 @@ uint8_t ctap_make_credential(CborEncoder * encoder, uint8_t * request, int lengt
} }
if (MC.pinAuthEmpty) if (MC.pinAuthEmpty)
{ {
if (!ctap_user_presence_test(CTAP2_UP_DELAY_MS)) if (!ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
{ {
return CTAP2_ERR_OPERATION_DENIED; return CTAP2_ERR_OPERATION_DENIED;
} }
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_INVALID : CTAP2_ERR_PIN_NOT_SET; return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_AUTH_INVALID : CTAP2_ERR_PIN_NOT_SET;
} }
if ((MC.paramsParsed & MC_requiredMask) != MC_requiredMask) if ((MC.paramsParsed & MC_requiredMask) != MC_requiredMask)
{ {
@ -1056,7 +1062,7 @@ uint8_t ctap_end_get_assertion(CborEncoder * map, CTAP_credentialDescriptor * cr
else else
#endif #endif
{ {
sigder_sz = ctap_calculate_signature(auth_data_buf, sizeof(CTAP_authDataHeader), clientDataHash, auth_data_buf, sigbuf, sigder); sigder_sz = ctap_calculate_signature(auth_data_buf, auth_data_buf_sz, clientDataHash, auth_data_buf, sigbuf, sigder);
} }
{ {
@ -1137,11 +1143,11 @@ uint8_t ctap_get_assertion(CborEncoder * encoder, uint8_t * request, int length)
if (GA.pinAuthEmpty) if (GA.pinAuthEmpty)
{ {
if (!ctap_user_presence_test(CTAP2_UP_DELAY_MS)) if (!ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
{ {
return CTAP2_ERR_OPERATION_DENIED; return CTAP2_ERR_OPERATION_DENIED;
} }
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_INVALID : CTAP2_ERR_PIN_NOT_SET; return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_AUTH_INVALID : CTAP2_ERR_PIN_NOT_SET;
} }
if (GA.pinAuthPresent) if (GA.pinAuthPresent)
{ {
@ -1475,6 +1481,11 @@ uint8_t ctap_client_pin(CborEncoder * encoder, uint8_t * request, int length)
ret = cbor_encode_int(&map, RESP_keyAgreement); ret = cbor_encode_int(&map, RESP_keyAgreement);
check_ret(ret); check_ret(ret);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
crypto_ecc256_compute_public_key(KEY_AGREEMENT_PRIV, KEY_AGREEMENT_PUB);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
ret = ctap_add_cose_key(&map, KEY_AGREEMENT_PUB, KEY_AGREEMENT_PUB+32, PUB_KEY_CRED_PUB_KEY, COSE_ALG_ECDH_ES_HKDF_256); ret = ctap_add_cose_key(&map, KEY_AGREEMENT_PUB, KEY_AGREEMENT_PUB+32, PUB_KEY_CRED_PUB_KEY, COSE_ALG_ECDH_ES_HKDF_256);
check_retr(ret); check_retr(ret);
@ -1604,7 +1615,6 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
switch(cmd) switch(cmd)
{ {
case CTAP_MAKE_CREDENTIAL: case CTAP_MAKE_CREDENTIAL:
device_set_status(CTAPHID_STATUS_PROCESSING);
printf1(TAG_CTAP,"CTAP_MAKE_CREDENTIAL\n"); printf1(TAG_CTAP,"CTAP_MAKE_CREDENTIAL\n");
timestamp(); timestamp();
status = ctap_make_credential(&encoder, pkt_raw, length); status = ctap_make_credential(&encoder, pkt_raw, length);
@ -1615,7 +1625,6 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break; break;
case CTAP_GET_ASSERTION: case CTAP_GET_ASSERTION:
device_set_status(CTAPHID_STATUS_PROCESSING);
printf1(TAG_CTAP,"CTAP_GET_ASSERTION\n"); printf1(TAG_CTAP,"CTAP_GET_ASSERTION\n");
timestamp(); timestamp();
status = ctap_get_assertion(&encoder, pkt_raw, length); status = ctap_get_assertion(&encoder, pkt_raw, length);
@ -1647,7 +1656,7 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break; break;
case CTAP_RESET: case CTAP_RESET:
printf1(TAG_CTAP,"CTAP_RESET\n"); printf1(TAG_CTAP,"CTAP_RESET\n");
if (ctap_user_presence_test(CTAP2_UP_DELAY_MS)) if (ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
{ {
ctap_reset(); ctap_reset();
} }
@ -1676,7 +1685,7 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break; break;
default: default:
status = CTAP1_ERR_INVALID_COMMAND; status = CTAP1_ERR_INVALID_COMMAND;
printf2(TAG_ERR,"error, invalid cmd\n"); printf2(TAG_ERR,"error, invalid cmd: %x\n", cmd);
} }
done: done:
@ -1765,10 +1774,7 @@ void ctap_init()
exit(1); exit(1);
} }
if (device_is_nfc() != NFC_IS_ACTIVE)
{
ctap_reset_key_agreement(); ctap_reset_key_agreement();
}
#ifdef BRIDGE_TO_WALLET #ifdef BRIDGE_TO_WALLET
wallet_init(); wallet_init();
@ -1967,7 +1973,7 @@ int8_t ctap_load_key(uint8_t index, uint8_t * key)
static void ctap_reset_key_agreement() static void ctap_reset_key_agreement()
{ {
crypto_ecc256_make_key_pair(KEY_AGREEMENT_PUB, KEY_AGREEMENT_PRIV); ctap_generate_rng(KEY_AGREEMENT_PRIV, sizeof(KEY_AGREEMENT_PRIV));
} }
void ctap_reset() void ctap_reset()
@ -1987,5 +1993,5 @@ void ctap_reset()
memset(PIN_CODE_HASH,0,sizeof(PIN_CODE_HASH)); memset(PIN_CODE_HASH,0,sizeof(PIN_CODE_HASH));
ctap_reset_key_agreement(); ctap_reset_key_agreement();
crypto_reset_master_secret(); crypto_load_master_secret(STATE.key_space);
} }

View File

@ -105,6 +105,8 @@ void device_set_clock_rate(DEVICE_CLOCK_RATE param);
#define NFC_IS_AVAILABLE 2 #define NFC_IS_AVAILABLE 2
int device_is_nfc(); int device_is_nfc();
void request_from_nfc(bool request_active);
void device_init_button(); void device_init_button();
#endif #endif

View File

@ -113,14 +113,14 @@ end:
printf1(TAG_U2F,"u2f resp: "); dump_hex1(TAG_U2F, _u2f_resp->data, _u2f_resp->length); printf1(TAG_U2F,"u2f resp: "); dump_hex1(TAG_U2F, _u2f_resp->data, _u2f_resp->length);
} }
void u2f_request_nfc(uint8_t * req, int len, CTAP_RESPONSE * resp) void u2f_request_nfc(uint8_t * header, uint8_t * data, int datalen, CTAP_RESPONSE * resp)
{ {
if (len < 5 || !req) if (!header)
return; return;
uint32_t alen = req[4]; request_from_nfc(true); // disable presence test
u2f_request_ex((APDU_HEADER *)header, data, datalen, resp);
u2f_request_ex((APDU_HEADER *)req, &req[5], alen, resp); request_from_nfc(false); // enable presence test
} }
void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp) void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp)

View File

@ -101,7 +101,7 @@ void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp);
// u2f_request send a U2F message to NFC protocol // u2f_request send a U2F message to NFC protocol
// @req data with iso7816 apdu message // @req data with iso7816 apdu message
// @len data length // @len data length
void u2f_request_nfc(uint8_t * req, int len, CTAP_RESPONSE * resp); void u2f_request_nfc(uint8_t * header, uint8_t * data, int datalen, CTAP_RESPONSE * resp);
int8_t u2f_authenticate_credential(struct u2f_key_handle * kh, uint8_t * appid); int8_t u2f_authenticate_credential(struct u2f_key_handle * kh, uint8_t * appid);

View File

@ -38,6 +38,7 @@ build firmware hacker solo
build firmware hacker-debug-1 solo build firmware hacker-debug-1 solo
build firmware hacker-debug-2 solo build firmware hacker-debug-2 solo
build firmware secure solo build firmware secure solo
build firmware secure-non-solokeys solo
pip install -U pip pip install -U pip
pip install -U solo-python pip install -U solo-python
@ -49,3 +50,6 @@ bundle="bundle-hacker-debug-1-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-debug-1-${version}.hex ${bundle}.hex /opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-debug-1-${version}.hex ${bundle}.hex
bundle="bundle-hacker-debug-2-${version}" bundle="bundle-hacker-debug-2-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-debug-2-${version}.hex ${bundle}.hex /opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-debug-2-${version}.hex ${bundle}.hex
bundle="bundle-secure-non-solokeys-${version}"
/opt/conda/bin/solo mergehex bootloader-verifying-${version}.hex firmware-secure-non-solokeys-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2

View File

@ -11,6 +11,11 @@ nav:
- FIDO2 Implementation: solo/fido2-impl.md - FIDO2 Implementation: solo/fido2-impl.md
- Metadata Statements: solo/metadata-statements.md - Metadata Statements: solo/metadata-statements.md
- Build instructions: solo/building.md - Build instructions: solo/building.md
- Programming instructions: solo/programming.md
- Bootloader mode: solo/bootloader-mode.md
- Customization: solo/customization.md
- Solo Extras: solo/solo-extras.md
- Running on Nucleo32 board: solo/nucleo32-board.md
- Signed update process: solo/signed-updates.md - Signed update process: solo/signed-updates.md
- Code documentation: solo/code-overview.md - Code documentation: solo/code-overview.md
- Contributing Code: solo/contributing.md - Contributing Code: solo/contributing.md

View File

@ -628,3 +628,8 @@ int device_is_nfc()
{ {
return 0; return 0;
} }
void device_set_clock_rate(DEVICE_CLOCK_RATE param)
{
}

View File

@ -21,6 +21,9 @@ firmware-hacker-debug-1:
firmware-hacker-debug-2: firmware-hacker-debug-2:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=2 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0' $(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=2 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0'
firmware-secure-non-solokeys:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DFLASH_ROP=2'
firmware-secure: firmware-secure:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DUSE_SOLOKEYS_CERT -DFLASH_ROP=2' $(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DUSE_SOLOKEYS_CERT -DFLASH_ROP=2'
@ -59,7 +62,6 @@ boot-no-sig:
build-release-locked: cbor clean2 boot-sig-checking clean all-locked build-release-locked: cbor clean2 boot-sig-checking clean all-locked
$(VENV) $(merge_hex) solo.hex bootloader.hex all.hex $(VENV) $(merge_hex) solo.hex bootloader.hex all.hex
rm -f solo.hex bootloader.hex # don't program solo.hex ...
build-release: cbor clean2 boot-sig-checking clean all build-release: cbor clean2 boot-sig-checking clean all
$(VENV) $(merge_hex) solo.hex bootloader.hex all.hex $(VENV) $(merge_hex) solo.hex bootloader.hex all.hex

View File

@ -7,7 +7,7 @@ SRC += src/startup_stm32l432xx.s src/system_stm32l4xx.c
SRC += $(DRIVER_LIBS) $(USB_LIB) SRC += $(DRIVER_LIBS) $(USB_LIB)
# FIDO2 lib # FIDO2 lib
SRC += ../../fido2/util.c ../../fido2/u2f.c ../../fido2/test_power.c SRC += ../../fido2/apdu.c ../../fido2/util.c ../../fido2/u2f.c ../../fido2/test_power.c
SRC += ../../fido2/stubs.c ../../fido2/log.c ../../fido2/ctaphid.c ../../fido2/ctap.c SRC += ../../fido2/stubs.c ../../fido2/log.c ../../fido2/ctaphid.c ../../fido2/ctap.c
SRC += ../../fido2/ctap_parse.c ../../fido2/main.c SRC += ../../fido2/ctap_parse.c ../../fido2/main.c
SRC += ../../fido2/extensions/extensions.c ../../fido2/extensions/solo.c SRC += ../../fido2/extensions/extensions.c ../../fido2/extensions/solo.c

