basic ndef message works

This commit is contained in:
Conor Patrick 2019-01-13 17:25:32 -05:00
parent 1874e11fba
commit dcf7940b3d
6 changed files with 719 additions and 475 deletions

View File

@ -5,7 +5,7 @@ AR=$(PREFIX)arm-none-eabi-ar
# ST related
SRC = src/main.c src/init.c src/redirect.c src/flash.c src/rng.c src/led.c src/device.c
SRC += src/fifo.c src/crypto.c src/attestation.c src/nfc.c
SRC += src/fifo.c src/crypto.c src/attestation.c src/nfc.c src/ams.c
SRC += src/startup_stm32l432xx.s src/system_stm32l4xx.c
SRC += $(wildcard lib/*.c) $(wildcard lib/usbd/*.c)

340
targets/stm32l432/src/ams.c Normal file
View File

@ -0,0 +1,340 @@
#include <string.h>
#include "stm32l4xx_ll_spi.h"
#include "ams.h"
#include "log.h"
#include "util.h"
#include "device.h"
static void flush_rx()
{
while(LL_SPI_IsActiveFlag_RXNE(SPI1) != 0)
{
LL_SPI_ReceiveData8(SPI1);
}
}
static void wait_for_tx()
{
// while (LL_SPI_IsActiveFlag_BSY(SPI1) == 1)
// ;
while(LL_SPI_GetTxFIFOLevel(SPI1) != LL_SPI_TX_FIFO_EMPTY)
;
}
static void wait_for_rx()
{
while(LL_SPI_IsActiveFlag_RXNE(SPI1) == 0)
;
}
static void ams_print_device(AMS_DEVICE * dev)
{
printf1(TAG_NFC, "AMS_DEVICE:\r\n");
printf1(TAG_NFC, " io_conf: %02x\r\n",dev->regs.io_conf);
printf1(TAG_NFC, " ic_conf0: %02x\r\n",dev->regs.ic_conf0);
printf1(TAG_NFC, " ic_conf1: %02x\r\n",dev->regs.ic_conf1);
printf1(TAG_NFC, " ic_conf2: %02x\r\n",dev->regs.ic_conf2);
printf1(TAG_NFC, " rfid_status: %02x\r\n",dev->regs.rfid_status);
printf1(TAG_NFC, " ic_status: %02x\r\n",dev->regs.ic_status);
printf1(TAG_NFC, " mask_int0: %02x\r\n",dev->regs.mask_int0);
printf1(TAG_NFC, " mask_int1: %02x\r\n",dev->regs.mask_int1);
printf1(TAG_NFC, " int0: %02x\r\n",dev->regs.int0);
printf1(TAG_NFC, " int1: %02x\r\n",dev->regs.int1);
printf1(TAG_NFC, " buffer_status2: %02x\r\n",dev->regs.buffer_status2);
printf1(TAG_NFC, " buffer_status1: %02x\r\n",dev->regs.buffer_status1);
printf1(TAG_NFC, " last_nfc_addr: %02x\r\n",dev->regs.last_nfc_addr);
printf1(TAG_NFC, " product_type: %02x\r\n",dev->regs.product_type);
printf1(TAG_NFC, " product_subtype:%02x\r\n",dev->regs.product_subtype);
printf1(TAG_NFC, " version_maj: %02x\r\n",dev->regs.version_maj);
printf1(TAG_NFC, " version_min: %02x\r\n",dev->regs.version_min);
}
static uint8_t send_recv(uint8_t b)
{
wait_for_tx();
LL_SPI_TransmitData8(SPI1, b);
wait_for_rx();
b = LL_SPI_ReceiveData8(SPI1);
return b;
}
void ams_write_reg(uint8_t addr, uint8_t tx)
{
send_recv(0x00| addr);
send_recv(tx);
UNSELECT();
SELECT();
}
uint8_t ams_read_reg(uint8_t addr)
{
send_recv(0x20| (addr & 0x1f));
uint8_t data = send_recv(0);
UNSELECT();
SELECT();
return data;
}
// data must be 14 bytes long
void read_reg_block2(AMS_DEVICE * dev)
{
int i;
for (i = 0; i < 0x20; i++)
{
dev->buf[i] = ams_read_reg(i);
}
}
// data must be 14 bytes long
void read_reg_block(AMS_DEVICE * dev)
{
int i;
uint8_t mode = 0x20 | (0 );
flush_rx();
send_recv(mode);
for (i = 0; i < 0x20; i++)
{
dev->buf[i] = send_recv(0);
}
UNSELECT();
SELECT();
}
void ams_read_buffer(uint8_t * data, int len)
{
send_recv(0xa0);
while(len--)
{
*data++ = send_recv(0x00);
}
UNSELECT();
SELECT();
}
void ams_write_buffer(uint8_t * data, int len)
{
send_recv(0x80);
while(len--)
{
send_recv(*data++);
}
UNSELECT();
SELECT();
}
// data must be 4 bytes
void ams_read_eeprom_block(uint8_t block, uint8_t * data)
{
send_recv(0x7f);
send_recv(block << 1);
data[0] = send_recv(0);
data[1] = send_recv(0);
data[2] = send_recv(0);
data[3] = send_recv(0);
UNSELECT();
SELECT();
}
// data must be 4 bytes
void ams_write_eeprom_block(uint8_t block, uint8_t * data)
{
send_recv(0x40);
send_recv(block << 1);
send_recv(data[0]);
send_recv(data[1]);
send_recv(data[2]);
send_recv(data[3]);
UNSELECT();
SELECT();
}
void ams_write_command(uint8_t cmd)
{
send_recv(0xc0 | cmd);
UNSELECT();
SELECT();
}
const char * ams_get_state_string(uint8_t regval)
{
if (regval & AMS_STATE_INVALID)
