Compare commits

...

73 Commits

Author SHA1 Message Date
15a4fdfa66 remove unused code in bootloader 2020-02-13 17:17:23 -05:00
e713daba26 add temporary command to force flash locking 2020-02-13 17:17:23 -05:00
b78f2cd2e7 keep initialize last_addr and reject if it doesnt change 2020-02-13 17:17:23 -05:00
601c98000a Correct path for gencert tools and use python3 2020-02-12 14:52:53 -05:00
ab1c9417b1 Fix certification information 2020-02-12 14:52:53 -05:00
f6d96013e1 bump 3.1.0 2020-02-06 13:41:07 -05:00
f74dba7ff0 enforce ascending writes in bootloader update 2020-02-06 13:05:57 -05:00
794accf3dc Added how to setup Manjaro 18.x.
Added Manjaro setup for passwordless and second factor login to
documentation of applcation ideas. Also did some text formating.
2020-02-06 12:47:36 -05:00
2ca0ced808 Update programming.md 2020-01-22 12:41:39 -05:00
17b430fd44 Remove stale python-fido2 dependency 2020-01-16 10:35:22 +01:00
0d4197fb2c Merge pull request #356 from jnaulty/jnaulty/no-root-artifacts
Use current user at build container runtime
2020-01-15 21:17:53 +01:00
f74a77d80b Use current user at build container runtime
Using the current user id and group removes the need to use `sudo` when
cleaning up build artifacts from the docker build stage.

Issue: #355
2020-01-06 01:55:47 -08:00
5f1d61a3ba bump 2019-12-01 18:25:45 -05:00
46f2920e63 bugfix hid cancel 2019-12-01 18:09:08 -05:00
53427c4279 update metadata statements 2019-12-01 18:09:08 -05:00
ac10933379 pin fido2 dependency 2019-12-01 18:09:08 -05:00
8a44d14fef adjust default impl 2019-12-01 18:09:08 -05:00
1d59bbfdd4 support different aaguid's in cert for different solo models 2019-12-01 18:09:08 -05:00
54c66d80b6 overwrite x509 fields for tap or somu 2019-12-01 18:09:08 -05:00
6217fc34b9 update solo_cert to include aaguid field 2019-12-01 18:09:08 -05:00
af23e84a8d Update device.c 2019-11-22 19:02:52 -05:00
9650d99b34 add more clarity 2019-11-22 19:02:52 -05:00
145b04750e Update Makefile 2019-11-22 19:02:52 -05:00
078acbc4b4 prepend solo to version 2019-11-22 19:02:52 -05:00
670a4e5d62 version string 2019-11-22 19:02:52 -05:00
de55e521cc fix bootloader build 2019-11-22 19:02:52 -05:00
bbfe51499f document 2019-11-22 19:02:52 -05:00
6cb15a6482 small fixes 2019-11-22 19:02:52 -05:00
85ddc40036 add weak definitions for nonvolatila functions 2019-11-22 19:02:52 -05:00
1d63154699 move sense of "backup" from ctap to device layer 2019-11-22 19:02:52 -05:00
ee55bf3ba0 document device.h 2019-11-22 19:02:52 -05:00
3b4b6dd4fe remove solo functions from device.h 2019-11-22 19:02:52 -05:00
28e607ddac fix stm32 build 2019-11-22 19:02:52 -05:00
dcd256faf4 add initial weak definitions 2019-11-22 19:02:52 -05:00
85365c635d refactor to use libsolo 2019-11-22 19:02:52 -05:00
a388607dab build fido2 locally as lib 2019-11-22 19:02:52 -05:00
d266e7927c reorganize crypto and device.c to be more based on fido2/ 2019-11-22 19:02:52 -05:00
0ac074e8a8 Merge pull request #341 from emosenkis/patch-1
Fix typo in CERN OHL version 2.1 -> 1.2
2019-11-11 10:47:02 +01:00
67eb721da2 Fix typo in CERN OHL version 2.1 -> 1.2 2019-11-10 23:04:48 +02:00
6b5d353501 docs: update .all-contributorsrc 2019-11-07 08:29:08 -05:00
bacce7d978 docs: update README.md 2019-11-07 08:29:08 -05:00
975cdf02f2 bump 3.0.0 2019-10-28 13:19:11 -04:00
21f3a0d10f remove hacker constraint for booting into bootloader 2019-10-28 12:55:38 -04:00
b535b41d92 docs: update .all-contributorsrc 2019-10-28 11:09:54 -04:00
fd32cc0761 docs: update README.md 2019-10-28 11:09:54 -04:00
78dd2a10d3 remove binary count check 2019-10-28 10:51:35 -04:00
fa1bb0dce5 update docs 2019-10-28 10:51:35 -04:00
169dfd2f0d check attestation tag 2019-10-28 10:51:35 -04:00
dafd974d93 do not lock flash when booting to dfu 2019-10-28 10:51:35 -04:00
712fde6858 add git 2019-10-28 10:51:35 -04:00
fcc2e86a6d remove hacker/secure builds 2019-10-28 10:51:35 -04:00
8b146c4a16 fix issue with bootloader not replying data 2019-10-28 10:51:35 -04:00
a1a79b05fd fix solo locked flag for bootloader 2019-10-27 10:25:00 -04:00
c0df8b680d fix build 2019-10-27 10:25:00 -04:00
9ac2aa90c3 store all info in same page, dont use authenticator state 2019-10-27 10:25:00 -04:00
d33749fc16 add locked variable to GETVERSION hid command 2019-10-27 10:25:00 -04:00
96a2cbcb41 remove logs 2019-10-27 10:25:00 -04:00
7212982385 remove hacker macros 2019-10-27 10:25:00 -04:00
89e218e561 lock flash based on state setting 2019-10-27 10:25:00 -04:00
666cd6a0ba migrate certs 2019-10-27 10:25:00 -04:00
b4f59ec355 pull certificate from flash page 2019-10-27 10:25:00 -04:00
b7d74cc99f Add default git describe in makefile 2019-10-27 10:11:39 -04:00
375a607356 Add test for docker in travis 2019-10-27 10:11:39 -04:00
ea8409c072 Fixing Travis 2019-10-27 10:11:39 -04:00
04f06b3b0d Updating README: adding more details on how to compile the solo firmware (especially Docker) 2019-10-27 10:11:39 -04:00
a57c5170e1 Add .sha2 to .gitignore 2019-10-27 10:11:39 -04:00
aaffce4021 Make dependency on git optinal in the target/stm32l432/Makefile
"git describe" is used to get the version of the firmware from GIT tags ans it is used for build artifacts' names
We would prefer not to have this depency inside Docker
2019-10-27 10:11:39 -04:00
463a8b444d Splitting toolchain creation from firmware compilation 2019-10-27 10:11:39 -04:00
44ed3ceea5 Optimize Dockerfile 2019-10-27 10:11:39 -04:00
30f73b41e4 Move python install in the docker file 2019-10-27 10:11:39 -04:00
6f6e831fba Upgrade to the latest ARM compiler 2019-10-27 10:11:39 -04:00
9fd608d3ee Use local copy of the files 2019-10-27 10:11:39 -04:00
765dc27b15 Fix docker build 2019-10-27 10:10:27 -04:00
51 changed files with 1506 additions and 1159 deletions

View File

@ -197,6 +197,27 @@
"code",
"doc"
]
},
{
"login": "ccinelli",
"name": "ccinelli",
"avatar_url": "https://avatars0.githubusercontent.com/u/38021940?v=4",
"profile": "https://github.com/ccinelli",
"contributions": [
"infra",
"test"
]
},
{
"login": "Nitrokey",
"name": "Nitrokey",
"avatar_url": "https://avatars1.githubusercontent.com/u/9438831?v=4",
"profile": "https://www.nitrokey.com",
"contributions": [
"code",
"test",
"ideas"
]
}
],
"contributorsPerLine": 7,

3
.gitignore vendored
View File

@ -34,7 +34,8 @@
*.app
*.i*86
*.x86_64
*.hex
targets/*/*.hex
targets/*/*.sha2
# Debug files
*.dSYM/

View File

@ -6,14 +6,15 @@ addons:
sources:
- ubuntu-toolchain-r-test
packages:
- gcc-7
- gcc-8
- cppcheck
services:
- docker
before_install:
- sudo add-apt-repository -y ppa:team-gcc-arm-embedded/ppa
- sudo apt-get update -q
- sudo apt-get install -y gcc-arm-embedded
- sudo apt-get install -y python3-venv
- sudo apt-get install -y gcc-arm-embedded python3-venv
script:
- export CC=gcc-7
- export CC=gcc-8
- pyenv shell 3.6.7
- make travis