View File

@ -6,7 +6,7 @@ AR=$(PREFIX)arm-none-eabi-ar
DRIVER_LIBS := lib/stm32l4xx_hal_pcd.c lib/stm32l4xx_hal_pcd_ex.c lib/stm32l4xx_ll_gpio.c \ DRIVER_LIBS := lib/stm32l4xx_hal_pcd.c lib/stm32l4xx_hal_pcd_ex.c lib/stm32l4xx_ll_gpio.c \
lib/stm32l4xx_ll_rcc.c lib/stm32l4xx_ll_rng.c lib/stm32l4xx_ll_tim.c \ lib/stm32l4xx_ll_rcc.c lib/stm32l4xx_ll_rng.c lib/stm32l4xx_ll_tim.c \
lib/stm32l4xx_ll_usb.c lib/stm32l4xx_ll_utils.c lib/stm32l4xx_ll_pwr.c \ lib/stm32l4xx_ll_usb.c lib/stm32l4xx_ll_utils.c lib/stm32l4xx_ll_pwr.c \
lib/stm32l4xx_ll_usart.c lib/stm32l4xx_ll_spi.c lib/stm32l4xx_ll_usart.c lib/stm32l4xx_ll_spi.c lib/stm32l4xx_ll_exti.c
USB_LIB := lib/usbd/usbd_cdc.c lib/usbd/usbd_cdc_if.c lib/usbd/usbd_composite.c \ USB_LIB := lib/usbd/usbd_cdc.c lib/usbd/usbd_cdc_if.c lib/usbd/usbd_composite.c \
lib/usbd/usbd_conf.c lib/usbd/usbd_core.c lib/usbd/usbd_ioreq.c \ lib/usbd/usbd_conf.c lib/usbd/usbd_core.c lib/usbd/usbd_ioreq.c \

View File

@ -0,0 +1,290 @@
/**
******************************************************************************
* @file stm32l4xx_ll_exti.c
* @author MCD Application Team
* @brief EXTI LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_ll_exti.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32L4xx_LL_Driver
* @{
*/
#if defined (EXTI)
/** @defgroup EXTI_LL EXTI
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup EXTI_LL_Private_Macros
* @{
*/
#define IS_LL_EXTI_LINE_0_31(__VALUE__) (((__VALUE__) & ~LL_EXTI_LINE_ALL_0_31) == 0x00000000U)
#define IS_LL_EXTI_LINE_32_63(__VALUE__) (((__VALUE__) & ~LL_EXTI_LINE_ALL_32_63) == 0x00000000U)
#define IS_LL_EXTI_MODE(__VALUE__) (((__VALUE__) == LL_EXTI_MODE_IT) \
|| ((__VALUE__) == LL_EXTI_MODE_EVENT) \
|| ((__VALUE__) == LL_EXTI_MODE_IT_EVENT))
#define IS_LL_EXTI_TRIGGER(__VALUE__) (((__VALUE__) == LL_EXTI_TRIGGER_NONE) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_RISING) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_FALLING) \
|| ((__VALUE__) == LL_EXTI_TRIGGER_RISING_FALLING))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup EXTI_LL_Exported_Functions
* @{
*/
/** @addtogroup EXTI_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the EXTI registers to their default reset values.
* @retval An ErrorStatus enumeration value:
* - 0x00: EXTI registers are de-initialized
*/
uint32_t LL_EXTI_DeInit(void)
{
/* Interrupt mask register set to default reset values */
LL_EXTI_WriteReg(IMR1, 0xFF820000U);
/* Event mask register set to default reset values */
LL_EXTI_WriteReg(EMR1, 0x00000000U);
/* Rising Trigger selection register set to default reset values */
LL_EXTI_WriteReg(RTSR1, 0x00000000U);
/* Falling Trigger selection register set to default reset values */
LL_EXTI_WriteReg(FTSR1, 0x00000000U);
/* Software interrupt event register set to default reset values */
LL_EXTI_WriteReg(SWIER1, 0x00000000U);
/* Pending register clear */
LL_EXTI_WriteReg(PR1, 0x007DFFFFU);
/* Interrupt mask register 2 set to default reset values */
#if defined(LL_EXTI_LINE_40)
LL_EXTI_WriteReg(IMR2, 0x00000187U);
#else
LL_EXTI_WriteReg(IMR2, 0x00000087U);
#endif
/* Event mask register 2 set to default reset values */
LL_EXTI_WriteReg(EMR2, 0x00000000U);
/* Rising Trigger selection register 2 set to default reset values */
LL_EXTI_WriteReg(RTSR2, 0x00000000U);
/* Falling Trigger selection register 2 set to default reset values */
LL_EXTI_WriteReg(FTSR2, 0x00000000U);
/* Software interrupt event register 2 set to default reset values */
LL_EXTI_WriteReg(SWIER2, 0x00000000U);
/* Pending register 2 clear */
LL_EXTI_WriteReg(PR2, 0x00000078U);
return 0x00u;
}
/**
* @brief Initialize the EXTI registers according to the specified parameters in EXTI_InitStruct.
* @param EXTI_InitStruct pointer to a @ref LL_EXTI_InitTypeDef structure.
* @retval An ErrorStatus enumeration value:
* - 0x00: EXTI registers are initialized
* - any other calue : wrong configuration
*/
uint32_t LL_EXTI_Init(LL_EXTI_InitTypeDef *EXTI_InitStruct)
{
uint32_t status = 0x00u;
/* Check the parameters */
assert_param(IS_LL_EXTI_LINE_0_31(EXTI_InitStruct->Line_0_31));
assert_param(IS_LL_EXTI_LINE_32_63(EXTI_InitStruct->Line_32_63));
assert_param(IS_FUNCTIONAL_STATE(EXTI_InitStruct->LineCommand));
assert_param(IS_LL_EXTI_MODE(EXTI_InitStruct->Mode));
/* ENABLE LineCommand */
if (EXTI_InitStruct->LineCommand != DISABLE)
{
assert_param(IS_LL_EXTI_TRIGGER(EXTI_InitStruct->Trigger));
/* Configure EXTI Lines in range from 0 to 31 */
if (EXTI_InitStruct->Line_0_31 != LL_EXTI_LINE_NONE)
{
switch (EXTI_InitStruct->Mode)
{
case LL_EXTI_MODE_IT:
/* First Disable Event on provided Lines */
LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable IT on provided Lines */
LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_MODE_EVENT:
/* First Disable IT on provided Lines */
LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Event on provided Lines */
LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_MODE_IT_EVENT:
/* Directly Enable IT & Event on provided Lines */
LL_EXTI_EnableIT_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_EnableEvent_0_31(EXTI_InitStruct->Line_0_31);
break;
default:
status = 0x01u;
break;
}
if (EXTI_InitStruct->Trigger != LL_EXTI_TRIGGER_NONE)
{
switch (EXTI_InitStruct->Trigger)
{
case LL_EXTI_TRIGGER_RISING:
/* First Disable Falling Trigger on provided Lines */
LL_EXTI_DisableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Rising Trigger on provided Lines */
LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_TRIGGER_FALLING:
/* First Disable Rising Trigger on provided Lines */
LL_EXTI_DisableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
/* Then Enable Falling Trigger on provided Lines */
LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
case LL_EXTI_TRIGGER_RISING_FALLING:
LL_EXTI_EnableRisingTrig_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_EnableFallingTrig_0_31(EXTI_InitStruct->Line_0_31);
break;
default:
status |= 0x02u;
break;
}
}
}
/* Configure EXTI Lines in range from 32 to 63 */
if (EXTI_InitStruct->Line_32_63 != LL_EXTI_LINE_NONE)
{
switch (EXTI_InitStruct->Mode)
{
case LL_EXTI_MODE_IT:
/* First Disable Event on provided Lines */
LL_EXTI_DisableEvent_32_63(EXTI_InitStruct->Line_32_63);
/* Then Enable IT on provided Lines */
LL_EXTI_EnableIT_32_63(EXTI_InitStruct->Line_32_63);
break;
case LL_EXTI_MODE_EVENT:
/* First Disable IT on provided Lines */
LL_EXTI_DisableIT_32_63(EXTI_InitStruct->Line_32_63);
/* Then Enable Event on provided Lines */
LL_EXTI_EnableEvent_32_63(EXTI_InitStruct->Line_32_63);
break;
case LL_EXTI_MODE_IT_EVENT:
/* Directly Enable IT & Event on provided Lines */
LL_EXTI_EnableIT_32_63(EXTI_InitStruct->Line_32_63);
LL_EXTI_EnableEvent_32_63(EXTI_InitStruct->Line_32_63);
break;
default:
status |= 0x04u;
break;
}
if (EXTI_InitStruct->Trigger != LL_EXTI_TRIGGER_NONE)
{
switch (EXTI_InitStruct->Trigger)
{
case LL_EXTI_TRIGGER_RISING:
/* First Disable Falling Trigger on provided Lines */
LL_EXTI_DisableFallingTrig_32_63(EXTI_InitStruct->Line_32_63);
/* Then Enable IT on provided Lines */
LL_EXTI_EnableRisingTrig_32_63(EXTI_InitStruct->Line_32_63);
break;
case LL_EXTI_TRIGGER_FALLING:
/* First Disable Rising Trigger on provided Lines */
LL_EXTI_DisableRisingTrig_32_63(EXTI_InitStruct->Line_32_63);
/* Then Enable Falling Trigger on provided Lines */
LL_EXTI_EnableFallingTrig_32_63(EXTI_InitStruct->Line_32_63);
break;
case LL_EXTI_TRIGGER_RISING_FALLING:
LL_EXTI_EnableRisingTrig_32_63(EXTI_InitStruct->Line_32_63);
LL_EXTI_EnableFallingTrig_32_63(EXTI_InitStruct->Line_32_63);
break;
default:
status = ERROR;
break;
}
}
}
}
/* DISABLE LineCommand */
else
{
/* De-configure EXTI Lines in range from 0 to 31 */
LL_EXTI_DisableIT_0_31(EXTI_InitStruct->Line_0_31);
LL_EXTI_DisableEvent_0_31(EXTI_InitStruct->Line_0_31);
/* De-configure EXTI Lines in range from 32 to 63 */
LL_EXTI_DisableIT_32_63(EXTI_InitStruct->Line_32_63);
LL_EXTI_DisableEvent_32_63(EXTI_InitStruct->Line_32_63);
}
return status;
}
/**
* @brief Set each @ref LL_EXTI_InitTypeDef field to default value.
* @param EXTI_InitStruct Pointer to a @ref LL_EXTI_InitTypeDef structure.
* @retval None
*/
void LL_EXTI_StructInit(LL_EXTI_InitTypeDef *EXTI_InitStruct)
{
EXTI_InitStruct->Line_0_31 = LL_EXTI_LINE_NONE;
EXTI_InitStruct->Line_32_63 = LL_EXTI_LINE_NONE;
EXTI_InitStruct->LineCommand = DISABLE;
EXTI_InitStruct->Mode = LL_EXTI_MODE_IT;
EXTI_InitStruct->Trigger = LL_EXTI_TRIGGER_FALLING;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* defined (EXTI) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