{
return "STATE_INVALID";
}
switch (regval & AMS_STATE_MASK)
{
case AMS_STATE_OFF:
return "STATE_OFF";
case AMS_STATE_SENSE:
return "STATE_SENSE";
case AMS_STATE_RESOLUTION:
return "STATE_RESOLUTION";
case AMS_STATE_RESOLUTION_L2:
return "STATE_RESOLUTION_L2";
case AMS_STATE_SELECTED:
return "STATE_SELECTED";
case AMS_STATE_SECTOR2:
return "STATE_SECTOR2";
case AMS_STATE_SECTORX_2:
return "STATE_SECTORX_2";
case AMS_STATE_SELECTEDX:
return "STATE_SELECTEDX";
case AMS_STATE_SENSEX_L2:
return "STATE_SENSEX_L2";
case AMS_STATE_SENSEX:
return "STATE_SENSEX";
case AMS_STATE_SLEEP:
return "STATE_SLEEP";
}
return "STATE_WRONG";
}
void ams_print_int0(uint8_t int0)
{
uint32_t tag = (TAG_NFC)|(TAG_NO_TAG);
printf1(TAG_NFC," ");
if (int0 & AMS_INT_XRF)
printf1(tag," XRF");
if (int0 & AMS_INT_TXE)
printf1(tag," TXE");
if (int0 & AMS_INT_RXE)
printf1(tag," RXE");
if (int0 & AMS_INT_EER_RF)
printf1(tag," EER_RF");
if (int0 & AMS_INT_EEW_RF)
printf1(tag," EEW_RF");
if (int0 & AMS_INT_SLP)
printf1(tag," SLP");
if (int0 & AMS_INT_WU_A)
printf1(tag," WU_A");
if (int0 & AMS_INT_INIT)
printf1(tag," INIT");
printf1(tag,"\r\n");
}
void ams_print_int1(uint8_t int0)
{
uint32_t tag = (TAG_NFC)|(TAG_NO_TAG);
printf1(TAG_NFC," ");
if (int0 & AMS_INT_ACC_ERR)
printf1(tag," ACC_ERR");
if (int0 & AMS_INT_EEAC_ERR)
printf1(tag," EEAC_ERR");
if (int0 & AMS_INT_IO_EEWR)
printf1(tag," IO_EEWR");
if (int0 & AMS_INT_BF_ERR)
printf1(tag," BF_ERR");
if (int0 & AMS_INT_CRC_ERR)
printf1(tag," CRC_ERR");
if (int0 & AMS_INT_PAR_ERR)
printf1(tag," PAR_ERR");
if (int0 & AMS_INT_FRM_ERR)
printf1(tag," FRM_ERR");
if (int0 & AMS_INT_RXS)
printf1(tag," RXS");
printf1(tag,"\r\n");
}
void ams_init()
{
uint8_t block[4];
LL_GPIO_SetPinMode(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN,LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN);
LL_SPI_SetClockPolarity(SPI1,LL_SPI_POLARITY_LOW);
LL_SPI_SetClockPhase(SPI1,LL_SPI_PHASE_2EDGE);
LL_SPI_SetRxFIFOThreshold(SPI1,LL_SPI_RX_FIFO_TH_QUARTER);
LL_SPI_Enable(SPI1);
delay(10);
SELECT();
delay(10);
ams_write_command(AMS_CMD_DEFAULT);
ams_write_command(AMS_CMD_CLEAR_BUFFER);
// enable tunneling mode and RF configuration
ams_write_reg(AMS_REG_IC_CONF2, AMS_RFCFG_EN | AMS_TUN_MOD);
ams_read_eeprom_block(0, block);
printf1(TAG_NFC,"UID: "); dump_hex1(TAG_NFC,block,4);
ams_read_eeprom_block(0, block);
printf1(TAG_NFC,"UID: "); dump_hex1(TAG_NFC,block,4);
ams_read_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
printf1(TAG_NFC,"conf0: "); dump_hex1(TAG_NFC,block,4);
uint8_t sense1 = 0x44;
uint8_t sense2 = 0x00;
uint8_t selr = 0x20; // SAK
if(block[0] != sense1 || block[1] != sense2 || block[2] != selr)
{
printf1(TAG_NFC,"Writing config block 0\r\n");
block[0] = sense1;
block[1] = sense2;
block[2] = selr;
block[3] = 0x00;
ams_write_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
UNSELECT();
delay(10);
SELECT();
delay(10);
ams_read_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
printf1(TAG_NFC,"conf0: "); dump_hex1(TAG_NFC,block,4);
}
ams_read_eeprom_block(AMS_CONFIG_BLOCK1_ADDR, block);
printf1(TAG_NFC,"conf1: "); dump_hex1(TAG_NFC,block,4);
uint8_t ic_cfg1 = AMS_CFG1_OUTPUT_RESISTANCE_100 | AMS_CFG1_VOLTAGE_LEVEL_2V0;
uint8_t ic_cfg2 = AMS_CFG2_TUN_MOD;
if (block[0] != ic_cfg1 || block[1] != ic_cfg2)
{
printf1(TAG_NFC,"Writing config block 1\r\n");
// set IC_CFG1
block[0] = ic_cfg1;
// set IC_CFG2
block[1] = ic_cfg2;
// mask interrupt bits
block[2] = 0x80;
block[3] = 0;
ams_write_eeprom_block(AMS_CONFIG_BLOCK1_ADDR, block);
UNSELECT();
delay(10);
SELECT();
delay(10);
ams_read_eeprom_block(0x7F, block);
printf1(TAG_NFC,"conf1: "); dump_hex1(TAG_NFC,block,4);
}
}

127
targets/stm32l432/src/ams.h Normal file
View File

@ -0,0 +1,127 @@
#ifndef _AMS_H_
#define _AMS_H_
#include <stdint.h>
#include <stdint.h>
#include "stm32l4xx_ll_gpio.h"
typedef union
{
uint8_t buf[0x20];
struct {
uint8_t io_conf; // 0x00