View File

@ -1,33 +1,38 @@
FROM debian:stretch-slim
FROM debian:9.11-slim
MAINTAINER SoloKeys <hello@solokeys.com>
RUN apt-get update -qq
RUN apt-get install -qq bzip2 git make wget >/dev/null
# Install necessary packages
RUN apt-get update \
&& apt-get install -y --no-install-recommends \
ca-certificates \
make \
wget \
bzip2 \
git \
&& rm -rf /var/lib/apt/lists/*
# 1. ARM GCC: for compilation
RUN wget -q -O gcc.tar.bz2 https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2018q4/gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2?revision=d830f9dd-cd4f-406d-8672-cca9210dd220?product=GNU%20Arm%20Embedded%20Toolchain,64-bit,,Linux,8-2018-q4-major
# from website
RUN echo "f55f90d483ddb3bcf4dae5882c2094cd gcc.tar.bz2" > gcc.md5
RUN md5sum -c gcc.md5
# self-generated
RUN echo "fb31fbdfe08406ece43eef5df623c0b2deb8b53e405e2c878300f7a1f303ee52 gcc.tar.bz2" > gcc.sha256
RUN sha256sum -c gcc.sha256
RUN tar -C /opt -xf gcc.tar.bz2
# Install ARM compiler
RUN set -eux; \
url="https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2019q3/RC1.1/gcc-arm-none-eabi-8-2019-q3-update-linux.tar.bz2?revision=c34d758a-be0c-476e-a2de-af8c6e16a8a2?product=GNU%20Arm%20Embedded%20Toolchain,64-bit,,Linux,8-2019-q3-update"; \
wget -O gcc.tar.bz2 "$url"; \
echo "6341f11972dac8de185646d0fbd73bfc gcc.tar.bz2" | md5sum -c -; \
echo "b50b02b0a16e5aad8620e9d7c31110ef285c1dde28980b1a9448b764d77d8f92 gcc.tar.bz2" | sha256sum -c -; \
tar -C /opt -xf gcc.tar.bz2; \
rm gcc.tar.bz2;
# 2. Python3.7: for solo-python (merging etc.)
RUN wget -q -O miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-4.5.12-Linux-x86_64.sh
# from website
RUN echo "866ae9dff53ad0874e1d1a60b1ad1ef8 miniconda.sh" > miniconda.md5
RUN md5sum -c miniconda.md5
# self-generated
RUN echo "e5e5b4cd2a918e0e96b395534222773f7241dc59d776db1b9f7fedfcb489157a miniconda.sh" > miniconda.sha256
RUN sha256sum -c miniconda.sha256
# Python3.7: for solo-python (merging etc.)
RUN set -eux; \
url="https://repo.anaconda.com/miniconda/Miniconda3-4.5.12-Linux-x86_64.sh"; \
wget -O miniconda.sh "$url"; \
echo "866ae9dff53ad0874e1d1a60b1ad1ef8 miniconda.sh" | md5sum -c -; \
echo "e5e5b4cd2a918e0e96b395534222773f7241dc59d776db1b9f7fedfcb489157a miniconda.sh" | sha256sum -c -; \
bash ./miniconda.sh -b -p /opt/conda; \
ln -s /opt/conda/bin/python /usr/local/bin/python3; \
ln -s /opt/conda/bin/python /usr/local/bin/python; \
ln -s /opt/conda/bin/pip /usr/local/bin/pip3; \
ln -s /opt/conda/bin/pip /usr/local/bin/pip; \
rm miniconda.sh; \
pip install -U pip
RUN bash ./miniconda.sh -b -p /opt/conda
RUN ln -s /opt/conda/bin/python /usr/local/bin/python3
RUN ln -s /opt/conda/bin/python /usr/local/bin/python
RUN ln -s /opt/conda/bin/pip /usr/local/bin/pip3
RUN ln -s /opt/conda/bin/pip /usr/local/bin/pip
# 3. Source code
RUN git clone --recurse-submodules https://github.com/solokeys/solo /solo --config core.autocrlf=input
# solo-python (Python3.7 script for merging etc.)
RUN pip install -U solo-python

View File

@ -1,3 +1,5 @@
include fido2/version.mk
#define uECC_arch_other 0
#define uECC_x86 1
#define uECC_x86_64 2
@ -6,44 +8,34 @@
#define uECC_arm_thumb2 5
#define uECC_arm64 6
#define uECC_avr 7
ecc_platform=2
src = $(wildcard pc/*.c) $(wildcard fido2/*.c) $(wildcard fido2/extensions/*.c) \
$(wildcard crypto/sha256/*.c) crypto/tiny-AES-c/aes.c
src = pc/device.c pc/main.c
obj = $(src:.c=.o) crypto/micro-ecc/uECC.o
obj = $(src:.c=.o)
LIBCBOR = tinycbor/lib/libtinycbor.a
LIBSOLO = fido2/libsolo.a
ifeq ($(shell uname -s),Darwin)
export LDFLAGS = -Wl,-dead_strip
else
export LDFLAGS = -Wl,--gc-sections
endif
LDFLAGS += $(LIBCBOR)
LDFLAGS += $(LIBSOLO) $(LIBCBOR)
VERSION:=$(shell git describe --abbrev=0 )
VERSION_FULL:=$(shell git describe)
VERSION_MAJ:=$(shell python -c 'print("$(VERSION)".split(".")[0])')
VERSION_MIN:=$(shell python -c 'print("$(VERSION)".split(".")[1])')
VERSION_PAT:=$(shell python -c 'print("$(VERSION)".split(".")[2])')
VERSION_FLAGS= -DSOLO_VERSION_MAJ=$(VERSION_MAJ) -DSOLO_VERSION_MIN=$(VERSION_MIN) \
-DSOLO_VERSION_PATCH=$(VERSION_PAT) -DSOLO_VERSION=\"$(VERSION_FULL)\"
CFLAGS = -O2 -fdata-sections -ffunction-sections -g
ECC_CFLAGS = -O2 -fdata-sections -ffunction-sections -DuECC_PLATFORM=$(ecc_platform)
CFLAGS = -O2 -fdata-sections -ffunction-sections $(VERSION_FLAGS) -g
INCLUDES = -I./tinycbor/src -I./crypto/sha256 -I./crypto/micro-ecc/ -Icrypto/tiny-AES-c/ -I./fido2/ -I./pc -I./fido2/extensions
INCLUDES += -I./crypto/cifra/src
INCLUDES = -I../ -I./fido2/ -I./pc -I../pc -I./tinycbor/src
CFLAGS += $(INCLUDES)
# for crypto/tiny-AES-c
CFLAGS += -DAES256=1 -DAPP_CONFIG=\"app.h\" -DSOLO_EXPERIMENTAL=1
CFLAGS += -DAES256=1 -DSOLO_EXPERIMENTAL=1 -DDEBUG_LEVEL=1
name = main
.PHONY: all $(LIBCBOR) black blackcheck cppcheck wink fido2-test clean full-clean travis test clean version
.PHONY: all $(LIBCBOR) $(LIBSOLO) black blackcheck cppcheck wink fido2-test clean full-clean travis test clean version
all: main
tinycbor/Makefile crypto/tiny-AES-c/aes.c:
@ -53,7 +45,10 @@ tinycbor/Makefile crypto/tiny-AES-c/aes.c:
cbor: $(LIBCBOR)
$(LIBCBOR):
cd tinycbor/ && $(MAKE) clean && $(MAKE) LDFLAGS='' -j8
cd tinycbor/ && $(MAKE) LDFLAGS='' -j8
$(LIBSOLO):
cd fido2/ && $(MAKE) CFLAGS="$(CFLAGS)" ECC_CFLAGS="$(ECC_CFLAGS)" APP_CONFIG=app.h -j8
version:
@git describe
@ -62,16 +57,13 @@ test: venv
$(MAKE) clean
$(MAKE) -C . main
$(MAKE) clean
$(MAKE) -C ./targets/stm32l432 test PREFIX=$(PREFIX) "VENV=$(VENV)"
$(MAKE) -C ./targets/stm32l432 test PREFIX=$(PREFIX) "VENV=$(VENV)" VERSION_FULL=${SOLO_VERSION_FULL}
$(MAKE) clean
$(MAKE) cppcheck
$(name): $(obj) $(LIBCBOR)
$(name): $(obj) $(LIBCBOR) $(LIBSOLO)
$(CC) $(LDFLAGS) -o $@ $(obj) $(LDFLAGS)
crypto/micro-ecc/uECC.o: ./crypto/micro-ecc/uECC.c
$(CC) -c -o $@ $^ -O2 -fdata-sections -ffunction-sections -DuECC_PLATFORM=$(ecc_platform) -I./crypto/micro-ecc/
venv:
python3 -m venv venv
venv/bin/pip -q install --upgrade pip
@ -88,18 +80,31 @@ wink: venv
fido2-test: venv
venv/bin/python tools/ctap_test.py
DOCKER_IMAGE := "solokeys/solo-firmware:local"
SOLO_VERSIONISH := "master"
docker-build:
docker build -t $(DOCKER_IMAGE) .
update:
git fetch --tags
git checkout master
git rebase origin/master
git submodule update --init --recursive
DOCKER_TOOLCHAIN_IMAGE := "solokeys/solo-firmware-toolchain"
docker-build-toolchain:
docker build -t $(DOCKER_TOOLCHAIN_IMAGE) .
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${SOLO_VERSION}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${SOLO_VERSION_MAJ}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${SOLO_VERSION_MAJ}.${SOLO_VERSION_MIN}
uncached-docker-build-toolchain:
docker build --no-cache -t $(DOCKER_TOOLCHAIN_IMAGE) .
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${SOLO_VERSION}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${SOLO_VERSION_MAJ}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${SOLO_VERSION_MAJ}.${SOLO_VERSION_MIN}
docker-build-all:
docker run --rm -v "$(CURDIR)/builds:/builds" \
-v "$(CURDIR)/in-docker-build.sh:/in-docker-build.sh" \
$(DOCKER_IMAGE) "./in-docker-build.sh" $(SOLO_VERSIONISH)
uncached-docker-build:
docker build --no-cache -t $(DOCKER_IMAGE) .
docker run --rm -v "$(CURDIR)/builds:/builds" \
-v "$(CURDIR)/in-docker-build.sh:/in-docker-build.sh" \
$(DOCKER_IMAGE) "./in-docker-build.sh" $(SOLO_VERSIONISH)
-v "$(CURDIR):/solo" \
-u $(shell id -u ${USER}):$(shell id -g ${USER}) \
$(DOCKER_TOOLCHAIN_IMAGE) "solo/in-docker-build.sh" ${SOLO_VERSION_FULL}
CPPCHECK_FLAGS=--quiet --error-exitcode=2
@ -116,10 +121,19 @@ clean:
(cd `dirname $$f` ; git checkout -- .) ;\
fi ;\
done
cd fido2 && $(MAKE) clean
full-clean: clean
rm -rf venv
test-docker:
rm -rf builds/*
$(MAKE) uncached-docker-build-toolchain
# Check if there are 4 docker images/tas named "solokeys/solo-firmware-toolchain"
NTAGS=$$(docker images | grep -c "solokeys/solo-firmware-toolchain") && [ $$NTAGS -eq 4 ]
$(MAKE) docker-build-all
travis:
$(MAKE) test VENV=". ../../venv/bin/activate;"
$(MAKE) black
$(MAKE) test-docker
$(MAKE) black