File diff suppressed because it is too large Load Diff

View File

@ -27,19 +27,24 @@ static uint8_t *USBD_Composite_GetOtherSpeedCfgDesc (uint16_t *length);
static uint8_t *USBD_Composite_GetDeviceQualifierDescriptor (uint16_t *length); static uint8_t *USBD_Composite_GetDeviceQualifierDescriptor (uint16_t *length);
#define NUM_INTERFACES 3 #define NUM_CLASSES 3
#if NUM_INTERFACES>2
#if NUM_CLASSES>2
#define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (90 + 8+9 + 4 + 84)
#define NUM_INTERFACES 4
#elif NUM_CLASSES>1
#define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (90 + 84) #define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (90 + 84)
#elif NUM_INTERFACES>1 #define NUM_INTERFACES 2
#define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (90)
#else #else
#define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (41) #define COMPOSITE_CDC_HID_DESCRIPTOR_SIZE (41)
#define NUM_INTERFACES 1
#endif #endif
#define HID_INTF_NUM 0 #define HID_INTF_NUM 0
#define CDC_INTF_NUM 1 #define CCID_INTF_NUM 1
#define CCID_INTF_NUM 2 #define CDC_MASTER_INTF_NUM 2
#define CDC_SLAVE_INTF_NUM 3
__ALIGN_BEGIN uint8_t COMPOSITE_CDC_HID_DESCRIPTOR[COMPOSITE_CDC_HID_DESCRIPTOR_SIZE] __ALIGN_END = __ALIGN_BEGIN uint8_t COMPOSITE_CDC_HID_DESCRIPTOR[COMPOSITE_CDC_HID_DESCRIPTOR_SIZE] __ALIGN_END =
{ {
/*Configuration Descriptor*/ /*Configuration Descriptor*/
@ -47,7 +52,7 @@ __ALIGN_BEGIN uint8_t COMPOSITE_CDC_HID_DESCRIPTOR[COMPOSITE_CDC_HID_DESCRIPTOR_
USB_DESC_TYPE_CONFIGURATION, /* bDescriptorType: Configuration */ USB_DESC_TYPE_CONFIGURATION, /* bDescriptorType: Configuration */
COMPOSITE_CDC_HID_DESCRIPTOR_SIZE, /* wTotalLength:no of returned bytes */ COMPOSITE_CDC_HID_DESCRIPTOR_SIZE, /* wTotalLength:no of returned bytes */
0x00, 0x00,
NUM_INTERFACES, /* bNumInterfaces: 1 interface */ NUM_INTERFACES, /* bNumInterfaces */
0x01, /* bConfigurationValue: Configuration value */ 0x01, /* bConfigurationValue: Configuration value */
0x00, /* iConfiguration: Index of string descriptor describing the configuration */ 0x00, /* iConfiguration: Index of string descriptor describing the configuration */
0x80, /* bmAttributes: self powered */ 0x80, /* bmAttributes: self powered */
@ -96,84 +101,8 @@ __ALIGN_BEGIN uint8_t COMPOSITE_CDC_HID_DESCRIPTOR[COMPOSITE_CDC_HID_DESCRIPTOR_
0x00, 0x00,
HID_BINTERVAL, /*bInterval: Polling Interval */ HID_BINTERVAL, /*bInterval: Polling Interval */
#if NUM_INTERFACES>1 #if NUM_INTERFACES>1
/* */
/* CDC */
/* */
/*Interface Descriptor */
0x09, /* bLength: Interface Descriptor size */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType: Interface */
/* Interface descriptor type */
/*!*/ CDC_INTF_NUM, /* bInterfaceNumber: Number of Interface */
0x00, /* bAlternateSetting: Alternate setting */
0x03, /* bNumEndpoints: 3 endpoints used */
0x02, /* bInterfaceClass: Communication Interface Class */
0x02, /* bInterfaceSubClass: Abstract Control Model */
0x00, /* bInterfaceProtocol: Common AT commands */
0x00, /* iInterface: */
/*Header Functional Descriptor*/
0x05, /* bLength: Endpoint Descriptor size */
0x24, /* bDescriptorType: CS_INTERFACE */
0x00, /* bDescriptorSubtype: Header Func Desc */
0x10, /* bcdCDC: spec release number */
0x01,
/*Call Management Functional Descriptor*/
0x05, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x01, /* bDescriptorSubtype: Call Management Func Desc */
0x00, /* bmCapabilities: D0+D1 */
/*!*/ CDC_INTF_NUM, /* bDataInterface: 0 */
/*ACM Functional Descriptor*/
0x04, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x02, /* bDescriptorSubtype: Abstract Control Management desc */
0x02, /* bmCapabilities */
/*Union Functional Descriptor*/
0x05, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x06, /* bDescriptorSubtype: Union func desc */
/*!*/ CDC_INTF_NUM, /* bMasterInterface: Communication class interface */
/*!*/ CDC_INTF_NUM, /* bSlaveInterface0: Data Class Interface */
/*Endpoint 2 Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_CMD_EP, /* bEndpointAddress */
0x03, /* bmAttributes: Interrupt */
LOBYTE(CDC_CMD_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_CMD_PACKET_SIZE),
0x10, /* bInterval: */
/*Endpoint OUT Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_OUT_EP, /* bEndpointAddress */
0x02, /* bmAttributes: Bulk */
LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
0x00, /* bInterval: ignore for Bulk transfer */
/*Endpoint IN Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_IN_EP, /* bEndpointAddress */
0x02, /* bmAttributes: Bulk */
LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
0x00, /* bInterval: ignore for Bulk transfer */
#endif
#if NUM_INTERFACES>2
/* CCID Interface Descriptor */ /* CCID Interface Descriptor */
9, /* bLength: Interface Descriptor size */ 9, /* bLength: Interface Descriptor size */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType: Interface */ USB_DESC_TYPE_INTERFACE, /* bDescriptorType: Interface */
@ -247,8 +176,106 @@ CCID_CMD_EP, /* bEndpointAddress: (IN2) */
#endif #endif
}; #if NUM_INTERFACES > 2
/* */
/* CDC */
/* */
// This "IAD" is needed for Windows since it ignores the standard Union Functional Descriptor
0x08, // bLength
0x0B, // IAD type
CDC_MASTER_INTF_NUM, // First interface
CDC_SLAVE_INTF_NUM, // Next interface
0x02, // bInterfaceClass of the first interface
0x02, // bInterfaceSubClass of the first interface
0x00, // bInterfaceProtocol of the first interface
0x00, // Interface string index
/*Interface Descriptor */
0x09, /* bLength: Interface Descriptor size */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType: Interface */
/* Interface descriptor type */
/*!*/ CDC_MASTER_INTF_NUM, /* bInterfaceNumber: Number of Interface */
0x00, /* bAlternateSetting: Alternate setting */
0x01, /* bNumEndpoints: 1 endpoint used */
0x02, /* bInterfaceClass: Communication Interface Class */
0x02, /* bInterfaceSubClass: Abstract Control Model */
0x00, /* bInterfaceProtocol: Common AT commands */
0x00, /* iInterface: */
/*Header Functional Descriptor*/
0x05, /* bLength: Endpoint Descriptor size */
0x24, /* bDescriptorType: CS_INTERFACE */
0x00, /* bDescriptorSubtype: Header Func Desc */
0x10, /* bcdCDC: spec release number */
0x01,
/*Call Management Functional Descriptor*/
0x05, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x01, /* bDescriptorSubtype: Call Management Func Desc */
0x00, /* bmCapabilities: D0+D1 */
/*!*/ CDC_SLAVE_INTF_NUM, /* bDataInterface: 0 */
/*ACM Functional Descriptor*/
0x04, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x02, /* bDescriptorSubtype: Abstract Control Management desc */
0x02, /* bmCapabilities */
/*Union Functional Descriptor*/
0x05, /* bFunctionLength */
0x24, /* bDescriptorType: CS_INTERFACE */
0x06, /* bDescriptorSubtype: Union func desc */
/*!*/ CDC_MASTER_INTF_NUM, /* bMasterInterface: Communication class interface */
/*!*/ CDC_SLAVE_INTF_NUM, /* bSlaveInterface0: Data Class Interface */
/* Control Endpoint Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_CMD_EP, /* bEndpointAddress */
0x03, /* bmAttributes: Interrupt */
LOBYTE(CDC_CMD_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_CMD_PACKET_SIZE),
0x10, /* bInterval: */
/* Interface descriptor */
0x09, /* bLength */
USB_DESC_TYPE_INTERFACE, /* bDescriptorType */
CDC_SLAVE_INTF_NUM, /* bInterfaceNumber */
0x00, /* bAlternateSetting */
0x02, /* bNumEndpoints */
0x0A, /* bInterfaceClass: Communication class data */
0x00, /* bInterfaceSubClass */
0x00, /* bInterfaceProtocol */
0x00,
/*Endpoint OUT Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_OUT_EP, /* bEndpointAddress */
0x02, /* bmAttributes: Bulk */
LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
0x00, /* bInterval: ignore for Bulk transfer */
/*Endpoint IN Descriptor*/
0x07, /* bLength: Endpoint Descriptor size */
USB_DESC_TYPE_ENDPOINT, /* bDescriptorType: Endpoint */
CDC_IN_EP, /* bEndpointAddress */
0x02, /* bmAttributes: Bulk */
LOBYTE(CDC_DATA_FS_MAX_PACKET_SIZE), /* wMaxPacketSize: */
HIBYTE(CDC_DATA_FS_MAX_PACKET_SIZE),
0x00, /* bInterval: ignore for Bulk transfer */
4, /* Descriptor size */
3, /* Descriptor type */
0x09,
0x04,
#endif
};
USBD_ClassTypeDef USBD_Composite = USBD_ClassTypeDef USBD_Composite =
{ {
@ -274,21 +301,31 @@ int in_endpoint_to_class[MAX_ENDPOINTS];
int out_endpoint_to_class[MAX_ENDPOINTS]; int out_endpoint_to_class[MAX_ENDPOINTS];
void USBD_Composite_Set_Classes(USBD_ClassTypeDef *class0, USBD_ClassTypeDef *class1, USBD_ClassTypeDef *class2) void USBD_Composite_Set_Classes(USBD_ClassTypeDef *hid_class, USBD_ClassTypeDef *ccid_class, USBD_ClassTypeDef *cdc_class)) {
USBD_Classes[0] = hid_class;
USBD_Classes[1] = ccid_class;
USBD_Classes[2] = cdc_class;
}
static USBD_ClassTypeDef * getClass(uint8_t index)
{ {
//Y switch(index)
USBD_Classes[0] = class0; {
USBD_Classes[1] = class1; case HID_INTF_NUM:
USBD_Classes[2] = class2; return USBD_Classes[0];
//Y case CCID_INTF_NUM:
return USBD_Classes[2];
case CDC_MASTER_INTF_NUM:
case CDC_SLAVE_INTF_NUM:
return USBD_Classes[3];
}
return NULL;
} }
static uint8_t USBD_Composite_Init (USBD_HandleTypeDef *pdev, uint8_t cfgidx) { static uint8_t USBD_Composite_Init (USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
int i; int i;
for(i = 0; i < NUM_CLASSES; i++) {
//N
for(i = 0; i < NUM_INTERFACES; i++) {
if (USBD_Classes[i]->Init(pdev, cfgidx) != USBD_OK) { if (USBD_Classes[i]->Init(pdev, cfgidx) != USBD_OK) {
return USBD_FAIL; return USBD_FAIL;
} }
@ -299,7 +336,7 @@ static uint8_t USBD_Composite_Init (USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
static uint8_t USBD_Composite_DeInit (USBD_HandleTypeDef *pdev, uint8_t cfgidx) { static uint8_t USBD_Composite_DeInit (USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
int i; int i;
for(i = 0; i < NUM_INTERFACES; i++) { for(i = 0; i < NUM_CLASSES; i++) {
if (USBD_Classes[i]->DeInit(pdev, cfgidx) != USBD_OK) { if (USBD_Classes[i]->DeInit(pdev, cfgidx) != USBD_OK) {
return USBD_FAIL; return USBD_FAIL;
} }
@ -310,11 +347,13 @@ static uint8_t USBD_Composite_DeInit (USBD_HandleTypeDef *pdev, uint8_t cfgidx)
static uint8_t USBD_Composite_Setup (USBD_HandleTypeDef *pdev, USBD_SetupReqTypedef *req) { static uint8_t USBD_Composite_Setup (USBD_HandleTypeDef *pdev, USBD_SetupReqTypedef *req) {
int i; int i;
//N USBD_ClassTypeDef * device_class;
device_class = getClass(req->wIndex);
switch (req->bmRequest & USB_REQ_TYPE_MASK) { switch (req->bmRequest & USB_REQ_TYPE_MASK) {
case USB_REQ_TYPE_CLASS : case USB_REQ_TYPE_CLASS :
if (req->wIndex < NUM_INTERFACES) if (device_class != NULL)
return USBD_Classes[req->wIndex]->Setup(pdev, req); return device_class->Setup(pdev, req);
else else
return USBD_FAIL; return USBD_FAIL;
@ -323,7 +362,7 @@ static uint8_t USBD_Composite_Setup (USBD_HandleTypeDef *pdev, USBD_SetupReqType
switch (req->bRequest) { switch (req->bRequest) {
case USB_REQ_GET_DESCRIPTOR : case USB_REQ_GET_DESCRIPTOR :
for(i = 0; i < NUM_INTERFACES; i++) { for(i = 0; i < NUM_CLASSES; i++) {
if (USBD_Classes[i]->Setup(pdev, req) != USBD_OK) { if (USBD_Classes[i]->Setup(pdev, req) != USBD_OK) {
return USBD_FAIL; return USBD_FAIL;
} }
@ -333,8 +372,8 @@ static uint8_t USBD_Composite_Setup (USBD_HandleTypeDef *pdev, USBD_SetupReqType
case USB_REQ_GET_INTERFACE : case USB_REQ_GET_INTERFACE :
case USB_REQ_SET_INTERFACE : case USB_REQ_SET_INTERFACE :
if (req->wIndex < NUM_INTERFACES) if (device_class != NULL)
return USBD_Classes[req->wIndex]->Setup(pdev, req); return device_class->Setup(pdev, req);
else else
return USBD_FAIL; return USBD_FAIL;
} }
@ -361,7 +400,7 @@ static uint8_t USBD_Composite_DataOut (USBD_HandleTypeDef *pdev, uint8_t epnum)
static uint8_t USBD_Composite_EP0_RxReady (USBD_HandleTypeDef *pdev) { static uint8_t USBD_Composite_EP0_RxReady (USBD_HandleTypeDef *pdev) {
int i; int i;
for(i = 0; i < NUM_INTERFACES; i++) { for(i = 0; i < NUM_CLASSES; i++) {
if (USBD_Classes[i]->EP0_RxReady != NULL) { if (USBD_Classes[i]->EP0_RxReady != NULL) {
if (USBD_Classes[i]->EP0_RxReady(pdev) != USBD_OK) { if (USBD_Classes[i]->EP0_RxReady(pdev) != USBD_OK) {
return USBD_FAIL; return USBD_FAIL;