uint8_t ic_conf0; // 0x01
uint8_t ic_conf1; // 0x02
uint8_t ic_conf2; // 0x03
uint8_t rfid_status; // 0x04
uint8_t ic_status; // 0x05
uint8_t _nc0[2]; // 0x06 - 0x07
uint8_t mask_int0; // 0x08
uint8_t mask_int1; // 0x09
uint8_t int0; // 0x0a
uint8_t int1; // 0x0b
uint8_t buffer_status2; // 0x0c
uint8_t buffer_status1; // 0x0d
uint8_t last_nfc_addr; // 0x0e
uint8_t _nc1[0x1b - 0x0f + 1]; // 0x0f - 0x1b
uint8_t product_type; // 0x1c
uint8_t product_subtype; // 0x1d
uint8_t version_maj; // 0x1e
uint8_t version_min; // 0x1f
} regs;
} __attribute__((packed)) AMS_DEVICE;
#define SELECT() LL_GPIO_ResetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
#define UNSELECT() LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
void ams_init();
void ams_read_buffer(uint8_t * data, int len);
void ams_write_buffer(uint8_t * data, int len);
void ams_write_command(uint8_t cmd);
void read_reg_block(AMS_DEVICE * dev);
uint8_t ams_read_reg(uint8_t addr);
void ams_write_reg(uint8_t addr, uint8_t tx);
#define AMS_REG_IO_CONF 0x00
#define AMS_REG_IC_CONF0 0x01
#define AMS_REG_IC_CONF1 0x02
#define AMS_REG_IC_CONF2 0x03
#define AMS_RFCFG_EN 0x80
#define AMS_TUN_MOD 0x40
#define AMS_REG_RFID_STATUS 0x04
#define AMS_HF_PON 0x80
#define AMS_STATE_MASK 0x78
#define AMS_STATE_INVALID 0x04
#define AMS_STATE_OFF (0 << 3)
#define AMS_STATE_SENSE (1 << 3)
#define AMS_STATE_RESOLUTION (3 << 3)
#define AMS_STATE_RESOLUTION_L2 (2 << 3)
#define AMS_STATE_SELECTED (6 << 3)
#define AMS_STATE_SECTOR2 (7 << 3)
#define AMS_STATE_SECTORX_2 (0xf << 3)
#define AMS_STATE_SELECTEDX (0xd << 3)
#define AMS_STATE_SENSEX_L2 (0xa << 3)
#define AMS_STATE_SENSEX (0xb << 3)
#define AMS_STATE_SLEEP (0x9 << 3)
// ... //
#define AMS_REG_INT0 0x0a
#define AMS_INT_XRF (1<<0)
#define AMS_INT_TXE (1<<1)
#define AMS_INT_RXE (1<<2)
#define AMS_INT_EER_RF (1<<3)
#define AMS_INT_EEW_RF (1<<4)
#define AMS_INT_SLP (1<<5)
#define AMS_INT_WU_A (1<<6)
#define AMS_INT_INIT (1<<7)
#define AMS_REG_INT1 0x0b
#define AMS_INT_ACC_ERR (1<<0)
#define AMS_INT_EEAC_ERR (1<<1)
#define AMS_INT_IO_EEWR (1<<2)
#define AMS_INT_BF_ERR (1<<3)
#define AMS_INT_CRC_ERR (1<<4)
#define AMS_INT_PAR_ERR (1<<5)
#define AMS_INT_FRM_ERR (1<<6)
#define AMS_INT_RXS (1<<7)
#define AMS_REG_BUF2 0x0c
#define AMS_BUF_LEN_MASK 0x1f
#define AMS_BUF_INVALID 0x80
#define AMS_CONFIG_BLOCK0_ADDR 0x7e
#define AMS_CONFIG_BLOCK1_ADDR 0x7f
#define AMS_CFG1_VOLTAGE_LEVEL_1V9 (0x00<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V0 (0x01<<2)
#define AMS_CFG1_OUTPUT_RESISTANCE_ZZ 0x00
#define AMS_CFG1_OUTPUT_RESISTANCE_100 0x01
#define AMS_CFG1_OUTPUT_RESISTANCE_50 0x02
#define AMS_CFG1_OUTPUT_RESISTANCE_25 0x03
#define AMS_CFG2_RFCFG_EN (1<<7)
#define AMS_CFG2_TUN_MOD (1<<6)
#define AMS_CMD_DEFAULT 0x02
#define AMS_CMD_CLEAR_BUFFER 0x04
#define AMS_CMD_RESTART_TRANSCEIVER 0x06
#define AMS_CMD_DIS_EN_TRANSCEIVER 0x07
#define AMS_CMD_TRANSMIT_BUFFER 0x08
#define AMS_CMD_TRANSMIT_ACK 0x09
#define AMS_CMD_TRANSMIT_NACK0 0x0A
#define AMS_CMD_TRANSMIT_NACK1 0x0B
#define AMS_CMD_TRANSMIT_NACK4 0x0D
#define AMS_CMD_TRANSMIT_NACK5 0x0C
#define AMS_CMD_SLEEP 0x10
#define AMS_CMD_SENSE 0x11
#define AMS_CMD_SENSE_SLEEP 0x12
#endif

View File

@ -1,355 +1,50 @@
#include <string.h>
#include "stm32l4xx.h"
#include "stm32l4xx_ll_gpio.h"
#include "stm32l4xx_ll_spi.h"
#include "nfc.h"
#include "ams.h"
#include "log.h"
#include "util.h"
#include "device.h"
#define SELECT() LL_GPIO_ResetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
#define UNSELECT() LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
// Capability container
const CAPABILITY_CONTAINER NFC_CC = {
.cclen_hi = 0x00, .cclen_lo = 0x0f,
.version = 0x01,
.MLe_hi = 0x00, .MLe_lo = 0xff,
.MLc_hi = 0x00, .MLc_lo = 0xff,
.tlv = { 0x04,0x06,
0x11,0x11,
0x00,0xff,
0x00,0xff }
};
uint8_t NDEF_SAMPLE[] = "\x00\x13\xD1\x01\x0ET\x02enHello World";
static struct
{
uint8_t max_frame_size;
uint8_t cid;