View File

@ -32,10 +32,58 @@ Check out [solokeys.com](https://solokeys.com), for options on where to buy Solo
If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.io/solo/building/). We support Python3.
For example, if you want to turn off any blue light emission, you can edit [`led_rgb()`](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/app.h#L48) and change `LED_INIT_VALUE`
to be a different hex color.
Then recompile, load your new firmware, and enjoy a different LED color Solo.
In the Hacker version, hardware is the same but the firmware is unlocked, so you can 1) load an unsigned application, or 2) entirely reflash the key. By contrast, in a regular Solo you can only upgrade to a firmware signed by SoloKeys, and flash is locked and debug disabled permanently.
Hacker Solo isn't really secure so you should only use it for development. An attacker with physical access to a Solo for Hacker can reflash it following the steps above, and even a malware on your computer could possibly reflash it.
## Checking out the code
```bash
git clone --recurse-submodules https://github.com/solokeys/solo
cd solo
```
If you forgot the `--recurse-submodules` while cloning, simply run `git submodule update --init --recursive`.
`make update` will also checkout the latest code on `master` and submodules.
## Checking out the code to build a specific version
You can checkout the code to build a specific version of the firmware with:
```
VERSION_TO_BUILD=2.5.3
git fetch --tags
git checkout ${VERSION_TO_BUILD}
git submodule update --init --recursive
```
## Installing the toolchain
In order to compile ARM code, you need the ARM compiler and other things like bundling bootloader and firmware require the `solo-python` python package. Check our [documentation](https://docs.solokeys.io/solo/) for details
## Installing the toolkit and compiling in Docker
Alternatively, you can use Docker to create a container with the toolchain.
You can run:
```bash
# Build the toolchain container
make docker-build-toolchain
# Build all versions of the firmware in the "builds" folder
make docker-build-all
```
The `builds` folder will contain all the variation on the firmware in `.hex` files.
## Build locally
If you have the toolchain installed on your machine you can build the firmware with:
```bash
cd targets/stm32l432
make cbor
make build-hacker
@ -47,19 +95,6 @@ solo program aux enter-bootloader
solo program bootloader targets/stm32l432/solo.hex
```
Alternatively, run `make docker-build` and use the firmware generated in `/tmp`.
If you forgot the `--recurse-submodules` when cloning, simply `git submodule update --init --recursive`.
For example, if you want to turn off any blue light emission, you can edit [`led_rgb()`](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/app.h#L48) and change `LED_INIT_VALUE`
to be a different hex color.
Then recompile, load your new firmware, and enjoy a different LED color Solo.
In the Hacker version, hardware is the same but the firmware is unlocked, so you can 1) load an unsigned application, or 2) entirely reflash the key. By contrast, in a regular Solo you can only upgrade to a firmware signed by SoloKeys, and flash is locked and debug disabled permanently.
Hacker Solo isn't really secure so you should only use it for development. An attacker with physical access to a Solo for Hacker can reflash it following the steps above, and even a malware on your computer could possibly reflash it.
# Developing Solo (No Hardware Needed)
Clone Solo and build it
@ -131,6 +166,10 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
<td align="center"><a href="http://www.schulz.dk"><img src="https://avatars1.githubusercontent.com/u/1150049?v=4" width="100px;" alt="Kim Schulz"/><br /><sub><b>Kim Schulz</b></sub></a><br /><a href="#business-kimusan" title="Business development">💼</a> <a href="#ideas-kimusan" title="Ideas, Planning, & Feedback">🤔</a></td>
<td align="center"><a href="https://github.com/oplik0"><img src="https://avatars2.githubusercontent.com/u/25460763?v=4" width="100px;" alt="Jakub"/><br /><sub><b>Jakub</b></sub></a><br /><a href="https://github.com/solokeys/solo/issues?q=author%3Aoplik0" title="Bug reports">🐛</a></td>
<td align="center"><a href="https://github.com/jolo1581"><img src="https://avatars1.githubusercontent.com/u/53423977?v=4" width="100px;" alt="Jan A."/><br /><sub><b>Jan A.</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=jolo1581" title="Code">💻</a> <a href="https://github.com/solokeys/solo/commits?author=jolo1581" title="Documentation">📖</a></td>
<td align="center"><a href="https://github.com/ccinelli"><img src="https://avatars0.githubusercontent.com/u/38021940?v=4" width="100px;" alt="ccinelli"/><br /><sub><b>ccinelli</b></sub></a><br /><a href="#infra-ccinelli" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="https://github.com/solokeys/solo/commits?author=ccinelli" title="Tests">⚠️</a></td>
</tr>
<tr>
<td align="center"><a href="https://www.nitrokey.com"><img src="https://avatars1.githubusercontent.com/u/9438831?v=4" width="100px;" alt="Nitrokey"/><br /><sub><b>Nitrokey</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=Nitrokey" title="Code">💻</a> <a href="https://github.com/solokeys/solo/commits?author=Nitrokey" title="Tests">⚠️</a> <a href="#ideas-Nitrokey" title="Ideas, Planning, & Feedback">🤔</a></td>
</tr>
</table>
@ -147,7 +186,7 @@ You may use Solo software under the terms of either the Apache 2.0 license or MI
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
All hardware, unless otherwise noted, is dual licensed under CERN and CC-BY-SA.
You may use Solo hardware under the terms of either the CERN 2.1 license or CC-BY-SA 4.0 license.
You may use Solo hardware under the terms of either the CERN 1.2 license or CC-BY-SA 4.0 license.
All documentation, unless otherwise noted, is licensed under CC-BY-SA.
You may use Solo documentation under the terms of the CC-BY-SA 4.0 license
@ -164,7 +203,7 @@ You can buy Solo, Solo Tap, and Solo for Hackers at [solokeys.com](https://solok
<br/>
[![License](https://img.shields.io/github/license/solokeys/solo.svg)](https://github.com/solokeys/solo/blob/master/LICENSE)
[![All Contributors](https://img.shields.io/badge/all_contributors-20-orange.svg?style=flat-square)](#contributors)
[![All Contributors](https://img.shields.io/badge/all_contributors-22-orange.svg?style=flat-square)](#contributors)
[![Build Status](https://travis-ci.com/solokeys/solo.svg?branch=master)](https://travis-ci.com/solokeys/solo)
[![Discourse Users](https://img.shields.io/discourse/https/discourse.solokeys.com/users.svg)](https://discourse.solokeys.com)
[![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public)