View File

@ -342,6 +342,7 @@ static uint8_t USBD_HID_Setup (USBD_HandleTypeDef *pdev,
uint8_t *pbuf = NULL; uint8_t *pbuf = NULL;
uint16_t status_info = 0U; uint16_t status_info = 0U;
USBD_StatusTypeDef ret = USBD_OK; USBD_StatusTypeDef ret = USBD_OK;
req->wLength = req->wLength & 0x7f;
switch (req->bmRequest & USB_REQ_TYPE_MASK) switch (req->bmRequest & USB_REQ_TYPE_MASK)
{ {
@ -386,6 +387,7 @@ static uint8_t USBD_HID_Setup (USBD_HandleTypeDef *pdev,
break; break;
case USB_REQ_GET_DESCRIPTOR: case USB_REQ_GET_DESCRIPTOR:
req->wLength = req->wLength & 0x7f;
if(req->wValue >> 8 == HID_REPORT_DESC) if(req->wValue >> 8 == HID_REPORT_DESC)
{ {
len = MIN(HID_FIDO_REPORT_DESC_SIZE , req->wLength); len = MIN(HID_FIDO_REPORT_DESC_SIZE , req->wLength);

View File

@ -31,7 +31,7 @@
// #define DISABLE_CTAPHID_WINK // #define DISABLE_CTAPHID_WINK
// #define DISABLE_CTAPHID_CBOR // #define DISABLE_CTAPHID_CBOR
#define ENABLE_SERIAL_PRINTING // #define ENABLE_SERIAL_PRINTING
#if defined(SOLO_HACKER) #if defined(SOLO_HACKER)
#define SOLO_PRODUCT_NAME "Solo Hacker " SOLO_VERSION #define SOLO_PRODUCT_NAME "Solo Hacker " SOLO_VERSION

View File

@ -157,6 +157,11 @@ void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac)
key = master_secret; key = master_secret;
klen = sizeof(master_secret)/2; klen = sizeof(master_secret)/2;
} }
else if (key == CRYPTO_TRANSPORT_KEY2)
{
key = transport_secret;
klen = 32;
}
if(klen > 64) if(klen > 64)
@ -277,6 +282,11 @@ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8
memmove(x,pubkey,32); memmove(x,pubkey,32);
memmove(y,pubkey+32,32); memmove(y,pubkey+32,32);
} }
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len) void crypto_load_external_key(uint8_t * key, int len)
{ {

View File

@ -38,11 +38,14 @@ void wait_for_usb_tether();
uint32_t __90_ms = 0; uint32_t __90_ms = 0;
uint32_t __last_button_press_time = 0;
uint32_t __last_button_bounce_time = 0;
uint32_t __device_status = 0; uint32_t __device_status = 0;
uint32_t __last_update = 0; uint32_t __last_update = 0;
extern PCD_HandleTypeDef hpcd; extern PCD_HandleTypeDef hpcd;
static int _NFC_status = 0; static int _NFC_status = 0;
static bool isLowFreq = 0; static bool isLowFreq = 0;
static bool _RequestComeFromNFC = false;
// #define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN)) // #define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN))
static int is_physical_button_pressed() static int is_physical_button_pressed()
@ -57,6 +60,10 @@ static int is_touch_button_pressed()
int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed; int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed;
void request_from_nfc(bool request_active) {
_RequestComeFromNFC = request_active;
}
// Timer6 overflow handler. happens every ~90ms. // Timer6 overflow handler. happens every ~90ms.
void TIM6_DAC_IRQHandler() void TIM6_DAC_IRQHandler()
{ {
@ -70,6 +77,21 @@ void TIM6_DAC_IRQHandler()
ctaphid_update_status(__device_status); ctaphid_update_status(__device_status);
} }
} }
if (is_touch_button_pressed == IS_BUTTON_PRESSED)
{
if (IS_BUTTON_PRESSED())
{
// Only allow 1 press per 25 ms.
if ((millis() - __last_button_bounce_time) > 25)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
}
}
#ifndef IS_BOOTLOADER #ifndef IS_BOOTLOADER
// NFC sending WTX if needs // NFC sending WTX if needs
if (device_is_nfc() == NFC_IS_ACTIVE) if (device_is_nfc() == NFC_IS_ACTIVE)
@ -79,6 +101,21 @@ void TIM6_DAC_IRQHandler()
#endif #endif
} }
// Interrupt on rising edge of button (button released)
void EXTI0_IRQHandler(void)
{
EXTI->PR1 = EXTI->PR1;
if (is_physical_button_pressed == IS_BUTTON_PRESSED)
{
// Only allow 1 press per 25 ms.
if ((millis() - __last_button_bounce_time) > 25)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
}
}
// Global USB interrupt handler // Global USB interrupt handler
void USB_IRQHandler(void) void USB_IRQHandler(void)
{ {
@ -488,13 +525,49 @@ static int handle_packets()
return 0; return 0;
} }
static int wait_for_button_activate(uint32_t wait)
{
int ret;
uint32_t start = millis();
do
{
if ((start + wait) < millis())
{
return 0;
}
delay(1);
ret = handle_packets();
if (ret)
return ret;
} while (!IS_BUTTON_PRESSED());
return 0;
}
static int wait_for_button_release(uint32_t wait)
{
int ret;
uint32_t start = millis();
do
{
if ((start + wait) < millis())
{
return 0;
}
delay(1);
ret = handle_packets();
if (ret)
return ret;
} while (IS_BUTTON_PRESSED());
return 0;
}
int ctap_user_presence_test(uint32_t up_delay) int ctap_user_presence_test(uint32_t up_delay)
{ {
int ret; int ret;
if (device_is_nfc() == NFC_IS_ACTIVE) if (device_is_nfc() == NFC_IS_ACTIVE || _RequestComeFromNFC)
{ {
return 1; return 1;
} }
#if SKIP_BUTTON_CHECK_WITH_DELAY #if SKIP_BUTTON_CHECK_WITH_DELAY
int i=500; int i=500;
while(i--) while(i--)
@ -507,53 +580,41 @@ int ctap_user_presence_test(uint32_t up_delay)
#elif SKIP_BUTTON_CHECK_FAST #elif SKIP_BUTTON_CHECK_FAST
delay(2); delay(2);
ret = handle_packets(); ret = handle_packets();
if (ret) return ret; if (ret)
return ret;
goto done; goto done;
#endif #endif
uint32_t t1 = millis();
// If button was pressed within last [2] seconds, succeed.
if (__last_button_press_time && (millis() - __last_button_press_time < 2000))
{
goto done;
}
// Set LED status and wait.
led_rgb(0xff3520); led_rgb(0xff3520);
if (IS_BUTTON_PRESSED == is_touch_button_pressed) // Block and wait for some time.
{ ret = wait_for_button_activate(up_delay);
// Wait for user to release touch button if it's already pressed
while (IS_BUTTON_PRESSED())
{
if (t1 + up_delay < millis())
{
printf1(TAG_GEN,"Button not pressed\n");
goto fail;
}
ret = handle_packets();
if (ret) return ret; if (ret) return ret;
} ret = wait_for_button_release(up_delay);
}
t1 = millis();
do
{
if (t1 + up_delay < millis())
{
goto fail;
}
delay(1);
ret = handle_packets();
if (ret) return ret; if (ret) return ret;
// If button was pressed within last [2] seconds, succeed.
if (__last_button_press_time && (millis() - __last_button_press_time < 2000))
{
goto done;
} }
while (! IS_BUTTON_PRESSED());
led_rgb(0x001040);
delay(50);
#if SKIP_BUTTON_CHECK_WITH_DELAY || SKIP_BUTTON_CHECK_FAST return 0;
done: done:
#endif ret = wait_for_button_release(up_delay);
__last_button_press_time = 0;
return 1; return 1;
fail:
return 0;
} }
int ctap_generate_rng(uint8_t * dst, size_t num) int ctap_generate_rng(uint8_t * dst, size_t num)

View File

@ -20,6 +20,7 @@
#include "stm32l4xx_ll_rng.h" #include "stm32l4xx_ll_rng.h"
#include "stm32l4xx_ll_spi.h" #include "stm32l4xx_ll_spi.h"
#include "stm32l4xx_ll_usb.h" #include "stm32l4xx_ll_usb.h"
#include "stm32l4xx_ll_exti.h"
#include "stm32l4xx_hal_pcd.h" #include "stm32l4xx_hal_pcd.h"
#include "stm32l4xx_hal.h" #include "stm32l4xx_hal.h"
@ -851,19 +852,17 @@ void init_gpio(void)
LL_GPIO_SetPinMode(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_MODE_INPUT); LL_GPIO_SetPinMode(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinPull(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_PULL_UP); LL_GPIO_SetPinPull(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_PULL_UP);
#ifdef SOLO_AMS_IRQ_PORT #ifndef IS_BOOTLOADER
// SAVE POWER LL_SYSCFG_SetEXTISource(LL_SYSCFG_EXTI_PORTA, LL_SYSCFG_EXTI_LINE0);
// LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOC); LL_EXTI_InitTypeDef EXTI_InitStruct;
// /**/ EXTI_InitStruct.Line_0_31 = LL_EXTI_LINE_0; // GPIOA_0
// LL_GPIO_InitTypeDef GPIO_InitStruct; EXTI_InitStruct.Line_32_63 = LL_EXTI_LINE_NONE;
// GPIO_InitStruct.Pin = SOLO_AMS_IRQ_PIN; EXTI_InitStruct.LineCommand = ENABLE;
// GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT; EXTI_InitStruct.Mode = LL_EXTI_MODE_IT;
// GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; EXTI_InitStruct.Trigger = LL_EXTI_TRIGGER_RISING;
// LL_GPIO_Init(SOLO_AMS_IRQ_PORT, &GPIO_InitStruct); LL_EXTI_Init(&EXTI_InitStruct);
//
// NVIC_EnableIRQ(EXTI0_IRQn);
// LL_GPIO_SetPinMode(SOLO_AMS_IRQ_PORT,SOLO_AMS_IRQ_PIN,LL_GPIO_MODE_INPUT);
// LL_GPIO_SetPinPull(SOLO_AMS_IRQ_PORT,SOLO_AMS_IRQ_PIN,LL_GPIO_PULL_UP);
#endif #endif
} }