uint8_t block_num;
uint8_t selected_applet;
} NFC_STATE;
static void flush_rx()
void nfc_state_init()
{
while(LL_SPI_IsActiveFlag_RXNE(SPI1) != 0)
{
LL_SPI_ReceiveData8(SPI1);
memset(&NFC_STATE,0,sizeof(NFC_STATE));
NFC_STATE.max_frame_size = 32;
NFC_STATE.block_num = 1;
}
}
static void wait_for_tx()
{
// while (LL_SPI_IsActiveFlag_BSY(SPI1) == 1)
// ;
while(LL_SPI_GetTxFIFOLevel(SPI1) != LL_SPI_TX_FIFO_EMPTY)
;
}
static void wait_for_rx()
{
while(LL_SPI_IsActiveFlag_RXNE(SPI1) == 0)
;
}
static void ams_print_device(AMS_DEVICE * dev)
{
printf1(TAG_NFC, "AMS_DEVICE:\r\n");
printf1(TAG_NFC, " io_conf: %02x\r\n",dev->regs.io_conf);
printf1(TAG_NFC, " ic_conf0: %02x\r\n",dev->regs.ic_conf0);
printf1(TAG_NFC, " ic_conf1: %02x\r\n",dev->regs.ic_conf1);
printf1(TAG_NFC, " ic_conf2: %02x\r\n",dev->regs.ic_conf2);
printf1(TAG_NFC, " rfid_status: %02x\r\n",dev->regs.rfid_status);
printf1(TAG_NFC, " ic_status: %02x\r\n",dev->regs.ic_status);
printf1(TAG_NFC, " mask_int0: %02x\r\n",dev->regs.mask_int0);
printf1(TAG_NFC, " mask_int1: %02x\r\n",dev->regs.mask_int1);
printf1(TAG_NFC, " int0: %02x\r\n",dev->regs.int0);
printf1(TAG_NFC, " int1: %02x\r\n",dev->regs.int1);
printf1(TAG_NFC, " buffer_status2: %02x\r\n",dev->regs.buffer_status2);
printf1(TAG_NFC, " buffer_status1: %02x\r\n",dev->regs.buffer_status1);
printf1(TAG_NFC, " last_nfc_addr: %02x\r\n",dev->regs.last_nfc_addr);
printf1(TAG_NFC, " product_type: %02x\r\n",dev->regs.product_type);
printf1(TAG_NFC, " product_subtype:%02x\r\n",dev->regs.product_subtype);
printf1(TAG_NFC, " version_maj: %02x\r\n",dev->regs.version_maj);
printf1(TAG_NFC, " version_min: %02x\r\n",dev->regs.version_min);
}
static uint8_t send_recv(uint8_t b)
{
wait_for_tx();
LL_SPI_TransmitData8(SPI1, b);
wait_for_rx();
b = LL_SPI_ReceiveData8(SPI1);
return b;
}
static void ams_write_reg(uint8_t addr, uint8_t tx)
{
send_recv(0x00| addr);
send_recv(tx);
UNSELECT();
SELECT();
}
uint8_t ams_read_reg(uint8_t addr)
{
send_recv(0x20| (addr & 0x1f));
uint8_t data = send_recv(0);
UNSELECT();
SELECT();
return data;
}
// data must be 14 bytes long
void read_reg_block2(AMS_DEVICE * dev)
{
int i;
for (i = 0; i < 0x20; i++)
{
dev->buf[i] = ams_read_reg(i);
}
}
// data must be 14 bytes long
void read_reg_block(AMS_DEVICE * dev)
{
int i;
uint8_t mode = 0x20 | (0 );
flush_rx();
send_recv(mode);
for (i = 0; i < 0x20; i++)
{
dev->buf[i] = send_recv(0);
}
UNSELECT();
SELECT();
}
void ams_read_buffer(uint8_t * data, int len)
{
send_recv(0xa0);
while(len--)
{
*data++ = send_recv(0x00);
}
UNSELECT();
SELECT();
}
void ams_write_buffer(uint8_t * data, int len)
{
send_recv(0x80);
while(len--)
{
send_recv(*data++);
}
UNSELECT();
SELECT();
}
// data must be 4 bytes
void ams_read_eeprom_block(uint8_t block, uint8_t * data)
{
send_recv(0x7f);
send_recv(block << 1);
data[0] = send_recv(0);
data[1] = send_recv(0);
data[2] = send_recv(0);
data[3] = send_recv(0);
UNSELECT();
SELECT();
}
// data must be 4 bytes
void ams_write_eeprom_block(uint8_t block, uint8_t * data)
{
send_recv(0x40);
send_recv(block << 1);
send_recv(data[0]);
send_recv(data[1]);
send_recv(data[2]);
send_recv(data[3]);
UNSELECT();
SELECT();
}
void ams_write_command(uint8_t cmd)
{
send_recv(0xc0 | cmd);
UNSELECT();
SELECT();
}
const char * ams_get_state_string(uint8_t regval)
{
if (regval & AMS_STATE_INVALID)
{
return "STATE_INVALID";
}
switch (regval & AMS_STATE_MASK)
{
case AMS_STATE_OFF:
return "STATE_OFF";
case AMS_STATE_SENSE:
return "STATE_SENSE";
case AMS_STATE_RESOLUTION:
return "STATE_RESOLUTION";
case AMS_STATE_RESOLUTION_L2:
return "STATE_RESOLUTION_L2";
case AMS_STATE_SELECTED:
return "STATE_SELECTED";
case AMS_STATE_SECTOR2:
return "STATE_SECTOR2";
case AMS_STATE_SECTORX_2:
return "STATE_SECTORX_2";
case AMS_STATE_SELECTEDX:
return "STATE_SELECTEDX";
case AMS_STATE_SENSEX_L2:
return "STATE_SENSEX_L2";
case AMS_STATE_SENSEX:
return "STATE_SENSEX";
case AMS_STATE_SLEEP:
return "STATE_SLEEP";
}
return "STATE_WRONG";
}
void ams_print_int0(uint8_t int0)
{
uint32_t tag = (TAG_NFC)|(TAG_NO_TAG);
printf1(TAG_NFC," ");
if (int0 & AMS_INT_XRF)
printf1(tag," XRF");
if (int0 & AMS_INT_TXE)
printf1(tag," TXE");
if (int0 & AMS_INT_RXE)
printf1(tag," RXE");
if (int0 & AMS_INT_EER_RF)
printf1(tag," EER_RF");
if (int0 & AMS_INT_EEW_RF)
printf1(tag," EEW_RF");
if (int0 & AMS_INT_SLP)
printf1(tag," SLP");
if (int0 & AMS_INT_WU_A)
printf1(tag," WU_A");
if (int0 & AMS_INT_INIT)
printf1(tag," INIT");
printf1(tag,"\r\n");
}
void ams_print_int1(uint8_t int0)
{
uint32_t tag = (TAG_NFC)|(TAG_NO_TAG);
printf1(TAG_NFC," ");
if (int0 & AMS_INT_ACC_ERR)
printf1(tag," ACC_ERR");
if (int0 & AMS_INT_EEAC_ERR)
printf1(tag," EEAC_ERR");
if (int0 & AMS_INT_IO_EEWR)
printf1(tag," IO_EEWR");
if (int0 & AMS_INT_BF_ERR)
printf1(tag," BF_ERR");
if (int0 & AMS_INT_CRC_ERR)
printf1(tag," CRC_ERR");
if (int0 & AMS_INT_PAR_ERR)
printf1(tag," PAR_ERR");
if (int0 & AMS_INT_FRM_ERR)
printf1(tag," FRM_ERR");
if (int0 & AMS_INT_RXS)
printf1(tag," RXS");
printf1(tag,"\r\n");
}
void nfc_init()
{
uint8_t block[4];
memset(&NFC_STATE,0,sizeof(NFC_STATE));
NFC_STATE.max_frame_size = 32;
LL_GPIO_SetPinMode(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN,LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN);
LL_SPI_SetClockPolarity(SPI1,LL_SPI_POLARITY_LOW);
LL_SPI_SetClockPhase(SPI1,LL_SPI_PHASE_2EDGE);
LL_SPI_SetRxFIFOThreshold(SPI1,LL_SPI_RX_FIFO_TH_QUARTER);
LL_SPI_Enable(SPI1);
delay(10);
SELECT();
delay(10);
ams_write_command(AMS_CMD_DEFAULT);
ams_write_command(AMS_CMD_CLEAR_BUFFER);
// enable tunneling mode and RF configuration
ams_write_reg(AMS_REG_IC_CONF2, AMS_RFCFG_EN | AMS_TUN_MOD);
ams_read_eeprom_block(0, block);
printf1(TAG_NFC,"UID: "); dump_hex1(TAG_NFC,block,4);
ams_read_eeprom_block(0, block);
printf1(TAG_NFC,"UID: "); dump_hex1(TAG_NFC,block,4);
ams_read_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
printf1(TAG_NFC,"conf0: "); dump_hex1(TAG_NFC,block,4);
uint8_t sense1 = 0x44;
uint8_t sense2 = 0x00;
uint8_t selr = 0x20; // SAK
if(block[0] != sense1 || block[1] != sense2 || block[2] != selr)
{
printf1(TAG_NFC,"Writing config block 0\r\n");
block[0] = sense1;
block[1] = sense2;
block[2] = selr;
block[3] = 0x00;
ams_write_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
UNSELECT();
delay(10);
SELECT();
delay(10);
ams_read_eeprom_block(AMS_CONFIG_BLOCK0_ADDR, block);
printf1(TAG_NFC,"conf0: "); dump_hex1(TAG_NFC,block,4);
}
ams_read_eeprom_block(AMS_CONFIG_BLOCK1_ADDR, block);
printf1(TAG_NFC,"conf1: "); dump_hex1(TAG_NFC,block,4);
uint8_t ic_cfg1 = AMS_CFG1_OUTPUT_RESISTANCE_100 | AMS_CFG1_VOLTAGE_LEVEL_2V0;
uint8_t ic_cfg2 = AMS_CFG2_TUN_MOD;
if (block[0] != ic_cfg1 || block[1] != ic_cfg2)
{
printf1(TAG_NFC,"Writing config block 1\r\n");
// set IC_CFG1
block[0] = ic_cfg1;
// set IC_CFG2
block[1] = ic_cfg2;
// mask interrupt bits
block[2] = 0x80;
block[3] = 0;
ams_write_eeprom_block(AMS_CONFIG_BLOCK1_ADDR, block);
UNSELECT();
delay(10);
SELECT();
delay(10);
ams_read_eeprom_block(0x7F, block);
printf1(TAG_NFC,"conf1: "); dump_hex1(TAG_NFC,block,4);
}
nfc_state_init();
ams_init();
}
void nfc_write_frame(uint8_t * data, uint8_t len)
@ -396,16 +91,183 @@ int answer_rats(uint8_t parameter)
return 0;
}
void nfc_loop()
void rblock_acknowledge()
{
uint8_t buf[32];
NFC_STATE.block_num = !NFC_STATE.block_num;
buf[0] = NFC_CMD_RBLOCK | NFC_STATE.block_num;
nfc_write_frame(buf,1);
}
// Selects application. Returns 1 if success, 0 otherwise
int select_applet(uint8_t * aid, int len)
{
if (memcmp(aid,AID_NDEF_TYPE_4,sizeof(AID_NDEF_TYPE_4)) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TYPE_4;
return 1;
} else if (memcmp(aid,AID_NDEF_MIFARE_TYPE_4,sizeof(AID_NDEF_MIFARE_TYPE_4)) == 0)
{
NFC_STATE.selected_applet = APP_MIFARE_TYPE_4;
return 1;
} else if (memcmp(aid,AID_CAPABILITY_CONTAINER,sizeof(AID_CAPABILITY_CONTAINER)) == 0)