View File

@ -1 +1 @@
2.5.3
3.1.0

View File

@ -1,16 +1,23 @@
# Using Solo for passwordless or second factor login on Linux
## Setup on Ubuntu 18.04
## Setup on Ubuntu and Manjaro
Before you can use Solo for passwordless or second factor login in your Linux system you have to install some packages.
This was tested under **Linux Mint 19.2**.
This was tested on **Linux Mint 19.3** and on **Manjaro 18.x**
First you have to install PAM modules for u2f.
**Ubuntu (Linux Mint):**
```
sudo apt install libpam-u2f pamu2fcfg
```
**Manjaro**
```
pacman -Syu pam-u2f
```
## Setting up key
To use Solo as passwordless or second factor login, you have to setup your system with your Solo.
First create a new folder named **Yubico** in your **.config** folder in your **home** directory
@ -28,35 +35,57 @@ If you want to register an additional key use this command instead:
pamu2fcfg >> ~/.config/Yubico/u2f_keys
```
Now press the button on your Solo.
<br>
<br>
If you can't generate your key (error message), you may add Yubico Team from PPA and install latest libpam-u2f and pamu2fcfg and try again.
If you can't generate your key on **Ubuntu** (error message), you may add Yubico Team from PPA and install latest libpam-u2f and pamu2fcfg and try again.
```
sudo add-apt-repository ppa:yubico/stable
sudo apt-get update
sudo apt-get upgrade
```
**Manjaro** should work without problems.
## Login into Linux
### Passwordless
To login passwordless into your Linux system, you have to edit the file **lightdm** (or **gdm** or which display manager you prefered).
In case of lightdm:
In case of lightdm and VIM as editor:
```
sudo vim /etc/pam.d/lightdm
sudo vim /etc/pam.d/lightdm
```
Now search following entry:
**On Ubuntu:**<br>
Search following entry:
```
@include common-auth
@include common-auth
```
and add
```
auth sufficient pam_u2f.so
auth sufficient pam_u2f.so
```
**before** @include common-auth.
**before** *@include common-auth.*
<br>
<br>
Save the file and test it.<br>
**On Manjaro**<br>
Search following enrty
```
auth include system-login
```
and add
```
auth sufficient pam_u2f.so
```
** before** *auth include system-login*.
<br>
<br>
Now save the file and test it.<br>
Insert Solo in your USB port and logout.
Now you should be able to login into Linux without password, only with pressing your button on Solo and press enter.
@ -65,7 +94,7 @@ Why **sufficient**? The difference between the keyword sufficient and required i
The login mechanism can be also used for additional features like:
: - Login after screen timeout - edit /etc/pam.d/mate-screensaver (or kde-screensaver, ...)
- Login after screen timeout - edit /etc/pam.d/mate-screensaver (or kde-screensaver, ...)
- Passwordless sudo - edit /etc/pam.d/sudo
Check out your folder **/etc/pam.d/** and do some experiments.
@ -78,17 +107,36 @@ The login passwordless won't make your system more secure, but maybe more comfor
To use Solo as second factor, for login into your Linux system, is nearly the same.
```
sudo vim /etc/pam.d/lightdm
sudo vim /etc/pam.d/lightdm
```
Now search following entry:
**On Ubuntu**<br>
Search following entry:
```
@include common-auth
@include common-auth
```
and add
```
auth required pam_u2f.so
auth required pam_u2f.so
```
**after** @include common-auth.
**after** *@include common-auth*.
<br>
<br>
**On Manjaro**<br>
Search following entry:
```
auth include system-login
```
Add following entry
```
auth required pam_u2f.so
```
**after** *auth include system-login*.
<br>
<br>
Save the file and test it. <br>
In case your Solo is not present, your password will be incrorrect. If Solo is plugged into your USB port, it will signal pressing the button and you will be able to login into Linux.

View File

@ -1,16 +1,17 @@
# Booting into bootloader mode
You can put Solo into bootloader mode by holding down the button, and plugging in Solo. After 2 seconds, bootloader mode will activate.
You'll see a yellowish flashing light and you can let go of the button.
Now Solo is ready to [accept firmware updates](/solo/signed-updates). If the Solo is a secured model, it can only accept signed updates, typically in the `firmware-*.json` format.
If Solo is running a hacker build, it can be put into bootloader mode on command. This makes it easier for development.
If you have a recent version of Solo, you can put it into bootloader mode by running this command.
```bash
solo program aux enter-bootloader
```
If your Solo is a bit older (<=2.5.3) You can put Solo into bootloader mode by using the button method:
Hold down button while plugging in Solo. After 2 seconds, bootloader mode will activate.
You'll see a yellowish flashing light and you can let go of the button.
Now Solo is ready to [accept firmware updates](/solo/signed-updates). If the Solo is a secured model, it can only accept signed updates, typically in the `firmware-*.json` format.
# The boot stages of Solo
Solo has 3 boot stages.
@ -21,7 +22,8 @@ The first stage is the DFU (Device Firmware Update) which is in a ROM on Solo.
This is what allows the entire firmware of Solo to be programmed. **It's not recommended to develop for Solo using the DFU because
if you program broken firmware, you could brick your device**.
On hacker devices, you can boot into the DFU by holding down the button for 5 seconds, when Solo is already in bootloader mode.
On hacker/nonverifying-bootloader devices, you can boot into the DFU by holding down the button for 5 seconds,
when Solo is already in bootloader mode.
You can also run this command when Solo is in bootloader mode to put it in DFU mode.
@ -29,7 +31,7 @@ You can also run this command when Solo is in bootloader mode to put it in DFU m
solo program aux enter-dfu
```
Note it will stay in DFU mode until to tell it to boot again. You can boot it again by running the following.
Note it will stay in DFU mode until you to tell it to boot again. You can boot it again by running the following.
```bash
solo program aux leave-dfu

View File

@ -36,17 +36,21 @@ Enter the `stm32l4xx` target directory.
cd targets/stm32l432
```
Now build Solo.
Now build the Solo application.
```
make build-hacker
make firmware
```
The `build-hacker` recipe does a few things. First it builds the bootloader, with
The `firmware` recipe builds the solo application, and outputs `solo.hex`. You can use this
to reprogram any unlocked/hacker Solo model. Note that it does not include the Solo bootloader,
so it is not a full reprogram.
<!-- First it builds the bootloader, with
signature checking disabled. Then it builds the Solo application with "hacker" features
enabled, like being able to jump to the bootloader on command. It then merges bootloader
and solo builds into the same binary. I.e. it combines `bootloader.hex` and `solo.hex`
into `all.hex`.
into `all.hex`. -->
If you're just planning to do development, **please don't try to reprogram the bootloader**,
as this can be risky if done often. Just use `solo.hex`.
@ -57,13 +61,13 @@ If you're developing, you probably want to see debug messages! Solo has a USB
Serial port that it will send debug messages through (from `printf`). You can read them using
a normal serial terminal like `picocom` or `putty`.
Just add `DEBUG=1` or `DEBUG=2` to your build recipe, like this.
Just add `-debug-1` or `-debug-2` to your build recipe, like this.
```
make build-hacker DEBUG=1
make firmware-debug-1
```
If you use `DEBUG=2`, that means Solo will not boot until something starts reading
If you use `debug-2`, that means Solo will not boot until something starts reading
its debug messages. So it basically waits to tether to a serial terminal so that you don't
miss any debug messages.
@ -78,27 +82,45 @@ solo monitor <serial-port>
[See issue 62](https://github.com/solokeys/solo/issues/62).
### Building a Solo release
### Building a complete Solo build (application + bootloader + certificate)
To build Solo
To make a complete Solo build, you need to build the bootloader. We provide
two easy recipes:
If you want to build a release of Solo, we recommend trying a Hacker build first
just to make sure that it's working. Otherwise it may not be as easy or possible to
fix any mistakes.
* `bootloader-nonverifying`: bootloader with no signature checking on updates. I.e. "unlocked".
* `bootloader-verifying`: bootloader with signature checking enforced on updated. I.e. "Locked".
If you're ready to program a full release, run this recipe to build.
To be safe, let's use the `-nonverifying` build.
```
make build-release-locked
make bootloader-nonverifying
```
This outputs bootloader.hex, solo.hex, and the combined all.hex.
This outputs `bootloader.hex`. We can then merge the bootloader and application.
Programming `all.hex` will cause the device to permanently lock itself. This means debuggers cannot be used and signature checking
will be enforced on all future updates.
```
solo mergehex bootloader.hex solo.hex bundle.hex
```
Note if you program a secured `solo.hex` file onto a Solo Hacker, it will lock the flash, but the bootloader
will still accept unsigned firmware updates. So you can switch it back to being a hacker, but you will
not be able to replace the unlocked bootloader anymore, since the permanently locked flash also disables the DFU.
[Read more on Solo's boot stages](/solo/bootloader-mode).
`bundle.hex` is our complete firmware build. Note it is in this step that you can
include a custom attestation certificate or lock the device from debugging/DFU.
By default the "hacker" attestation certifcate and key is used.
```
solo mergehex \
--attestation-key "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF" \
--attestation-cert attestation.der \
--lock \
solo.hex \
bootloader.hex \
bundle.hex
```
See [here for more information on custom attestation](/solo/customization/).
If you use `--lock`, this will permanently lock the device to this new bootloader. You
won't be able to program the bootloader again or be able to connect a hardware debugger.
The new bootloader may be able to accept (signed) updates still, depending on how you configured it.
To learn more about normal updates or a "full" update, you should [read more on Solo's boot stages](/solo/bootloader-mode).