View File

@ -14,6 +14,20 @@
#define IS_IRQ_ACTIVE() (1 == (LL_GPIO_ReadInputPort(SOLO_AMS_IRQ_PORT) & SOLO_AMS_IRQ_PIN)) #define IS_IRQ_ACTIVE() (1 == (LL_GPIO_ReadInputPort(SOLO_AMS_IRQ_PORT) & SOLO_AMS_IRQ_PIN))
// chain buffer for 61XX responses
static uint8_t resp_chain_buffer[2048] = {0};
static size_t resp_chain_buffer_len = 0;
uint8_t p14443_block_offset(uint8_t pcb) {
uint8_t offset = 1;
// NAD following
if (pcb & 0x04) offset++;
// CID following
if (pcb & 0x08) offset++;
return offset;
}
// Capability container // Capability container
const CAPABILITY_CONTAINER NFC_CC = { const CAPABILITY_CONTAINER NFC_CC = {
.cclen_hi = 0x00, .cclen_lo = 0x0f, .cclen_hi = 0x00, .cclen_lo = 0x0f,
@ -82,19 +96,27 @@ int nfc_init()
return NFC_IS_NA; return NFC_IS_NA;
} }
static uint8_t gl_int0 = 0;
void process_int0(uint8_t int0) void process_int0(uint8_t int0)
{ {
gl_int0 = int0;
} }
bool ams_wait_for_tx(uint32_t timeout_ms) bool ams_wait_for_tx(uint32_t timeout_ms)
{ {
if (gl_int0 & AMS_INT_TXE) {
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
process_int0(int0);
return true;
}
uint32_t tstart = millis(); uint32_t tstart = millis();
while (tstart + timeout_ms > millis()) while (tstart + timeout_ms > millis())
{ {
uint8_t int0 = ams_read_reg(AMS_REG_INT0); uint8_t int0 = ams_read_reg(AMS_REG_INT0);
if (int0) process_int0(int0); process_int0(int0);
if (int0 & AMS_INT_TXE) if (int0 & AMS_INT_TXE || int0 & AMS_INT_RXE)
return true; return true;
delay(1); delay(1);
@ -111,7 +133,13 @@ bool ams_receive_with_timeout(uint32_t timeout_ms, uint8_t * data, int maxlen, i
uint32_t tstart = millis(); uint32_t tstart = millis();
while (tstart + timeout_ms > millis()) while (tstart + timeout_ms > millis())
{ {
uint8_t int0 = ams_read_reg(AMS_REG_INT0); uint8_t int0 = 0;
if (gl_int0 & AMS_INT_RXE) {
int0 = gl_int0;
} else {
int0 = ams_read_reg(AMS_REG_INT0);
process_int0(int0);
}
uint8_t buffer_status2 = ams_read_reg(AMS_REG_BUF2); uint8_t buffer_status2 = ams_read_reg(AMS_REG_BUF2);
if (buffer_status2 && (int0 & AMS_INT_RXE)) if (buffer_status2 && (int0 & AMS_INT_RXE))
@ -161,14 +189,25 @@ bool nfc_write_response_ex(uint8_t req0, uint8_t * data, uint8_t len, uint16_t r
if (len > 32 - 3) if (len > 32 - 3)
return false; return false;
res[0] = NFC_CMD_IBLOCK | (req0 & 3); res[0] = NFC_CMD_IBLOCK | (req0 & 0x0f);
res[1] = 0;
res[2] = 0;
uint8_t block_offset = p14443_block_offset(req0);
if (len && data) if (len && data)
memcpy(&res[1], data, len); memcpy(&res[block_offset], data, len);
res[len + 1] = resp >> 8; res[len + block_offset + 0] = resp >> 8;
res[len + 2] = resp & 0xff; res[len + block_offset + 1] = resp & 0xff;
nfc_write_frame(res, 3 + len);
nfc_write_frame(res, block_offset + len + 2);
if (!ams_wait_for_tx(1))
{
printf1(TAG_NFC, "TX resp timeout. len: %d \r\n", len);
return false;
}
return true; return true;
} }
@ -178,25 +217,28 @@ bool nfc_write_response(uint8_t req0, uint16_t resp)
return nfc_write_response_ex(req0, NULL, 0, resp); return nfc_write_response_ex(req0, NULL, 0, resp);
} }
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len) void nfc_write_response_chaining_plain(uint8_t req0, uint8_t * data, int len)
{ {
uint8_t res[32 + 2]; uint8_t res[32 + 2];
int sendlen = 0; uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 0x0f);
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 3); uint8_t block_offset = p14443_block_offset(req0);
if (len <= 31) if (len <= 31)
{ {
uint8_t res[32] = {0}; uint8_t res[32] = {0};
res[0] = iBlock; res[0] = iBlock;
if (len && data) if (len && data)
memcpy(&res[1], data, len); memcpy(&res[block_offset], data, len);
nfc_write_frame(res, len + 1); nfc_write_frame(res, len + block_offset);
} else { } else {
int sendlen = 0;
do { do {
// transmit I block // transmit I block
int vlen = MIN(31, len - sendlen); int vlen = MIN(32 - block_offset, len - sendlen);
res[0] = iBlock; res[0] = iBlock;
memcpy(&res[1], &data[sendlen], vlen); res[1] = 0;
res[2] = 0;
memcpy(&res[block_offset], &data[sendlen], vlen);
// if not a last block // if not a last block
if (vlen + sendlen < len) if (vlen + sendlen < len)
@ -205,15 +247,15 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
} }
// send data // send data
nfc_write_frame(res, vlen + 1); nfc_write_frame(res, vlen + block_offset);
sendlen += vlen; sendlen += vlen;
// wait for transmit (32 bytes aprox 2,5ms) // wait for transmit (32 bytes aprox 2,5ms)
// if (!ams_wait_for_tx(10)) if (!ams_wait_for_tx(5))
// { {
// printf1(TAG_NFC, "TX timeout. slen: %d \r\n", sendlen); printf1(TAG_NFC, "TX timeout. slen: %d \r\n", sendlen);
// break; break;
// } }
// if needs to receive R block (not a last block) // if needs to receive R block (not a last block)
if (res[0] & 0x10) if (res[0] & 0x10)
@ -226,7 +268,8 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
break; break;
} }
if (reclen != 1) uint8_t rblock_offset = p14443_block_offset(recbuf[0]);
if (reclen != rblock_offset)
{ {
printf1(TAG_NFC, "R block length error. len: %d. %d/%d \r\n", reclen, sendlen, len); printf1(TAG_NFC, "R block length error. len: %d. %d/%d \r\n", reclen, sendlen, len);
dump_hex1(TAG_NFC, recbuf, reclen); dump_hex1(TAG_NFC, recbuf, reclen);
@ -245,6 +288,37 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
} }
} }
void append_get_response(uint8_t *data, size_t rest_len)
{
data[0] = 0x61;
data[1] = 0x00;
if (rest_len <= 0xff)
data[1] = rest_len & 0xff;
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len, bool extapdu)
{
resp_chain_buffer_len = 0;
// if we dont need to break data to parts that need to exchange via GET RESPONSE command (ISO 7816-4 7.1.3)
if (len <= 255 || extapdu)
{
nfc_write_response_chaining_plain(req0, data, len);
} else {
size_t pcklen = MIN(253, len);
resp_chain_buffer_len = len - pcklen;
printf1(TAG_NFC, "61XX chaining %d/%d.\r\n", pcklen, resp_chain_buffer_len);
memmove(resp_chain_buffer, data, pcklen);
append_get_response(&resp_chain_buffer[pcklen], resp_chain_buffer_len);
nfc_write_response_chaining_plain(req0, resp_chain_buffer, pcklen + 2); // 2 for 61XX
// put the rest data into chain buffer
memmove(resp_chain_buffer, &data[pcklen], resp_chain_buffer_len);
}
}
// WTX on/off: // WTX on/off:
// sends/receives WTX frame to reader every `WTX_time` time in ms // sends/receives WTX frame to reader every `WTX_time` time in ms
// works via timer interrupts // works via timer interrupts
@ -297,7 +371,7 @@ bool WTX_off()
void WTX_timer_exec() void WTX_timer_exec()
{ {
// condition: (timer on) or (not expired[300ms]) // condition: (timer on) or (not expired[300ms])
if ((WTX_timer <= 0) || WTX_timer + 300 > millis()) if ((WTX_timer == 0) || WTX_timer + 300 > millis())
return; return;
WTX_process(10); WTX_process(10);
@ -308,12 +382,12 @@ void WTX_timer_exec()
// read timeout must be 10 ms to call from interrupt // read timeout must be 10 ms to call from interrupt
bool WTX_process(int read_timeout) bool WTX_process(int read_timeout)
{ {
uint8_t wtx[] = {0xf2, 0x01};
if (WTX_fail) if (WTX_fail)
return false; return false;
if (!WTX_sent) if (!WTX_sent)
{ {
uint8_t wtx[] = {0xf2, 0x01};
nfc_write_frame(wtx, sizeof(wtx)); nfc_write_frame(wtx, sizeof(wtx));
WTX_sent = true; WTX_sent = true;
return true; return true;
@ -371,39 +445,72 @@ int answer_rats(uint8_t parameter)
nfc_write_frame(res, sizeof(res)); nfc_write_frame(res, sizeof(res));
ams_wait_for_tx(10); if (!ams_wait_for_tx(10))
{
printf1(TAG_NFC, "RATS TX timeout.\r\n");
ams_write_command(AMS_CMD_DEFAULT);
return 1;
}
return 0; return 0;
} }
void rblock_acknowledge() void rblock_acknowledge(uint8_t req0, bool ack)
{ {
uint8_t buf[32]; uint8_t buf[32] = {0};
uint8_t block_offset = p14443_block_offset(req0);
NFC_STATE.block_num = !NFC_STATE.block_num; NFC_STATE.block_num = !NFC_STATE.block_num;
buf[0] = NFC_CMD_RBLOCK | NFC_STATE.block_num;
nfc_write_frame(buf,1); buf[0] = NFC_CMD_RBLOCK | (req0 & 0x0f);
if (ack)
buf[0] |= NFC_CMD_RBLOCK_ACK;
nfc_write_frame(buf, block_offset);
}
// international AID = RID:PIX
// RID length == 5 bytes
// usually aid length must be between 5 and 16 bytes
int applet_cmp(uint8_t * aid, int len, uint8_t * const_aid, int const_len)
{
if (len > const_len)
return 10;
// if international AID
if ((const_aid[0] & 0xf0) == 0xa0)
{
if (len < 5)
return 11;
return memcmp(aid, const_aid, MIN(len, const_len));
} else {
if (len != const_len)
return 11;
return memcmp(aid, const_aid, const_len);
}
} }
// Selects application. Returns 1 if success, 0 otherwise // Selects application. Returns 1 if success, 0 otherwise
int select_applet(uint8_t * aid, int len) int select_applet(uint8_t * aid, int len)
{ {
if (memcmp(aid,AID_FIDO,sizeof(AID_FIDO)) == 0) if (applet_cmp(aid, len, (uint8_t *)AID_FIDO, sizeof(AID_FIDO) - 1) == 0)
{ {
NFC_STATE.selected_applet = APP_FIDO; NFC_STATE.selected_applet = APP_FIDO;
return APP_FIDO; return APP_FIDO;
} }
else if (memcmp(aid,AID_NDEF_TYPE_4,sizeof(AID_NDEF_TYPE_4)) == 0) else if (applet_cmp(aid, len, (uint8_t *)AID_NDEF_TYPE_4, sizeof(AID_NDEF_TYPE_4) - 1) == 0)
{ {
NFC_STATE.selected_applet = APP_NDEF_TYPE_4; NFC_STATE.selected_applet = APP_NDEF_TYPE_4;
return APP_NDEF_TYPE_4; return APP_NDEF_TYPE_4;
} }
else if (memcmp(aid,AID_CAPABILITY_CONTAINER,sizeof(AID_CAPABILITY_CONTAINER)) == 0) else if (applet_cmp(aid, len, (uint8_t *)AID_CAPABILITY_CONTAINER, sizeof(AID_CAPABILITY_CONTAINER) - 1) == 0)
{ {
NFC_STATE.selected_applet = APP_CAPABILITY_CONTAINER; NFC_STATE.selected_applet = APP_CAPABILITY_CONTAINER;
return APP_CAPABILITY_CONTAINER; return APP_CAPABILITY_CONTAINER;
} }
else if (memcmp(aid,AID_NDEF_TAG,sizeof(AID_NDEF_TAG)) == 0) else if (applet_cmp(aid, len, (uint8_t *)AID_NDEF_TAG, sizeof(AID_NDEF_TAG) - 1) == 0)
{ {
NFC_STATE.selected_applet = APP_NDEF_TAG; NFC_STATE.selected_applet = APP_NDEF_TAG;
return APP_NDEF_TAG; return APP_NDEF_TAG;
@ -413,25 +520,80 @@ int select_applet(uint8_t * aid, int len)
void nfc_process_iblock(uint8_t * buf, int len) void nfc_process_iblock(uint8_t * buf, int len)
{ {
APDU_HEADER * apdu = (APDU_HEADER *)(buf + 1);
uint8_t * payload = buf + 1 + 5;
uint8_t plen = apdu->lc;
int selected; int selected;
CTAP_RESPONSE ctap_resp; CTAP_RESPONSE ctap_resp;
int status; int status;
uint16_t reslen;
printf1(TAG_NFC,"Iblock: "); uint8_t block_offset = p14443_block_offset(buf[0]);
dump_hex1(TAG_NFC, buf, len);
APDU_STRUCT apdu;
if (apdu_decode(buf + block_offset, len - block_offset, &apdu)) {
printf1(TAG_NFC,"apdu decode error\r\n");
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
return;
}
printf1(TAG_NFC,"apdu ok. %scase=%02x cla=%02x ins=%02x p1=%02x p2=%02x lc=%d le=%d\r\n",
apdu.extended_apdu ? "[e]":"", apdu.case_type, apdu.cla, apdu.ins, apdu.p1, apdu.p2, apdu.lc, apdu.le);
// check CLA
if (apdu.cla != 0x00 && apdu.cla != 0x80) {
printf1(TAG_NFC, "Unknown CLA %02x\r\n", apdu.cla);
nfc_write_response(buf[0], SW_CLA_INVALID);
return;
}
// TODO this needs to be organized better // TODO this needs to be organized better
switch(apdu->ins) switch(apdu.ins)
{ {
case APDU_INS_SELECT: // ISO 7816. 7.1 GET RESPONSE command
if (plen > len - 6) case APDU_GET_RESPONSE:
if (apdu.p1 != 0x00 || apdu.p2 != 0x00)
{ {
printf1(TAG_ERR, "Truncating APDU length %d\r\n", apdu->lc); nfc_write_response(buf[0], SW_INCORRECT_P1P2);
plen = len-6; printf1(TAG_NFC, "P1 or P2 error\r\n");
return;
} }
// too many bytes needs. 0x00 and 0x100 - any length
if (apdu.le != 0 && apdu.le != 0x100 && apdu.le > resp_chain_buffer_len)
{
uint16_t wlresp = SW_WRONG_LENGTH; // here can be 6700, 6C00, 6FXX. but the most standard way - 67XX or 6700
if (resp_chain_buffer_len <= 0xff)
wlresp += resp_chain_buffer_len & 0xff;
nfc_write_response(buf[0], wlresp);
printf1(TAG_NFC, "buffer length less than requesteds\r\n");
return;
}
// create temporary packet
uint8_t pck[255] = {0};
size_t pcklen = 253;
if (apdu.le)
pcklen = apdu.le;
if (pcklen > resp_chain_buffer_len)
pcklen = resp_chain_buffer_len;
printf1(TAG_NFC, "GET RESPONSE. pck len: %d buffer len: %d\r\n", pcklen, resp_chain_buffer_len);
// create packet and add 61XX there if we have another portion(s) of data
memmove(pck, resp_chain_buffer, pcklen);
size_t dlen = 0;
if (resp_chain_buffer_len - pcklen)
{
append_get_response(&pck[pcklen], resp_chain_buffer_len - pcklen);
dlen = 2;
}
// send
nfc_write_response_chaining_plain(buf[0], pck, pcklen + dlen); // dlen for 61XX