{
NFC_STATE.selected_applet = APP_CAPABILITY_CONTAINER;
return 1;
} else if (memcmp(aid,AID_NDEF_TAG,sizeof(AID_NDEF_TAG)) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TAG;
return 1;
}
return 0;
}
void nfc_process_iblock(uint8_t * buf, int len)
{
APDU_HEADER * apdu = (APDU_HEADER *)(buf+1);
uint8_t * payload = buf + 1 + 5;
uint8_t plen = apdu->lc;
int selected;
uint8_t res[32];
printf1(TAG_NFC,">> "); dump_hex1(TAG_NFC,buf,len);
// TODO this needs to be organized better
switch(apdu->ins)
{
case APDU_INS_SELECT:
if (plen > len - 6)
{
printf1(TAG_ERR, "Truncating APDU length %d\r\n", apdu->lc);
plen = len-6;
}
// if (apdu->p1 == 0 && apdu->p2 == 0x0c)
// {
// printf1(TAG_NFC,"Select NDEF\r\n");
//
// NFC_STATE.selected_applet = APP_NDEF_TAG;
// // Select NDEF file!
// res[0] = NFC_CMD_IBLOCK | (buf[0] & 1);
// res[1] = APDU_STATUS_SUCCESS>>8;
// res[2] = APDU_STATUS_SUCCESS & 0xff;
// nfc_write_frame(res, 3);
// printf1(TAG_NFC,"<< "); dump_hex1(TAG_NFC,res, 3);
// }
// else
{
selected = select_applet(payload, plen);
if (selected)
{
const uint32_t interval = 200;
// block = buf[0] & 1;
// block = NFC_STATE.block_num;
// block = !block;
// NFC_STATE.block_num = block;
res[0] = NFC_CMD_IBLOCK | (buf[0] & 1);
res[1] = APDU_STATUS_SUCCESS>>8;
res[2] = APDU_STATUS_SUCCESS & 0xff;
nfc_write_frame(res, 3);
printf1(TAG_NFC,"<< "); dump_hex1(TAG_NFC,res, 3);
}
else
{
printf1(TAG_NFC, "NOT selected\r\n");
}
}
break;
case APDU_INS_READ_BINARY:
switch(NFC_STATE.selected_applet)
{
case APP_CAPABILITY_CONTAINER:
printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n");
if (plen > 15)
{
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc);
plen = 15;
}
memmove(res+1, &NFC_CC, plen);
break;
case APP_NDEF_TAG:
printf1(TAG_NFC,"APP_NDEF_TAG\r\n");
if (plen > (sizeof(NDEF_SAMPLE) - 1))
{
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc);
plen = sizeof(NDEF_SAMPLE) - 1;
}
memmove(res+1, NDEF_SAMPLE, plen);
break;
default:
printf1(TAG_ERR, "No binary applet selected!\r\n");
return;
break;
}
res[0] = NFC_CMD_IBLOCK | (buf[0] & 1);
res[1+plen] = APDU_STATUS_SUCCESS>>8;
res[2+plen] = APDU_STATUS_SUCCESS & 0xff;
nfc_write_frame(res, 3+plen);
printf1(TAG_NFC,"APDU_INS_READ_BINARY\r\n");
printf1(TAG_NFC,"<< "); dump_hex1(TAG_NFC,res, 3+plen);
break;
default:
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu->ins);
break;
}
}
void nfc_process_block(uint8_t * buf, int len)
{
if (IS_PPSS_CMD(buf[0]))
{
printf1(TAG_NFC, "NFC_CMD_PPSS\r\n");
}
else if (IS_IBLOCK(buf[0]))
{
nfc_process_iblock(buf,len);
printf1(TAG_NFC, "NFC_CMD_IBLOCK\r\n");
}
else if (IS_RBLOCK(buf[0]))
{
rblock_acknowledge();
printf1(TAG_NFC, "NFC_CMD_RBLOCK\r\n");
}
else if (IS_SBLOCK(buf[0]))
{
if ((buf[0] & NFC_SBLOCK_DESELECT) == 0)
{
nfc_write_frame(buf, 1);
printf1(TAG_NFC, "NFC_CMD_SBLOCK, DESELECTED\r\n");
nfc_state_init();
}
else
{
printf1(TAG_NFC, "NFC_CMD_SBLOCK, Unknown\r\n");
}
dump_hex1(TAG_NFC, buf, len);
}
else
{
printf1(TAG_NFC, "unknown NFC request\r\n len[%d]:", len);
dump_hex1(TAG_NFC, buf, len);
}
}
void nfc_loop()
{
static uint32_t t1 = 0;
static uint32_t c = 0;
uint8_t buf[32];
AMS_DEVICE ams,ams2;
AMS_DEVICE ams;
int len = 0;
uint8_t def[] = "\x00\x00\x05\x40\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x02\x01\x00";
// uint8_t def[] = "\x00\x00\x05\x40\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x02\x01\x00";
// if (millis() - t1 > interval)
if (1)
{
@ -417,17 +279,14 @@ void nfc_loop()
// }
if (ams.regs.rfid_status)
{
uint8_t state = AMS_STATE_MASK & ams.regs.rfid_status;
// uint8_t state = AMS_STATE_MASK & ams.regs.rfid_status;
// if (state != AMS_STATE_SENSE)
// printf1(TAG_NFC," %s %d\r\n", ams_get_state_string(ams.regs.rfid_status), millis());
}
if (ams.regs.int0)
if (ams.regs.int0 & AMS_INT_INIT)
{
// ams_print_int0(ams.regs.int0);
if (ams.regs.int0 & AMS_INT_XRF)
{
printf1(TAG_NFC," %d\r\n", millis());
}
// Initialize chip!