View File

@ -45,7 +45,7 @@ email=example@example.com
openssl ecparam -genkey -name "$curve" -out root_key.pem -rand seed.bin
# generate a "signing request"
openssl req -new -key root_key.pem -out root_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=example.com/emailAddress=$email"
openssl req -new -key root_key.pem -out root_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=$CN/emailAddress=$email"
# self sign the request
openssl x509 -trustout -req -days 18250 -in root_key.pem.csr -signkey root_key.pem -out root_cert.pem -sha256
@ -82,7 +82,7 @@ email=example@example.com
openssl ecparam -genkey -name "$curve" -out device_key.pem -rand seed.bin
# generate a "signing request"
openssl req -new -key device_key.pem -out device_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=example.com/emailAddress=$email"
openssl req -new -key device_key.pem -out device_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=$CN/emailAddress=$email"
# sign the request
openssl x509 -req -days 18250 -in device_key.pem.csr -extfile v3.ext -CA root_cert.pem -CAkey root_key.pem -set_serial 01 -out device_cert.pem -sha256
@ -114,28 +114,27 @@ If the checks succeed, you are ready to program the device attestation key and c
### Programming an attestation key and certificate
Convert the DER format of the device attestation certificate to "C" bytes using our utility script. You may first need to
first install prerequisite python modules (`pip install -r tools/requirements.txt`).
First, [Build your solo application and bootloader](/solo/building).
Print your attestation key in a hex string format. Using our utility script:
```
python tools/gencert/cbytes.py device_cert.der
python3 tools/gencert/print_x_y.py device_key.pem
```
Copy the byte string portion into the [`attestation.c` source file of Solo](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/attestation.c). Overwrite the development or "default" certificate that is already there.
Now [build the Solo firmware](/solo/building), either a secure or hacker build. You will need to produce a `bootloader.hex` file and a `solo.hex` file.
Print your attestation key in a hex string format.
Merge the `bootloader.hex`, `solo.hex`, attestion key, and certificate into one firmware file.
```
python tools/print_x_y.py device_key.pem
solo mergehex \
--attestation-key "(The 32-byte hex string extracted from device_key.pem)" \
--attestation-cert device_cert.der \
--lock \
solo.hex \
bootloader.hex \
bundle.hex
```
Merge the `bootloader.hex`, `solo.hex`, and attestion key into one firmware file.
```
solo mergehex --attestation-key <attestation-key-hex-string> bootloader.hex solo.hex all.hex
```
Now you have a newly create `all.hex` file with a custom attestation key. You can [program this `all.hex` file
Now you have a newly created `bundle.hex` file with a custom attestation key and cert. You can [program this `bundle.hex` file
with Solo in DFU mode](/solo/programming#procedure).
Are you interested in customizing in bulk? Contact hello@solokeys.com and we can help.

60
docs/solo/porting.md Normal file
View File

@ -0,0 +1,60 @@
# Usage and Porting
Solo is designed to be used as a library or ported to other platforms easily. Here is an example
`main()` function.
```c
int main()
{
uint8_t hidmsg[64];
uint32_t t1 = 0;
device_init();
memset(hidmsg,0,sizeof(hidmsg));
while(1)
{
if (usbhid_recv(hidmsg) > 0)
{
ctaphid_handle_packet(hidmsg); // pass into libsolo!
memset(hidmsg, 0, sizeof(hidmsg));
}
ctaphid_check_timeouts();
}
}
```
`ctaphid_handle_packet(hidmsg);` is the entrance into the HID layer of libsolo, and will buffer packets and pass them
into FIDO2 or U2F layers.
Everything in the library is cross-platform, but it needs some functions implemented that are usually
platform specific. For example, how should libsolo implement an atomic counter? Where should it save state?
For all of these platform specific functions, the library contains it's own `weak` definition, so the library will compile and run.
LibSolo by default will not try to use an atomic
counter or save data persistently -- that needs to be implemented externally.
If you are using libsolo on another platform,
you should take a look at these possibly platform specific functions. They are listed in `fido2/device.h`.
If you'd like to reimplement any of the functions, then simply implement the function and compile normally.
GCC will replace libsolo's `weak` defined functions (everything in `fido2/device.h`) with your functions. By doing this, you
are replacing the function that is used by libsolo.
To get the library to compile
and run, you only need to implement one function for libsolo: `usbhid_send(uint8_t * send)`, which
is called by the library to send a 64 byte packet over a USB HID endpoint. In essence, you are giving
libsolo a function to write to USB.
The rest of the definitions in `fido2/device.h` are not required to compile and run so you can
immediately hit the ground running and iterative add what else you need. You'll definitely want
to continue implementing other functions in `fido2/device.h`. For example, no data will be stored
persistently until you define how it can be done!
For examples, check out the build for STM32L4 and PC (check out `pc/device` and `targets/stm32l432/src/device.c`).
If there's something that doesn't work for you -- send a pull request! It's better if we can
work together off of the same repo and not fork.

View File

@ -22,12 +22,11 @@ solo key update <--secure | --hacker>
You can manually install the [latest release](https://github.com/solokeys/solo/releases), or use a build that you made.
```bash
# If it's a hacker, it will automatically boot into bootloader mode.
solo program bootloader <firmware.hex | firmware.json>
```
Note you won't be able to use `all.hex` or the `bundle-*.hex` builds, as these include the solo bootloader. You shouldn't
risk changing the Solo bootloader unless you want to make it a secure device, or [make other customizations]().
risk changing the Solo bootloader unless you want to make it a secure device, or [make other customizations](/solo/customization/).
## Updating a Hacker to a Secure Solo
@ -37,15 +36,19 @@ So it's important to not mess this up or you may brick your device.
You can use a firmware build from the [latest release](https://github.com/solokeys/solo/releases) or use
a build that you made yourself.
You need to use a firmware file that has the combined bootloader and application (or at the very least just the bootloader).
This means using the `bundle-*.hex` file or the `all.hex` from your build. If you overwrite the Solo flash with a missing bootloader,
it will be bricked.
You need to use a firmware file that has the combined bootloader, application, and attestation key pair (bootloader + firmware + key).
This means using the `bundle-*.hex` file or the `bundle.hex` from your build.
#### *Warning*
* **If you overwrite the Solo flash with a missing bootloader, it will be bricked**.
* **If you program bootloader and firmware with no attestation, you will run into FIDO registration issues**
We provide two types of bundled builds. The `bundle-hacker-*.hex` build is the hacker build. If you update with this,
you will update the bootloader and application, but nothing will be secured. The `bundle-secure-non-solokeys.hex`
is a secured build that will lock your device and it will behave just like a Secure Solo. The main difference is that
it uses a "default" attestation key in the device, rather than the SoloKeys attestation key. There is no security
concern with using our default attestation key, aside from a privacy implication that services can distinguish it from Solo Secure.
concern with using our default attestation key, aside from a small privacy implication that services can distinguish it from Solo Secure.
### Procedure
@ -61,7 +64,7 @@ concern with using our default attestation key, aside from a privacy implication
2. Program the device
solo program dfu <bundle-secure-non-solokeys.hex | all.hex>
solo program dfu <bundle-secure-non-solokeys.hex | bundle.hex>
Double check you programmed it with bootloader + application (or just bootloader).
If you messed it up, simply don't do the next step and repeat this step correctly.

44
fido2/Makefile Normal file
View File

@ -0,0 +1,44 @@
include version.mk
ifndef APP_CONFIG
APP_CONFIG=example_app.h
endif
INC = -I./ -I./extensions
INC += -I../tinycbor/src
INC += -I../crypto/sha256 -I../crypto/micro-ecc -I../crypto/tiny-AES-c
INC += -I../crypto/cifra/src -I../crypto/cifra/src/ext
INT_CFLAGS = -DAPP_CONFIG=\"$(APP_CONFIG)\"
INT_CFLAGS += $(INC)
INT_CFLAGS += $(SOLO_VERSION_FLAGS)
SRC = apdu.c util.c u2f.c test_power.c
SRC += stubs.c log.c ctaphid.c ctap.c
SRC += ctap_parse.c crypto.c
SRC += device.c
SRC += version.c
SRC += data_migration.c
SRC += extensions/extensions.c extensions/solo.c
SRC += extensions/wallet.c
# Crypto libs
SRC += ../crypto/sha256/sha256.c ../crypto/micro-ecc/uECC.c ../crypto/tiny-AES-c/aes.c
SRC += ../crypto/cifra/src/sha512.c ../crypto/cifra/src/blockwise.c
OBJ = $(SRC:.c=.o)
all: libsolo.a
libsolo.a: $(OBJ)
$(AR) cqs $@ $^
%.o: %.c
$(CC) $^ $(INT_CFLAGS) $(CFLAGS) -c -o $@
../crypto/micro-ecc/uECC.o: ../crypto/micro-ecc/uECC.c
$(CC) $^ $(INT_CFLAGS) $(ECC_CFLAGS) -c -o $@
clean:
rm -f $(OBJ) libsolo.a