// shift the buffer
resp_chain_buffer_len -= pcklen;
memmove(resp_chain_buffer, &resp_chain_buffer[pcklen], resp_chain_buffer_len);
break;
case APDU_INS_SELECT:
// if (apdu->p1 == 0 && apdu->p2 == 0x0c) // if (apdu->p1 == 0 && apdu->p2 == 0x0c)
// { // {
// printf1(TAG_NFC,"Select NDEF\r\n"); // printf1(TAG_NFC,"Select NDEF\r\n");
@ -446,14 +608,9 @@ void nfc_process_iblock(uint8_t * buf, int len)
// } // }
// else // else
{ {
selected = select_applet(payload, plen); selected = select_applet(apdu.data, apdu.lc);
if (selected == APP_FIDO) if (selected == APP_FIDO)
{ {
// block = buf[0] & 1;
// block = NFC_STATE.block_num;
// block = !block;
// NFC_STATE.block_num = block;
// NFC_STATE.block_num = block;
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS); nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
printf1(TAG_NFC, "FIDO applet selected.\r\n"); printf1(TAG_NFC, "FIDO applet selected.\r\n");
} }
@ -465,7 +622,7 @@ void nfc_process_iblock(uint8_t * buf, int len)
else else
{ {
nfc_write_response(buf[0], SW_FILE_NOT_FOUND); nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected\r\n"); dump_hex1(TAG_NFC,payload, plen); printf1(TAG_NFC, "NOT selected "); dump_hex1(TAG_NFC, apdu.data, apdu.lc);
} }
} }
break; break;
@ -478,7 +635,8 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F GetVersion command.\r\n"); printf1(TAG_NFC, "U2F GetVersion command.\r\n");
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS); u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length, apdu.extended_apdu);
break; break;
case APDU_FIDO_U2F_REGISTER: case APDU_FIDO_U2F_REGISTER:
@ -489,9 +647,9 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F Register command.\r\n"); printf1(TAG_NFC, "U2F Register command.\r\n");
if (plen != 64) if (apdu.lc != 64)
{ {
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", plen); printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", apdu.lc);
nfc_write_response(buf[0], SW_WRONG_LENGTH); nfc_write_response(buf[0], SW_WRONG_LENGTH);
return; return;
} }
@ -502,19 +660,15 @@ void nfc_process_iblock(uint8_t * buf, int len)
// WTX_on(WTX_TIME_DEFAULT); // WTX_on(WTX_TIME_DEFAULT);
// SystemClock_Config_LF32(); // SystemClock_Config_LF32();
// delay(300); // delay(300);
if (device_is_nfc()) device_set_clock_rate(DEVICE_LOW_POWER_FAST);; if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
u2f_request_nfc(&buf[1], len, &ctap_resp); u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
if (device_is_nfc()) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);; if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
// if (!WTX_off()) // if (!WTX_off())
// return; // return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register P2 took %d\r\n", timestamp()); printf1(TAG_NFC,"U2F Register P2 took %d\r\n", timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length); nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length, apdu.extended_apdu);
// printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register answered %d (took %d)\r\n", millis(), timestamp()); printf1(TAG_NFC,"U2F Register answered %d (took %d)\r\n", millis(), timestamp());
break; break;
@ -527,41 +681,43 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F Authenticate command.\r\n"); printf1(TAG_NFC, "U2F Authenticate command.\r\n");
if (plen != 64 + 1 + buf[6 + 64]) if (apdu.lc != 64 + 1 + apdu.data[64])
{ {
delay(5); delay(5);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", plen, buf[6 + 64]); printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", apdu.lc, apdu.data[64]);
nfc_write_response(buf[0], SW_WRONG_LENGTH); nfc_write_response(buf[0], SW_WRONG_LENGTH);
return; return;
} }
timestamp(); timestamp();
// WTX_on(WTX_TIME_DEFAULT); // WTX_on(WTX_TIME_DEFAULT);
u2f_request_nfc(&buf[1], len, &ctap_resp); u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
// if (!WTX_off()) // if (!WTX_off())
// return; // return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length); printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Authenticate processing %d (took %d)\r\n", millis(), timestamp()); printf1(TAG_NFC,"U2F Authenticate processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length); nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length, apdu.extended_apdu);
printf1(TAG_NFC,"U2F Authenticate answered %d (took %d)\r\n", millis(), timestamp); printf1(TAG_NFC,"U2F Authenticate answered %d (took %d)\r\n", millis(), timestamp);
break; break;
case APDU_FIDO_NFCCTAP_MSG: case APDU_FIDO_NFCCTAP_MSG:
if (NFC_STATE.selected_applet != APP_FIDO) { if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID); nfc_write_response(buf[0], SW_INS_INVALID);
break; return;
} }
printf1(TAG_NFC, "FIDO2 CTAP message. %d\r\n", timestamp()); printf1(TAG_NFC, "FIDO2 CTAP message. %d\r\n", timestamp());
WTX_on(WTX_TIME_DEFAULT); // WTX_on(WTX_TIME_DEFAULT);
request_from_nfc(true);
ctap_response_init(&ctap_resp); ctap_response_init(&ctap_resp);
status = ctap_request(payload, plen, &ctap_resp); status = ctap_request(apdu.data, apdu.lc, &ctap_resp);
if (!WTX_off()) request_from_nfc(false);
return; // if (!WTX_off())
// return;
printf1(TAG_NFC, "CTAP resp: 0x%02<EFBFBD> len: %d\r\n", status, ctap_resp.length); printf1(TAG_NFC, "CTAP resp: 0x%02x len: %d\r\n", status, ctap_resp.length);
if (status == CTAP1_ERR_SUCCESS) if (status == CTAP1_ERR_SUCCESS)
{ {
@ -575,49 +731,45 @@ void nfc_process_iblock(uint8_t * buf, int len)
ctap_resp.data[ctap_resp.length - 1] = SW_SUCCESS & 0xff; ctap_resp.data[ctap_resp.length - 1] = SW_SUCCESS & 0xff;
printf1(TAG_NFC,"CTAP processing %d (took %d)\r\n", millis(), timestamp()); printf1(TAG_NFC,"CTAP processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length); nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length, apdu.extended_apdu);
printf1(TAG_NFC,"CTAP answered %d (took %d)\r\n", millis(), timestamp()); printf1(TAG_NFC,"CTAP answered %d (took %d)\r\n", millis(), timestamp());
break; break;
case APDU_INS_READ_BINARY: case APDU_INS_READ_BINARY:
// response length
reslen = apdu.le & 0xffff;
switch(NFC_STATE.selected_applet) switch(NFC_STATE.selected_applet)
{ {
case APP_CAPABILITY_CONTAINER: case APP_CAPABILITY_CONTAINER:
printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n"); printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n");
if (plen > 15) if (reslen == 0 || reslen > sizeof(NFC_CC))
{ reslen = sizeof(NFC_CC);
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc); nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, reslen, SW_SUCCESS);
plen = 15;
}
nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, plen, SW_SUCCESS);
ams_wait_for_tx(10); ams_wait_for_tx(10);
break; break;
case APP_NDEF_TAG: case APP_NDEF_TAG:
printf1(TAG_NFC,"APP_NDEF_TAG\r\n"); printf1(TAG_NFC,"APP_NDEF_TAG\r\n");
if (plen > (sizeof(NDEF_SAMPLE) - 1)) if (reslen == 0 || reslen > sizeof(NDEF_SAMPLE) - 1)
{ reslen = sizeof(NDEF_SAMPLE) - 1;
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc); nfc_write_response_ex(buf[0], NDEF_SAMPLE, reslen, SW_SUCCESS);
plen = sizeof(NDEF_SAMPLE) - 1;
}
nfc_write_response_ex(buf[0], NDEF_SAMPLE, plen, SW_SUCCESS);
ams_wait_for_tx(10); ams_wait_for_tx(10);
break; break;
default: default:
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_ERR, "No binary applet selected!\r\n"); printf1(TAG_ERR, "No binary applet selected!\r\n");
return; return;
break; break;
} }
break; break;
default: default:
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu->ins); printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu.ins);
nfc_write_response(buf[0], SW_INS_INVALID); nfc_write_response(buf[0], SW_INS_INVALID);
break; break;
} }
printf1(TAG_NFC,"prev.Iblock: ");
dump_hex1(TAG_NFC, buf, len);
} }
static uint8_t ibuf[1024]; static uint8_t ibuf[1024];
@ -631,16 +783,24 @@ void clear_ibuf()
void nfc_process_block(uint8_t * buf, unsigned int len) void nfc_process_block(uint8_t * buf, unsigned int len)
{ {
printf1(TAG_NFC, "-----\r\n");
if (!len) if (!len)
return; return;
if (IS_PPSS_CMD(buf[0])) if (IS_PPSS_CMD(buf[0]))
{ {
printf1(TAG_NFC, "NFC_CMD_PPSS\r\n"); printf1(TAG_NFC, "NFC_CMD_PPSS [%d] 0x%02x\r\n", len, (len > 2) ? buf[2] : 0);
if (buf[1] == 0x11 && (buf[2] & 0x0f) == 0x00) {
nfc_write_frame(buf, 1); // ack with correct start byte
} else {
printf1(TAG_NFC, "NFC_CMD_PPSS ERROR!!!\r\n");
nfc_write_frame((uint8_t*)"\x00", 1); // this should not happend. but iso14443-4 dont have NACK here, so just 0x00
}
} }
else if (IS_IBLOCK(buf[0])) else if (IS_IBLOCK(buf[0]))
{ {
uint8_t block_offset = p14443_block_offset(buf[0]);
if (buf[0] & 0x10) if (buf[0] & 0x10)
{ {
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d\r\n", ibuflen, len); printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d\r\n", ibuflen, len);
@ -654,27 +814,27 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
printf1(TAG_NFC_APDU,"i> "); printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len); dump_hex1(TAG_NFC_APDU, buf, len);
if (len) if (len > block_offset)
{ {
memcpy(&ibuf[ibuflen], &buf[1], len - 1); memcpy(&ibuf[ibuflen], &buf[block_offset], len - block_offset);
ibuflen += len - 1; ibuflen += len - block_offset;
} }
// send R block // send R block
uint8_t rb = NFC_CMD_RBLOCK | NFC_CMD_RBLOCK_ACK | (buf[0] & 3); rblock_acknowledge(buf[0], true);
nfc_write_frame(&rb, 1);
} else { } else {
if (ibuflen) if (ibuflen)
{ {
if (len) if (len > block_offset)
{ {
memcpy(&ibuf[ibuflen], &buf[1], len - 1); memcpy(&ibuf[ibuflen], &buf[block_offset], len - block_offset);
ibuflen += len - 1; ibuflen += len - block_offset;
} }
memmove(&ibuf[1], ibuf, ibuflen); // add last chaining to top of the block
ibuf[0] = buf[0]; memmove(&ibuf[block_offset], ibuf, ibuflen);
ibuflen++; memmove(ibuf, buf, block_offset);
ibuflen += block_offset;
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d\r\n", ibuflen, len); printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d\r\n", ibuflen, len);
@ -683,7 +843,6 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
nfc_process_iblock(ibuf, ibuflen); nfc_process_iblock(ibuf, ibuflen);
} else { } else {
// printf1(TAG_NFC, "NFC_CMD_IBLOCK\r\n");
nfc_process_iblock(buf, len); nfc_process_iblock(buf, len);
} }
clear_ibuf(); clear_ibuf();
@ -691,7 +850,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
} }
else if (IS_RBLOCK(buf[0])) else if (IS_RBLOCK(buf[0]))
{ {
rblock_acknowledge(); rblock_acknowledge(buf[0], false);
printf1(TAG_NFC, "NFC_CMD_RBLOCK\r\n"); printf1(TAG_NFC, "NFC_CMD_RBLOCK\r\n");
} }
else if (IS_SBLOCK(buf[0])) else if (IS_SBLOCK(buf[0]))
@ -710,6 +869,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
else else
{ {
printf1(TAG_NFC, "NFC_CMD_SBLOCK, Unknown. len[%d]\r\n", len); printf1(TAG_NFC, "NFC_CMD_SBLOCK, Unknown. len[%d]\r\n", len);
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
} }
dump_hex1(TAG_NFC, buf, len); dump_hex1(TAG_NFC, buf, len);
} }
@ -728,6 +888,8 @@ int nfc_loop()
read_reg_block(&ams); read_reg_block(&ams);
uint8_t old_int0 = gl_int0;
process_int0(ams.regs.int0);
uint8_t state = AMS_STATE_MASK & ams.regs.rfid_status; uint8_t state = AMS_STATE_MASK & ams.regs.rfid_status;
if (state != AMS_STATE_SELECTED && state != AMS_STATE_SELECTEDX) if (state != AMS_STATE_SELECTED && state != AMS_STATE_SELECTEDX)
@ -741,7 +903,7 @@ int nfc_loop()
// if (state != AMS_STATE_SENSE) // if (state != AMS_STATE_SENSE)
// printf1(TAG_NFC," %s x%02x\r\n", ams_get_state_string(ams.regs.rfid_status), state); // printf1(TAG_NFC," %s x%02x\r\n", ams_get_state_string(ams.regs.rfid_status), state);
} }
if (ams.regs.int0 & AMS_INT_INIT) if (ams.regs.int0 & AMS_INT_INIT || old_int0 & AMS_INT_INIT)
{ {
nfc_state_init(); nfc_state_init();
} }
@ -750,7 +912,7 @@ int nfc_loop()
// ams_print_int1(ams.regs.int1); // ams_print_int1(ams.regs.int1);
} }
if ((ams.regs.int0 & AMS_INT_RXE)) if (ams.regs.int0 & AMS_INT_RXE || old_int0 & AMS_INT_RXE)
{ {
if (ams.regs.buffer_status2) if (ams.regs.buffer_status2)
{ {
@ -779,6 +941,7 @@ int nfc_loop()
printf1(TAG_NFC, "NFC_CMD_WUPA\r\n"); printf1(TAG_NFC, "NFC_CMD_WUPA\r\n");
break; break;
case NFC_CMD_HLTA: case NFC_CMD_HLTA:
ams_write_command(AMS_CMD_SLEEP);
printf1(TAG_NFC, "HLTA/Halt\r\n"); printf1(TAG_NFC, "HLTA/Halt\r\n");
break; break;
case NFC_CMD_RATS: case NFC_CMD_RATS:

View File

@ -40,6 +40,8 @@ typedef struct
#define NFC_CMD_SBLOCK 0xc0 #define NFC_CMD_SBLOCK 0xc0
#define IS_SBLOCK(x) ( (((x) & 0xc0) == NFC_CMD_SBLOCK) && (((x) & 0x02) == 0x02) ) #define IS_SBLOCK(x) ( (((x) & 0xc0) == NFC_CMD_SBLOCK) && (((x) & 0x02) == 0x02) )
extern uint8_t p14443_block_offset(uint8_t pcb);
#define NFC_SBLOCK_DESELECT 0x30 #define NFC_SBLOCK_DESELECT 0x30
#define NFC_SBLOCK_WTX 0x30 #define NFC_SBLOCK_WTX 0x30

View File

@ -1,58 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 SoloKeys Developers
#
# Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
# http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
# http://opensource.org/licenses/MIT>, at your option. This file may not be
# copied, modified, or distributed except according to those terms.
#
# Script for testing correctness of CTAP2/CTAP1 security token
import sys
from solo.fido2 import force_udp_backend
from tests import Tester, FIDO2Tests, U2FTests, HIDTests, SoloTests
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: %s [sim] <[u2f]|[fido2]|[rk]|[hid]|[ping]>")
sys.exit(0)
t = Tester()
t.set_user_count(3)
if "sim" in sys.argv:
print("Using UDP backend.")
force_udp_backend()
t.set_sim(True)
t.set_user_count(10)
t.find_device()
if "solo" in sys.argv:
SoloTests(t).run()
if "u2f" in sys.argv:
U2FTests(t).run()
if "fido2" in sys.argv:
# t.test_fido2()
FIDO2Tests(t).run()
# hid tests are a bit invasive and should be done last
if "hid" in sys.argv:
HIDTests(t).run()
if "bootloader" in sys.argv:
if t.is_sim:
raise RuntimeError("Cannot test bootloader in simulation yet.")
# print("Put device in bootloader mode and then hit enter")
# input()
# t.test_bootloader()
# t.test_responses()
# t.test_fido2_brute_force()

View File

@ -1,11 +0,0 @@
from . import fido2
from . import hid
from . import solo
from . import u2f
from . import tester
FIDO2Tests = fido2.FIDO2Tests
HIDTests = hid.HIDTests
U2FTests = u2f.U2FTests
SoloTests = solo.SoloTests
Tester = tester.Tester

File diff suppressed because it is too large Load Diff

View File

@ -1,252 +0,0 @@
import sys, os, time
from binascii import hexlify
from fido2.hid import CTAPHID
from fido2.ctap import CtapError
from .tester import Tester, Test
class HIDTests(Tester):
def __init__(self, tester=None):
super().__init__(tester)
self.check_timeouts = False
def set_check_timeouts(self, en):
self.check_timeouts = en
def run(self,):
self.test_long_ping()
self.test_hid(self.check_timeouts)
def test_long_ping(self):
amt = 1000
pingdata = os.urandom(amt)
with Test("Send %d byte ping" % amt):
try:
t1 = time.time() * 1000
r = self.send_data(CTAPHID.PING, pingdata)
t2 = time.time() * 1000
delt = t2 - t1
# if (delt < 140 ):
# raise RuntimeError('Fob is too fast (%d ms)' % delt)
if delt > 555 * (amt / 1000):
raise RuntimeError("Fob is too slow (%d ms)" % delt)
if r != pingdata:
raise ValueError("Ping data not echo'd")
except CtapError:
raise RuntimeError("ping failed")
sys.stdout.flush()
def test_hid(self, check_timeouts=False):
if check_timeouts:
with Test("idle"):
try:
cmd, resp = self.recv_raw()
except socket.timeout:
pass
with Test("init"):
r = self.send_data(CTAPHID.INIT, "\x11\x11\x11\x11\x11\x11\x11\x11")
with Test("100 byte ping"):
pingdata = os.urandom(100)
try:
r = self.send_data(CTAPHID.PING, pingdata)
if r != pingdata:
raise ValueError("Ping data not echo'd")
except CtapError as e:
print("100 byte Ping failed:", e)
raise RuntimeError("ping failed")
self.test_long_ping()
with Test("Wink"):
r = self.send_data(CTAPHID.WINK, "")
with Test("CBOR msg with no data"):
try:
r = self.send_data(CTAPHID.CBOR, "")
if len(r) > 1 or r[0] == 0:
raise RuntimeError("Cbor is supposed to have payload")
except CtapError as e:
assert e.code == CtapError.ERR.INVALID_LENGTH
with Test("No data in U2F msg"):
try:
r = self.send_data(CTAPHID.MSG, "")
print(hexlify(r))
if len(r) > 2:
raise RuntimeError("MSG is supposed to have payload")
except CtapError as e:
assert e.code == CtapError.ERR.INVALID_LENGTH
with Test("Use init command to resync"):
r = self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
with Test("Invalid HID command"):
try:
r = self.send_data(0x66, "")
raise RuntimeError("Invalid command did not return error")
except CtapError as e:
assert e.code == CtapError.ERR.INVALID_COMMAND
with Test("Sending packet with too large of a length."):
self.send_raw("\x81\x1d\xba\x00")
cmd, resp = self.recv_raw()
Tester.check_error(resp, CtapError.ERR.INVALID_LENGTH)
r = self.send_data(CTAPHID.PING, "\x44" * 200)
with Test("Sending packets that skip a sequence number."):
self.send_raw("\x81\x04\x90")
self.send_raw("\x00")
self.send_raw("\x01")
# skip 2
self.send_raw("\x03")
cmd, resp = self.recv_raw()
Tester.check_error(resp, CtapError.ERR.INVALID_SEQ)
with Test("Resync and send ping"):
try:
r = self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
pingdata = os.urandom(100)
r = self.send_data(CTAPHID.PING, pingdata)
if r != pingdata:
raise ValueError("Ping data not echo'd")
except CtapError as e:
raise RuntimeError("resync fail: ", e)
with Test("Send ping and abort it"):
self.send_raw("\x81\x04\x00")
self.send_raw("\x00")
self.send_raw("\x01")
try:
r = self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
except CtapError as e:
raise RuntimeError("resync fail: ", e)
with Test("Send ping and abort it with different cid, expect timeout"):
oldcid = self.cid()
newcid = "\x11\x22\x33\x44"
self.send_raw("\x81\x10\x00")
self.send_raw("\x00")
self.send_raw("\x01")
self.set_cid(newcid)
self.send_raw(
"\x86\x00\x08\x11\x22\x33\x44\x55\x66\x77\x88"
) # init from different cid
print("wait for init response")
cmd, r = self.recv_raw() # init response
assert cmd == 0x86
self.set_cid(oldcid)
if check_timeouts:
# print('wait for timeout')
cmd, r = self.recv_raw() # timeout response
assert cmd == 0xBF
with Test("Test timeout"):
self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
t1 = time.time() * 1000
self.send_raw("\x81\x04\x00")
self.send_raw("\x00")
self.send_raw("\x01")
cmd, r = self.recv_raw() # timeout response
t2 = time.time() * 1000
delt = t2 - t1
assert cmd == 0xBF
assert r[0] == CtapError.ERR.TIMEOUT
assert delt < 1000 and delt > 400
with Test("Test not cont"):
self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
self.send_raw("\x81\x04\x00")
self.send_raw("\x00")
self.send_raw("\x01")
self.send_raw("\x81\x10\x00") # init packet
cmd, r = self.recv_raw() # timeout response
assert cmd == 0xBF
assert r[0] == CtapError.ERR.INVALID_SEQ
if check_timeouts:
with Test("Check random cont ignored"):
self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
self.send_raw("\x01\x10\x00")
try:
cmd, r = self.recv_raw() # timeout response
except socket.timeout:
pass
with Test("Check busy"):
t1 = time.time() * 1000
self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
oldcid = self.cid()
newcid = "\x11\x22\x33\x44"
self.send_raw("\x81\x04\x00")
self.set_cid(newcid)
self.send_raw("\x81\x04\x00")
cmd, r = self.recv_raw() # busy response
t2 = time.time() * 1000
assert t2 - t1 < 100
assert cmd == 0xBF
assert r[0] == CtapError.ERR.CHANNEL_BUSY
self.set_cid(oldcid)
cmd, r = self.recv_raw() # timeout response
assert cmd == 0xBF
assert r[0] == CtapError.ERR.TIMEOUT
with Test("Check busy interleaved"):
cid1 = "\x11\x22\x33\x44"
cid2 = "\x01\x22\x33\x44"
self.set_cid(cid2)
self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
self.set_cid(cid1)
self.send_data(CTAPHID.INIT, "\x11\x22\x33\x44\x55\x66\x77\x88")
self.send_raw("\x81\x00\x63") # echo 99 bytes first channel
self.set_cid(cid2) # send ping on 2nd channel
self.send_raw("\x81\x00\x63")
Tester.delay(0.1)
self.send_raw("\x00")
cmd, r = self.recv_raw() # busy response
self.set_cid(cid1) # finish 1st channel ping
self.send_raw("\x00")
self.set_cid(cid2)
assert cmd == 0xBF
assert r[0] == CtapError.ERR.CHANNEL_BUSY
self.set_cid(cid1)
cmd, r = self.recv_raw() # ping response
assert cmd == 0x81
assert len(r) == 0x63
if check_timeouts:
with Test("Test idle, wait for timeout"):
sys.stdout.flush()
try:
cmd, resp = self.recv_raw()
except socket.timeout:
pass
with Test("Test cid 0 is invalid"):
self.set_cid("\x00\x00\x00\x00")
self.send_raw(
"\x86\x00\x08\x11\x22\x33\x44\x55\x66\x77\x88", cid="\x00\x00\x00\x00"
)
cmd, r = self.recv_raw() # timeout
assert cmd == 0xBF
assert r[0] == CtapError.ERR.INVALID_CHANNEL
with Test("Test invalid broadcast cid use"):
self.set_cid("\xff\xff\xff\xff")
self.send_raw(
"\x81\x00\x08\x11\x22\x33\x44\x55\x66\x77\x88", cid="\xff\xff\xff\xff"
)
cmd, r = self.recv_raw() # timeout
assert cmd == 0xBF
assert r[0] == CtapError.ERR.INVALID_CHANNEL