nfc_state_init();
}
if (ams.regs.int1)
{
@ -443,15 +302,13 @@ void nfc_loop()
{
len = ams.regs.buffer_status2 & AMS_BUF_LEN_MASK;
ams_read_buffer(buf, len);
// printf1(TAG_NFC,"%d bytes in buffer\r\n", len);
// dump_hex1(TAG_NFC, buf, len);
}
}
if (len)
{
// printf1(TAG_NFC,"RATS %d\r\n",c++);
// ams_write_command(AMS_CMD_TRANSMIT_ACK);
// ISO 14443-3
switch(buf[0])
{
case NFC_CMD_REQA:
@ -466,31 +323,14 @@ void nfc_loop()
case NFC_CMD_RATS:
t1 = millis();
answer_rats(buf[1]);
NFC_STATE.block_num = 1;
printf1(TAG_NFC,"RATS answered %d (took %d)\r\n",millis(), millis() - t1);
break;
default:
if (IS_PPSS_CMD(buf[0]))
{
printf1(TAG_NFC, "NFC_CMD_PPSS\r\n");
}
else if (IS_IBLOCK(buf[0]))
{
printf1(TAG_NFC, "NFC_CMD_IBLOCK\r\n");
}
else if (IS_RBLOCK(buf[0]))
{
printf1(TAG_NFC, "NFC_CMD_IBLOCK\r\n");
}
else if (IS_SBLOCK(buf[0]))
{
printf1(TAG_NFC, "NFC_CMD_IBLOCK\r\n");
}
else
{
printf1(TAG_NFC, "unknown NFC request\r\n len[%d]:", len);
dump_hex1(TAG_NFC, buf, len);
}
// ISO 14443-4
nfc_process_block(buf,len);
break;
}

View File

@ -6,109 +6,26 @@
void nfc_loop();
void nfc_init();
typedef union
typedef struct
{
uint8_t buf[0x20];
struct {
uint8_t io_conf; // 0x00
uint8_t ic_conf0; // 0x01
uint8_t ic_conf1; // 0x02
uint8_t ic_conf2; // 0x03
uint8_t rfid_status; // 0x04
uint8_t ic_status; // 0x05
uint8_t _nc0[2]; // 0x06 - 0x07
uint8_t mask_int0; // 0x08
uint8_t mask_int1; // 0x09
uint8_t int0; // 0x0a
uint8_t int1; // 0x0b
uint8_t buffer_status2; // 0x0c
uint8_t buffer_status1; // 0x0d
uint8_t last_nfc_addr; // 0x0e
uint8_t _nc1[0x1b - 0x0f + 1]; // 0x0f - 0x1b
uint8_t product_type; // 0x1c
uint8_t product_subtype; // 0x1d
uint8_t version_maj; // 0x1e
uint8_t version_min; // 0x1f
} regs;
} __attribute__((packed)) AMS_DEVICE;
uint8_t cclen_hi;
uint8_t cclen_lo;
uint8_t version;
uint8_t MLe_hi;
uint8_t MLe_lo;
uint8_t MLc_hi;
uint8_t MLc_lo;
uint8_t tlv[8];
} __attribute__((packed)) CAPABILITY_CONTAINER;
typedef struct
{
uint8_t start;
uint8_t parameter;
} __attribute__((packed)) RATS_REQUEST;
#define AMS_REG_IO_CONF 0x00
#define AMS_REG_IC_CONF0 0x01
#define AMS_REG_IC_CONF1 0x02
#define AMS_REG_IC_CONF2 0x03
#define AMS_RFCFG_EN 0x80
#define AMS_TUN_MOD 0x40
#define AMS_REG_RFID_STATUS 0x04
#define AMS_HF_PON 0x80
#define AMS_STATE_MASK 0x78
#define AMS_STATE_INVALID 0x04
#define AMS_STATE_OFF (0 << 3)
#define AMS_STATE_SENSE (1 << 3)
#define AMS_STATE_RESOLUTION (3 << 3)
#define AMS_STATE_RESOLUTION_L2 (2 << 3)
#define AMS_STATE_SELECTED (6 << 3)
#define AMS_STATE_SECTOR2 (7 << 3)
#define AMS_STATE_SECTORX_2 (0xf << 3)
#define AMS_STATE_SELECTEDX (0xd << 3)
#define AMS_STATE_SENSEX_L2 (0xa << 3)
#define AMS_STATE_SENSEX (0xb << 3)
#define AMS_STATE_SLEEP (0x9 << 3)
// ... //
#define AMS_REG_INT0 0x0a
#define AMS_INT_XRF (1<<0)