View File

@ -5,29 +5,33 @@
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
/*
* Wrapper for crypto implementation on device
* Wrapper for crypto implementation on device.
*
* Can be replaced with different crypto implementation by
* defining EXTERNAL_SOLO_CRYPTO
*
* */
#ifndef EXTERNAL_SOLO_CRYPTO
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#include "crypto.h"
#ifdef USE_SOFTWARE_IMPLEMENTATION
#include "sha256.h"
#include "uECC.h"
#include "aes.h"
#include "ctap.h"
#include "device.h"
#include "log.h"
// stuff for SHA512
#include "sha2.h"
#include "blockwise.h"
#include APP_CONFIG
#include "log.h"
#ifdef USING_PC
typedef enum
{
MBEDTLS_ECP_DP_NONE = 0,
@ -44,53 +48,56 @@ typedef enum
MBEDTLS_ECP_DP_SECP224K1, /*!< 224-bits "Koblitz" curve */
MBEDTLS_ECP_DP_SECP256K1, /*!< 256-bits "Koblitz" curve */
} mbedtls_ecp_group_id;
#endif
const uint8_t attestation_cert_der[];
const uint16_t attestation_cert_der_size;
const uint8_t attestation_key[];
const uint16_t attestation_key_size;
static SHA256_CTX sha256_ctx;
static cf_sha512_context sha512_ctx;
static const struct uECC_Curve_t * _es256_curve = NULL;
static const uint8_t * _signing_key = NULL;
static int _key_len = 0;
// Secrets for testing only
static uint8_t master_secret[64];
static uint8_t transport_secret[32];
void crypto_sha256_init()
void crypto_sha256_init(void)
{
sha256_init(&sha256_ctx);
}
void crypto_reset_master_secret()
void crypto_sha512_init(void)
{
ctap_generate_rng(master_secret, 64);
ctap_generate_rng(transport_secret, 32);
cf_sha512_init(&sha512_ctx);
}
void crypto_load_master_secret(uint8_t * key)
{
#if KEY_SPACE_BYTES < 96
#error "need more key bytes"
#endif
#if KEY_SPACE_BYTES < 96
#error "need more key bytes"
#endif
memmove(master_secret, key, 64);
memmove(transport_secret, key+64, 32);
}
void crypto_reset_master_secret(void)
{
memset(master_secret, 0, 64);
memset(transport_secret, 0, 32);
ctap_generate_rng(master_secret, 64);
ctap_generate_rng(transport_secret, 32);
}
void crypto_sha256_update(uint8_t * data, size_t len)
{
sha256_update(&sha256_ctx, data, len);
}
void crypto_sha512_update(const uint8_t * data, size_t len) {
cf_sha512_update(&sha512_ctx, data, len);
}
void crypto_sha256_update_secret()
{
sha256_update(&sha256_ctx, master_secret, 32);
@ -101,26 +108,32 @@ void crypto_sha256_final(uint8_t * hash)
sha256_final(&sha256_ctx, hash);
}
void crypto_sha512_final(uint8_t * hash)
{
// NB: there is also cf_sha512_digest
cf_sha512_digest_final(&sha512_ctx, hash);
}
void crypto_sha256_hmac_init(uint8_t * key, uint32_t klen, uint8_t * hmac)
{
uint8_t buf[64];
int i;
unsigned int i;
memset(buf, 0, sizeof(buf));
if (key == CRYPTO_MASTER_KEY)
{
key = master_secret;
klen = sizeof(master_secret);
klen = sizeof(master_secret)/2;
}
else if (key == CRYPTO_TRANSPORT_KEY)
{
key = transport_secret;
klen = 32;
}
if(klen > 64)
{
printf2(TAG_ERR,"Error, key size must be <= 64\n");
printf2(TAG_ERR, "Error, key size must be <= 64\n");
exit(1);
}
@ -138,19 +151,24 @@ void crypto_sha256_hmac_init(uint8_t * key, uint32_t klen, uint8_t * hmac)
void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac)
{
uint8_t buf[64];
int i;
unsigned int i;
crypto_sha256_final(hmac);
memset(buf, 0, sizeof(buf));
if (key == CRYPTO_MASTER_KEY)
{
key = master_secret;
klen = sizeof(master_secret);
klen = sizeof(master_secret)/2;
}
else if (key == CRYPTO_TRANSPORT_KEY2)
{
key = transport_secret;
klen = 32;
}
if(klen > 64)
{
printf2(TAG_ERR,"Error, key size must be <= 64\n");
printf2(TAG_ERR, "Error, key size must be <= 64\n");
exit(1);
}
memmove(buf, key, klen);
@ -167,16 +185,16 @@ void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac)
}
void crypto_ecc256_init()
void crypto_ecc256_init(void)
{
uECC_set_rng((uECC_RNG_Function)ctap_generate_rng);
_es256_curve = uECC_secp256r1();
}
void crypto_ecc256_load_attestation_key()
void crypto_ecc256_load_attestation_key(void)
{
_signing_key = attestation_key;
_signing_key = device_get_attestation_key();
_key_len = 32;
}
@ -184,7 +202,7 @@ void crypto_ecc256_sign(uint8_t * data, int len, uint8_t * sig)
{
if ( uECC_sign(_signing_key, data, len, sig, _es256_curve) == 0)
{
printf2(TAG_ERR,"error, uECC failed\n");
printf2(TAG_ERR, "error, uECC failed\n");
exit(1);
}
}
@ -221,19 +239,19 @@ void crypto_ecdsa_sign(uint8_t * data, int len, uint8_t * sig, int MBEDTLS_ECP_I
if (_key_len != 32) goto fail;
break;
default:
printf2(TAG_ERR,"error, invalid ECDSA alg specifier\n");
printf2(TAG_ERR, "error, invalid ECDSA alg specifier\n");
exit(1);
}
if ( uECC_sign(_signing_key, data, len, sig, curve) == 0)
{
printf2(TAG_ERR,"error, uECC failed\n");
printf2(TAG_ERR, "error, uECC failed\n");
exit(1);
}
return;
fail:
printf2(TAG_ERR,"error, invalid key length\n");
printf2(TAG_ERR, "error, invalid key length\n");
exit(1);
}
@ -243,8 +261,11 @@ void generate_private_key(uint8_t * data, int len, uint8_t * data2, int len2, ui
crypto_sha256_hmac_init(CRYPTO_MASTER_KEY, 0, privkey);
crypto_sha256_update(data, len);
crypto_sha256_update(data2, len2);
crypto_sha256_update(master_secret, 32);
crypto_sha256_update(master_secret, 32); // TODO AES
crypto_sha256_hmac_final(CRYPTO_MASTER_KEY, 0, privkey);
crypto_aes256_init(master_secret + 32, NULL);
crypto_aes256_encrypt(privkey, 32);
}
@ -261,12 +282,12 @@ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8
memmove(x,pubkey,32);
memmove(y,pubkey+32,32);
}
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len)
{
_signing_key = key;
@ -278,7 +299,7 @@ void crypto_ecc256_make_key_pair(uint8_t * pubkey, uint8_t * privkey)
{
if (uECC_make_key(pubkey, privkey, _es256_curve) != 1)
{
printf2(TAG_ERR,"Error, uECC_make_key failed\n");
printf2(TAG_ERR, "Error, uECC_make_key failed\n");
exit(1);
}
}
@ -287,7 +308,7 @@ void crypto_ecc256_shared_secret(const uint8_t * pubkey, const uint8_t * privkey
{
if (uECC_shared_secret(pubkey, privkey, shared_secret, _es256_curve) != 1)
{
printf2(TAG_ERR,"Error, uECC_shared_secret failed\n");
printf2(TAG_ERR, "Error, uECC_shared_secret failed\n");
exit(1);
}
@ -338,42 +359,4 @@ void crypto_aes256_encrypt(uint8_t * buf, int length)
}
const uint8_t attestation_cert_der[] =
"\x30\x82\x01\xfb\x30\x82\x01\xa1\xa0\x03\x02\x01\x02\x02\x01\x00\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13"
"\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e"
"\x06\x03\x55\x04\x0a\x0c\x07\x54\x45\x53\x54\x20\x43\x41\x30\x20\x17\x0d\x31\x38"
"\x30\x35\x31\x30\x30\x33\x30\x36\x32\x30\x5a\x18\x0f\x32\x30\x36\x38\x30\x34\x32"
"\x37\x30\x33\x30\x36\x32\x30\x5a\x30\x7c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13"
"\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x0f\x30\x0d"
"\x06\x03\x55\x04\x07\x0c\x06\x4c\x61\x75\x72\x65\x6c\x31\x15\x30\x13\x06\x03\x55"
"\x04\x0a\x0c\x0c\x54\x45\x53\x54\x20\x43\x4f\x4d\x50\x41\x4e\x59\x31\x22\x30\x20"
"\x06\x03\x55\x04\x0b\x0c\x19\x41\x75\x74\x68\x65\x6e\x74\x69\x63\x61\x74\x6f\x72"
"\x20\x41\x74\x74\x65\x73\x74\x61\x74\x69\x6f\x6e\x31\x14\x30\x12\x06\x03\x55\x04"
"\x03\x0c\x0b\x63\x6f\x6e\x6f\x72\x70\x70\x2e\x63\x6f\x6d\x30\x59\x30\x13\x06\x07"
"\x2a\x86\x48\xce\x3d\x02\x01\x06\x08\x2a\x86\x48\xce\x3d\x03\x01\x07\x03\x42\x00"
"\x04\x45\xa9\x02\xc1\x2e\x9c\x0a\x33\xfa\x3e\x84\x50\x4a\xb8\x02\xdc\x4d\xb9\xaf"
"\x15\xb1\xb6\x3a\xea\x8d\x3f\x03\x03\x55\x65\x7d\x70\x3f\xb4\x02\xa4\x97\xf4\x83"
"\xb8\xa6\xf9\x3c\xd0\x18\xad\x92\x0c\xb7\x8a\x5a\x3e\x14\x48\x92\xef\x08\xf8\xca"
"\xea\xfb\x32\xab\x20\xa3\x62\x30\x60\x30\x46\x06\x03\x55\x1d\x23\x04\x3f\x30\x3d"
"\xa1\x30\xa4\x2e\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13\x02\x55\x53\x31"
"\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e\x06\x03\x55\x04"
"\x0a\x0c\x07\x54\x45\x53\x54\x20\x43\x41\x82\x09\x00\xf7\xc9\xec\x89\xf2\x63\x94"
"\xd9\x30\x09\x06\x03\x55\x1d\x13\x04\x02\x30\x00\x30\x0b\x06\x03\x55\x1d\x0f\x04"
"\x04\x03\x02\x04\xf0\x30\x0a\x06\x08\x2a\x86\x48\xce\x3d\x04\x03\x02\x03\x48\x00"
"\x30\x45\x02\x20\x18\x38\xb0\x45\x03\x69\xaa\xa7\xb7\x38\x62\x01\xaf\x24\x97\x5e"
"\x7e\x74\x64\x1b\xa3\x7b\xf7\xe6\xd3\xaf\x79\x28\xdb\xdc\xa5\x88\x02\x21\x00\xcd"
"\x06\xf1\xe3\xab\x16\x21\x8e\xd8\xc0\x14\xaf\x09\x4f\x5b\x73\xef\x5e\x9e\x4b\xe7"
"\x35\xeb\xdd\x9b\x6d\x8f\x7d\xf3\xc4\x3a\xd7";
const uint16_t attestation_cert_der_size = sizeof(attestation_cert_der)-1;
const uint8_t attestation_key[] = "\xcd\x67\xaa\x31\x0d\x09\x1e\xd1\x6e\x7e\x98\x92\xaa\x07\x0e\x19\x94\xfc\xd7\x14\xae\x7c\x40\x8f\xb9\x46\xb7\x2e\x5f\xe7\x5d\x30";
const uint16_t attestation_key_size = sizeof(attestation_key)-1;
#else
#error "No crypto implementation defined"
#endif