View File

@ -1,83 +0,0 @@
from solo.client import SoloClient
from solo.commands import SoloExtension
from fido2.ctap1 import ApduError
from fido2.utils import sha256
from .util import shannon_entropy
from .tester import Tester, Test
class SoloTests(Tester):
def __init__(self, tester=None):
super().__init__(tester)
def run(self,):
self.test_solo()
def test_solo(self,):
"""
Solo specific tests
"""
# RNG command
sc = SoloClient()
sc.find_device(self.dev)
sc.use_u2f()
memmap = (0x08005000, 0x08005000 + 198 * 1024 - 8)
total = 1024 * 16
with Test("Gathering %d random bytes..." % total):
entropy = b""
while len(entropy) < total:
entropy += sc.get_rng()
with Test("Test entropy is close to perfect"):
s = shannon_entropy(entropy)
assert s > 7.98
print("Entropy is %.5f bits per byte." % s)
with Test("Test Solo version command"):
assert len(sc.solo_version()) == 3
with Test("Test bootloader is not active"):
try:
sc.write_flash(memmap[0], b"1234")
except ApduError:
pass
sc.exchange = sc.exchange_fido2
req = SoloClient.format_request(SoloExtension.version, 0, b"A" * 16)
a = sc.ctap2.get_assertion(
sc.host, b"B" * 32, [{"id": req, "type": "public-key"}]
)
with Test("Test custom command returned valid assertion"):
assert a.auth_data.rp_id_hash == sha256(sc.host.encode("utf8"))
assert a.credential["id"] == req
assert (a.auth_data.flags & 0x5) == 0x5
with Test("Test Solo version and random commands with fido2 layer"):
assert len(sc.solo_version()) == 3
sc.get_rng()
def test_bootloader(self,):
sc = SoloClient()
sc.find_device(self.dev)
sc.use_u2f()
memmap = (0x08005000, 0x08005000 + 198 * 1024 - 8)
data = b"A" * 64
with Test("Test version command"):
assert len(sc.bootloader_version()) == 3
with Test("Test write command"):
sc.write_flash(memmap[0], data)
for addr in (memmap[0] - 8, memmap[0] - 4, memmap[1], memmap[1] - 8):
with Test("Test out of bounds write command at 0x%04x" % addr):
try:
sc.write_flash(addr, data)
except CtapError as e:
assert e.code == CtapError.ERR.NOT_ALLOWED

View File

@ -1,204 +0,0 @@
import time, struct
from fido2.hid import CtapHidDevice
from fido2.client import Fido2Client
from fido2.ctap1 import CTAP1
from fido2.utils import Timeout
from fido2.ctap import CtapError
def ForceU2F(client, device):
client.ctap = CTAP1(device)
client.pin_protocol = None
client._do_make_credential = client._ctap1_make_credential
client._do_get_assertion = client._ctap1_get_assertion
class Packet(object):
def __init__(self, data):
self.data = data
def ToWireFormat(self,):
return self.data
@staticmethod
def FromWireFormat(pkt_size, data):
return Packet(data)
class Test:
def __init__(self, msg, catch=None):
self.msg = msg
self.catch = catch
def __enter__(self,):
print(self.msg)
def __exit__(self, a, b, c):
if self.catch is None:
print("Pass")
elif isinstance(b, self.catch):
print("Pass")
return b
else:
raise RuntimeError(f"Expected exception {self.catch} did not occur.")
class Tester:
def __init__(self, tester=None):
self.origin = "https://examplo.org"
self.host = "examplo.org"
self.user_count = 10
self.is_sim = False
if tester:
self.initFromTester(tester)
def initFromTester(self, tester):
self.user_count = tester.user_count
self.is_sim = tester.is_sim
self.dev = tester.dev
self.ctap = tester.ctap
self.ctap1 = tester.ctap1
self.client = tester.client
def find_device(self,):
print(list(CtapHidDevice.list_devices()))
dev = next(CtapHidDevice.list_devices(), None)
if not dev:
raise RuntimeError("No FIDO device found")
self.dev = dev
self.client = Fido2Client(dev, self.origin)
self.ctap = self.client.ctap2
self.ctap1 = CTAP1(dev)
# consume timeout error
# cmd,resp = self.recv_raw()
def set_user_count(self, count):
self.user_count = count
def set_sim(self, b):
self.is_sim = b
def reboot(self,):
if self.is_sim:
print("Sending restart command...")
self.send_magic_reboot()
Tester.delay(0.25)
else:
print("Please reboot authentictor and hit enter")
input()
self.find_device()
def send_data(self, cmd, data):
if not isinstance(data, bytes):
data = struct.pack("%dB" % len(data), *[ord(x) for x in data])
with Timeout(1.0) as event:
return self.dev.call(cmd, data, event)
def send_raw(self, data, cid=None):
if cid is None:
cid = self.dev._dev.cid
elif not isinstance(cid, bytes):
cid = struct.pack("%dB" % len(cid), *[ord(x) for x in cid])
if not isinstance(data, bytes):
data = struct.pack("%dB" % len(data), *[ord(x) for x in data])
data = cid + data
l = len(data)
if l != 64:
pad = "\x00" * (64 - l)
pad = struct.pack("%dB" % len(pad), *[ord(x) for x in pad])
data = data + pad
data = list(data)
assert len(data) == 64
self.dev._dev.InternalSendPacket(Packet(data))
def send_magic_reboot(self,):
"""
For use in simulation and testing. Random bytes that authentictor should detect
and then restart itself.
"""
magic_cmd = (
b"\xac\x10\x52\xca\x95\xe5\x69\xde\x69\xe0\x2e\xbf"
+ b"\xf3\x33\x48\x5f\x13\xf9\xb2\xda\x34\xc5\xa8\xa3"
+ b"\x40\x52\x66\x97\xa9\xab\x2e\x0b\x39\x4d\x8d\x04"
+ b"\x97\x3c\x13\x40\x05\xbe\x1a\x01\x40\xbf\xf6\x04"
+ b"\x5b\xb2\x6e\xb7\x7a\x73\xea\xa4\x78\x13\xf6\xb4"
+ b"\x9a\x72\x50\xdc"
)
self.dev._dev.InternalSendPacket(Packet(magic_cmd))
def cid(self,):
return self.dev._dev.cid
def set_cid(self, cid):
if not isinstance(cid, (bytes, bytearray)):
cid = struct.pack("%dB" % len(cid), *[ord(x) for x in cid])
self.dev._dev.cid = cid
def recv_raw(self,):
with Timeout(1.0):
cmd, payload = self.dev._dev.InternalRecv()
return cmd, payload
def check_error(data, err=None):
assert len(data) == 1
if err is None:
if data[0] != 0:
raise CtapError(data[0])
elif data[0] != err:
raise ValueError("Unexpected error: %02x" % data[0])
def testFunc(self, func, test, *args, **kwargs):
with Test(test):
res = None
expectedError = kwargs.get("expectedError", None)
otherArgs = kwargs.get("other", {})
try:
res = func(*args, **otherArgs)
if expectedError != CtapError.ERR.SUCCESS:
raise RuntimeError("Expected error to occur for test: %s" % test)
except CtapError as e:
if expectedError is not None:
cond = e.code != expectedError
if isinstance(expectedError, list):
cond = e.code not in expectedError
else:
expectedError = [expectedError]
if cond:
raise RuntimeError(
f"Got error code {hex(e.code)}, expected {[hex(x) for x in expectedError]}"
)
else:
print(e)
return res
def testReset(self,):
print("Resetting Authenticator...")
try:
self.ctap.reset()
except CtapError:
# Some authenticators need a power cycle
print("You must power cycle authentictor. Hit enter when done.")
input()
time.sleep(0.2)
self.find_device()
self.ctap.reset()
def testMC(self, test, *args, **kwargs):
return self.testFunc(self.ctap.make_credential, test, *args, **kwargs)
def testGA(self, test, *args, **kwargs):
return self.testFunc(self.ctap.get_assertion, test, *args, **kwargs)
def testCP(self, test, *args, **kwargs):
return self.testFunc(self.ctap.client_pin, test, *args, **kwargs)
def testPP(self, test, *args, **kwargs):
return self.testFunc(
self.client.pin_protocol.get_pin_token, test, *args, **kwargs
)
def delay(secs):
time.sleep(secs)

View File

@ -1,121 +0,0 @@
from fido2.ctap1 import CTAP1, ApduError, APDU
from fido2.utils import sha256
from fido2.client import _call_polling
from .tester import Tester, Test
class U2FTests(Tester):
def __init__(self, tester=None):
super().__init__(tester)
def run(self,):
self.test_u2f()
def register(self, chal, appid):
reg_data = _call_polling(0.25, None, None, self.ctap1.register, chal, appid)
return reg_data
def authenticate(self, chal, appid, key_handle, check_only=False):
auth_data = _call_polling(
0.25,
None,
None,
self.ctap1.authenticate,
chal,
appid,
key_handle,
check_only=check_only,
)
return auth_data
def test_u2f(self,):
chal = sha256(b"AAA")
appid = sha256(b"BBB")
lastc = 0
regs = []
with Test("Check version"):
assert self.ctap1.get_version() == "U2F_V2"
with Test("Check bad INS"):
try:
self.ctap1.send_apdu(0, 0, 0, 0, b"")
except ApduError as e:
assert e.code == 0x6D00
with Test("Check bad CLA"):
try:
self.ctap1.send_apdu(1, CTAP1.INS.VERSION, 0, 0, b"abc")
except ApduError as e:
assert e.code == 0x6E00
for i in range(0, self.user_count):
with Test(
"U2F reg + auth %d/%d (count: %02x)" % (i + 1, self.user_count, lastc)
):
reg = self.register(chal, appid)
reg.verify(appid, chal)
auth = self.authenticate(chal, appid, reg.key_handle)
auth.verify(appid, chal, reg.public_key)
regs.append(reg)
# check endianness
if lastc:
assert (auth.counter - lastc) < 10
lastc = auth.counter
if lastc > 0x80000000:
print("WARNING: counter is unusually high: %04x" % lastc)
assert 0
for i in range(0, self.user_count):
with Test(
"Checking previous registration %d/%d" % (i + 1, self.user_count)
):
auth = self.authenticate(chal, appid, regs[i].key_handle)
auth.verify(appid, chal, regs[i].public_key)
print("Check that all previous credentials are registered...")
for i in range(0, self.user_count):
with Test("Check that previous credential %d is registered" % i):
try:
auth = self.ctap1.authenticate(
chal, appid, regs[i].key_handle, check_only=True
)
except ApduError as e:
# Indicates that key handle is registered
assert e.code == APDU.USE_NOT_SATISFIED
with Test("Check an incorrect key handle is not registered"):
kh = bytearray(regs[0].key_handle)
kh[0] = kh[0] ^ (0x40)
try:
self.ctap1.authenticate(chal, appid, kh, check_only=True)
assert 0
except ApduError as e:
assert e.code == APDU.WRONG_DATA
with Test("Try to sign with incorrect key handle"):
try:
self.ctap1.authenticate(chal, appid, kh)
assert 0
except ApduError as e:
assert e.code == APDU.WRONG_DATA
with Test("Try to sign using an incorrect keyhandle length"):
try:
kh = regs[0].key_handle
self.ctap1.authenticate(chal, appid, kh[: len(kh) // 2])
assert 0
except ApduError as e:
assert e.code == APDU.WRONG_DATA
with Test("Try to sign using an incorrect appid"):
badid = bytearray(appid)
badid[0] = badid[0] ^ (0x40)
try:
auth = self.ctap1.authenticate(chal, badid, regs[0].key_handle)
assert 0
except ApduError as e:
assert e.code == APDU.WRONG_DATA

View File

@ -1,12 +0,0 @@
import math
def shannon_entropy(data):
s = 0.0
total = len(data)
for x in range(0, 256):
freq = data.count(x)
p = freq / total
if p > 0:
s -= p * math.log2(p)
return s