#define AMS_INT_TXE (1<<1)
#define AMS_INT_RXE (1<<2)
#define AMS_INT_EER_RF (1<<3)
#define AMS_INT_EEW_RF (1<<4)
#define AMS_INT_SLP (1<<5)
#define AMS_INT_WU_A (1<<6)
#define AMS_INT_INIT (1<<7)
#define AMS_REG_INT1 0x0b
#define AMS_INT_ACC_ERR (1<<0)
#define AMS_INT_EEAC_ERR (1<<1)
#define AMS_INT_IO_EEWR (1<<2)
#define AMS_INT_BF_ERR (1<<3)
#define AMS_INT_CRC_ERR (1<<4)
#define AMS_INT_PAR_ERR (1<<5)
#define AMS_INT_FRM_ERR (1<<6)
#define AMS_INT_RXS (1<<7)
#define AMS_REG_BUF2 0x0c
#define AMS_BUF_LEN_MASK 0x1f
#define AMS_BUF_INVALID 0x80
#define AMS_CONFIG_BLOCK0_ADDR 0x7e
#define AMS_CONFIG_BLOCK1_ADDR 0x7f
#define AMS_CFG1_VOLTAGE_LEVEL_1V9 (0x00<<2)
#define AMS_CFG1_VOLTAGE_LEVEL_2V0 (0x01<<2)
#define AMS_CFG1_OUTPUT_RESISTANCE_ZZ 0x00
#define AMS_CFG1_OUTPUT_RESISTANCE_100 0x01
#define AMS_CFG1_OUTPUT_RESISTANCE_50 0x02
#define AMS_CFG1_OUTPUT_RESISTANCE_25 0x03
#define AMS_CFG2_RFCFG_EN (1<<7)
#define AMS_CFG2_TUN_MOD (1<<6)
#define AMS_CMD_DEFAULT 0x02
#define AMS_CMD_CLEAR_BUFFER 0x04
#define AMS_CMD_RESTART_TRANSCEIVER 0x06
#define AMS_CMD_DIS_EN_TRANSCEIVER 0x07
#define AMS_CMD_TRANSMIT_BUFFER 0x08
#define AMS_CMD_TRANSMIT_ACK 0x09
#define AMS_CMD_TRANSMIT_NACK0 0x0A
#define AMS_CMD_TRANSMIT_NACK1 0x0B
#define AMS_CMD_TRANSMIT_NACK4 0x0D
#define AMS_CMD_TRANSMIT_NACK5 0x0C
#define AMS_CMD_SLEEP 0x10
#define AMS_CMD_SENSE 0x11
#define AMS_CMD_SENSE_SLEEP 0x12
uint8_t cla;
uint8_t ins;
uint8_t p1;
uint8_t p2;
uint8_t lc;
} __attribute__((packed)) APDU_HEADER;
#define NFC_CMD_REQA 0x26
#define NFC_CMD_WUPA 0x52
@ -117,11 +34,31 @@ typedef struct
#define NFC_CMD_PPSS 0xd0
#define IS_PPSS_CMD(x) (((x) & 0xf0) == NFC_CMD_PPSS)
#define NFC_CMD_IBLOCK 0x00
#define IS_IBLOCK(x) (((x) & 0xe0) == NFC_CMD_IBLOCK)
#define NFC_CMD_RBLOCK 0xa0
#define IS_RBLOCK(x) (((x) & 0xe0) == NFC_CMD_RBLOCK)
#define NFC_CMD_SBLOCK 0xc0
#define IS_SBLOCK(x) (((x) & 0xc0) == NFC_CMD_SBLOCK)
#define NFC_CMD_IBLOCK 0x02
#define IS_IBLOCK(x) (((x) & 0xe2) == NFC_CMD_IBLOCK)
#define NFC_CMD_RBLOCK 0xa2
#define IS_RBLOCK(x) (((x) & 0xe6) == NFC_CMD_RBLOCK)
#define NFC_CMD_SBLOCK 0xc2
#define IS_SBLOCK(x) (((x) & 0xc7) == NFC_CMD_SBLOCK)
#define NFC_SBLOCK_DESELECT 0x30
#define APDU_INS_SELECT 0xA4
#define APDU_INS_READ_BINARY 0xB0
#define AID_NDEF_TYPE_4 "\xD2\x76\x00\x00\x85\x01\x01"
#define AID_NDEF_MIFARE_TYPE_4 "\xD2\x76\x00\x00\x85\x01\x00"
#define AID_CAPABILITY_CONTAINER "\xE1\x03"
#define AID_NDEF_TAG "\x11\x11"
typedef enum
{
APP_NDEF_TYPE_4 = 1,
APP_MIFARE_TYPE_4,
APP_CAPABILITY_CONTAINER,
APP_NDEF_TAG,
} APPLETS;
#define APDU_STATUS_SUCCESS 0x9000
#endif

View File

@ -53,7 +53,7 @@ int _write (int fd, const void *buf, long int len)
// Send out UART serial
while(len--)
{
_putchar(*data++);
// _putchar(*data++);
}
return 0;
}