View File

@ -9,8 +9,6 @@
#include <stddef.h>
#define USE_SOFTWARE_IMPLEMENTATION
void crypto_sha256_init();
void crypto_sha256_update(uint8_t * data, size_t len);
void crypto_sha256_update_secret();
@ -23,7 +21,6 @@ void crypto_sha512_init();
void crypto_sha512_update(const uint8_t * data, size_t len);
void crypto_sha512_final(uint8_t * hash);
void crypto_ecc256_init();
void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8_t * y);
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey);
@ -54,10 +51,4 @@ void crypto_reset_master_secret();
void crypto_load_master_secret(uint8_t * key);
extern const uint8_t attestation_cert_der[];
extern const uint16_t attestation_cert_der_size;
extern const uint8_t attestation_key[];
extern const uint16_t attestation_key_size;
#endif

View File

@ -69,6 +69,8 @@ uint8_t ctap_get_info(CborEncoder * encoder)
CborEncoder map;
CborEncoder options;
CborEncoder pins;
uint8_t aaguid[16];
device_read_aaguid(aaguid);
ret = cbor_encoder_create_map(encoder, &map, 6);
check_ret(ret);
@ -105,7 +107,7 @@ uint8_t ctap_get_info(CborEncoder * encoder)
ret = cbor_encode_uint(&map, RESP_aaguid);
check_ret(ret);
{
ret = cbor_encode_byte_string(&map, CTAP_AAGUID, 16);
ret = cbor_encode_byte_string(&map, aaguid, 16);
check_ret(ret);
}
@ -282,13 +284,9 @@ void make_auth_tag(uint8_t * rpIdHash, uint8_t * nonce, uint32_t count, uint8_t
memmove(tag, hashbuf, CREDENTIAL_TAG_SIZE);
}
void ctap_flush_state(int backup)
void ctap_flush_state()
{
authenticator_write_state(&STATE, 0);
if (backup)
{
authenticator_write_state(&STATE, 1);
}
authenticator_write_state(&STATE);
}
static uint32_t auth_data_update_count(CTAP_authDataHeader * authData)
@ -312,7 +310,7 @@ static uint32_t auth_data_update_count(CTAP_authDataHeader * authData)
static void ctap_increment_rk_store()
{
STATE.rk_stored++;
ctap_flush_state(1);
ctap_flush_state();
}
static int is_matching_rk(CTAP_residentKey * rk, CTAP_residentKey * rk2)
@ -509,7 +507,7 @@ static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * au
cbor_encoder_init(&cose_key, cose_key_buf, *len - sizeof(CTAP_authData), 0);
memmove(authData->attest.aaguid, CTAP_AAGUID, 16);
device_read_aaguid(authData->attest.aaguid);
authData->attest.credLenL = sizeof(CredentialId) & 0x00FF;
authData->attest.credLenH = (sizeof(CredentialId) & 0xFF00) >> 8;
@ -634,11 +632,17 @@ int ctap_calculate_signature(uint8_t * data, int datalen, uint8_t * clientDataHa
uint8_t ctap_add_attest_statement(CborEncoder * map, uint8_t * sigder, int len)
{
int ret;
uint8_t cert[1024];
uint16_t cert_size = device_attestation_cert_der_get_size();
if (cert_size > sizeof(cert)){
printf2(TAG_ERR,"Certificate is too large for CTAP2 buffer\r\n");
return CTAP2_ERR_PROCESSING;
}
device_attestation_read_cert_der(cert);
CborEncoder stmtmap;
CborEncoder x5carr;
ret = cbor_encode_int(map,RESP_attStmt);
check_ret(ret);
ret = cbor_encoder_create_map(map, &stmtmap, 3);
@ -661,7 +665,7 @@ uint8_t ctap_add_attest_statement(CborEncoder * map, uint8_t * sigder, int len)
ret = cbor_encoder_create_array(&stmtmap, &x5carr, 1);
check_ret(ret);
{
ret = cbor_encode_byte_string(&x5carr, attestation_cert_der, attestation_cert_der_size);
ret = cbor_encode_byte_string(&x5carr, cert, device_attestation_cert_der_get_size());
check_ret(ret);
ret = cbor_encoder_close_container(&stmtmap, &x5carr);
check_ret(ret);
@ -1770,8 +1774,7 @@ static void ctap_state_init()
*/
void ctap_load_external_keys(uint8_t * keybytes){
memmove(STATE.key_space, keybytes, KEY_SPACE_BYTES);
authenticator_write_state(&STATE, 0);
authenticator_write_state(&STATE, 1);
authenticator_write_state(&STATE);
crypto_load_master_secret(STATE.key_space);
}
@ -1785,30 +1788,18 @@ void ctap_init()
);
crypto_ecc256_init();
authenticator_read_state(&STATE);
int is_init = authenticator_read_state(&STATE);
device_set_status(CTAPHID_STATUS_IDLE);
if (STATE.is_initialized == INITIALIZED_MARKER)
if (is_init)
{
printf1(TAG_STOR,"Auth state is initialized\n");
}
else
{
printf1(TAG_STOR,"Auth state is NOT initialized. Initializing..\n");
if (authenticator_is_backup_initialized())
{
printf1(TAG_ERR,"Warning: memory corruption detected. restoring from backup..\n");
authenticator_read_backup_state(&STATE);
authenticator_write_state(&STATE, 0);
}
else
{
ctap_state_init();
authenticator_write_state(&STATE, 0);
authenticator_write_state(&STATE, 1);
}
ctap_state_init();
authenticator_write_state(&STATE);
}
do_migration_if_required(&STATE);
@ -1875,8 +1866,7 @@ void ctap_update_pin(uint8_t * pin, int len)
STATE.is_pin_set = 1;
authenticator_write_state(&STATE, 1);
authenticator_write_state(&STATE, 0);
authenticator_write_state(&STATE);
printf1(TAG_CTAP, "New pin set: %s [%d]\n", pin, len);
dump_hex1(TAG_ERR, STATE.PIN_CODE_HASH, sizeof(STATE.PIN_CODE_HASH));
@ -1891,7 +1881,7 @@ uint8_t ctap_decrement_pin_attempts()
if (! ctap_device_locked())
{
STATE.remaining_tries--;
ctap_flush_state(0);
ctap_flush_state();
printf1(TAG_CP, "ATTEMPTS left: %d\n", STATE.remaining_tries);
if (ctap_device_locked())
@ -1926,7 +1916,7 @@ void ctap_reset_pin_attempts()
{
STATE.remaining_tries = PIN_LOCKOUT_ATTEMPTS;
PIN_BOOT_ATTEMPTS_LEFT = PIN_BOOT_ATTEMPTS;
ctap_flush_state(0);
ctap_flush_state();
}
void ctap_reset_state()
@ -2000,7 +1990,7 @@ int8_t ctap_store_key(uint8_t index, uint8_t * key, uint16_t len)
memmove(STATE.key_space + offset, key, len);
ctap_flush_state(1);
ctap_flush_state();
return 0;
}
@ -2042,8 +2032,7 @@ void ctap_reset()
{
ctap_state_init();
authenticator_write_state(&STATE, 0);
authenticator_write_state(&STATE, 1);
authenticator_write_state(&STATE);
if (ctap_generate_rng(PIN_TOKEN, PIN_TOKEN_SIZE) != 1)
{
@ -2063,6 +2052,5 @@ void lock_device_permanently() {
printf1(TAG_CP, "Device locked!\n");
authenticator_write_state(&STATE, 0);
authenticator_write_state(&STATE, 1);
authenticator_write_state(&STATE);
}

View File

@ -19,9 +19,6 @@
#define CTAP_VENDOR_FIRST 0x40
#define CTAP_VENDOR_LAST 0xBF
// AAGUID For Solo
#define CTAP_AAGUID ((uint8_t*)"\x88\x76\x63\x1b\xd4\xa0\x42\x7f\x57\x73\x0e\xc7\x1c\x9e\x02\x79")
#define MC_clientDataHash 0x01
#define MC_rp 0x02
#define MC_user 0x03

View File

@ -275,7 +275,7 @@ static void ctaphid_write(CTAPHID_WRITE_BUFFER * wb, void * _data, int len)
if (wb->offset > 0)
{
memset(wb->buf + wb->offset, 0, HID_MESSAGE_SIZE - wb->offset);
ctaphid_write_block(wb->buf);
usbhid_send(wb->buf);
}
return;
}
@ -304,7 +304,7 @@ static void ctaphid_write(CTAPHID_WRITE_BUFFER * wb, void * _data, int len)
wb->bytes_written += 1;
if (wb->offset == HID_MESSAGE_SIZE)
{
ctaphid_write_block(wb->buf);
usbhid_send(wb->buf);
wb->offset = 0;
}
}
@ -542,6 +542,9 @@ extern void _check_ret(CborError ret, int line, const char * filename);
uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE_BUFFER * wb);
extern void solo_lock_if_not_already();
uint8_t ctaphid_handle_packet(uint8_t * pkt_raw)
{
uint8_t cmd = 0;
@ -635,6 +638,9 @@ uint8_t ctaphid_handle_packet(uint8_t * pkt_raw)
status = ctap_request(ctap_buffer, len, &ctap_resp);
wb.bcnt = (ctap_resp.length+1);
wb.cid = cid;
wb.cmd = cmd;
timestamp();
@ -665,6 +671,9 @@ uint8_t ctaphid_handle_packet(uint8_t * pkt_raw)
u2f_request((struct u2f_request_apdu*)ctap_buffer, &ctap_resp);
wb.bcnt = (ctap_resp.length);
wb.cid = cid;
wb.cmd = cmd;
ctaphid_write(&wb, ctap_resp.data, ctap_resp.length);
ctaphid_write(&wb, NULL, 0);
@ -696,7 +705,7 @@ uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE
{
ctap_response_init(ctap_resp);
#if !defined(IS_BOOTLOADER) && (defined(SOLO_HACKER) || defined(SOLO_EXPERIMENTAL))
#if !defined(IS_BOOTLOADER) && (defined(SOLO_EXPERIMENTAL))
uint32_t param;
#endif
#if defined(IS_BOOTLOADER)
@ -710,23 +719,20 @@ uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE
printf1(TAG_HID,"CTAPHID_BOOT\n");
u2f_set_writeback_buffer(ctap_resp);
is_busy = bootloader_bridge(len, ctap_buffer);
wb->bcnt = 1 + ctap_resp->length;
ctaphid_write(wb, &is_busy, 1);
ctaphid_write(wb, ctap_resp->data, ctap_resp->length);
ctaphid_write(wb, NULL, 0);
return 1;
#endif
#if defined(SOLO_HACKER)
#if defined(SOLO)
case CTAPHID_ENTERBOOT:
printf1(TAG_HID,"CTAPHID_ENTERBOOT\n");
boot_solo_bootloader();
wb->bcnt = 0;
ctaphid_write(wb, NULL, 0);
return 1;
case CTAPHID_ENTERSTBOOT:
printf1(TAG_HID,"CTAPHID_ENTERBOOT\n");
boot_st_bootloader();
return 1;
#endif
#if !defined(IS_BOOTLOADER)
@ -745,16 +751,31 @@ uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE
case CTAPHID_GETVERSION:
printf1(TAG_HID,"CTAPHID_GETVERSION\n");
wb->bcnt = 3;
wb->bcnt = 4;
ctap_buffer[0] = SOLO_VERSION_MAJ;
ctap_buffer[1] = SOLO_VERSION_MIN;
ctap_buffer[2] = SOLO_VERSION_PATCH;
ctaphid_write(wb, ctap_buffer, 3);
#if defined(SOLO)
ctap_buffer[3] = solo_is_locked();
#else
ctap_buffer[3] = 0;
#endif
ctaphid_write(wb, ctap_buffer, 4);
ctaphid_write(wb, NULL, 0);
return 1;
break;
#if !defined(IS_BOOTLOADER) && (defined(SOLO_HACKER) || defined(SOLO_EXPERIMENTAL))
// Remove on next release
#if !defined(IS_BOOTLOADER) && defined(SOLO)
case 0x99:
solo_lock_if_not_already();
wb->bcnt = 0;
ctaphid_write(wb, NULL, 0);
return 1;
break;
#endif
#if !defined(IS_BOOTLOADER) && (defined(SOLO_EXPERIMENTAL))
case CTAPHID_LOADKEY:
/**
* Load external key. Useful for enabling backups.

View File

@ -59,6 +59,8 @@
#define CTAP_CAPABILITIES (CAPABILITY_WINK | CAPABILITY_CBOR)
#define HID_MESSAGE_SIZE 64
typedef struct
{
uint32_t cid;

View File

@ -56,8 +56,7 @@ bool migrate_from_FF_to_01(AuthenticatorState_0xFF* state_prev_0xff, Authenticat
void save_migrated_state(AuthenticatorState *state_tmp_ptr) {
memmove(&STATE, state_tmp_ptr, sizeof(AuthenticatorState));
authenticator_write_state(state_tmp_ptr, 0);
authenticator_write_state(state_tmp_ptr, 1);
authenticator_write_state(state_tmp_ptr);
}
void do_migration_if_required(AuthenticatorState* state_current){

209
fido2/device.c Normal file
View File

@ -0,0 +1,209 @@
// Copyright 2019 SoloKeys Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
/** device.c
*
* This contains (weak) implementations
* to get FIDO2 working initially on a device. They probably
* aren't what you want to keep, but are designed to be replaced
* with some other platform specific implementation.
*
* For real examples, see the STM32L4 implementation and the PC implementation of device.c.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "ctaphid.h"
#include "log.h"
#include APP_CONFIG
#define RK_NUM 50
struct ResidentKeyStore {
CTAP_residentKey rks[RK_NUM];
} RK_STORE;
static bool _up_disabled = false;
static uint8_t _attestation_cert_der[] =
"\x30\x82\x01\xfb\x30\x82\x01\xa1\xa0\x03\x02\x01\x02\x02\x01\x00\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13"
"\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e"
"\x06\x03\x55\x04\x0a\x0c\x07\x54\x45\x53\x54\x20\x43\x41\x30\x20\x17\x0d\x31\x38"
"\x30\x35\x31\x30\x30\x33\x30\x36\x32\x30\x5a\x18\x0f\x32\x30\x36\x38\x30\x34\x32"
"\x37\x30\x33\x30\x36\x32\x30\x5a\x30\x7c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13"
"\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x0f\x30\x0d"
"\x06\x03\x55\x04\x07\x0c\x06\x4c\x61\x75\x72\x65\x6c\x31\x15\x30\x13\x06\x03\x55"
"\x04\x0a\x0c\x0c\x54\x45\x53\x54\x20\x43\x4f\x4d\x50\x41\x4e\x59\x31\x22\x30\x20"
"\x06\x03\x55\x04\x0b\x0c\x19\x41\x75\x74\x68\x65\x6e\x74\x69\x63\x61\x74\x6f\x72"
"\x20\x41\x74\x74\x65\x73\x74\x61\x74\x69\x6f\x6e\x31\x14\x30\x12\x06\x03\x55\x04"
"\x03\x0c\x0b\x63\x6f\x6e\x6f\x72\x70\x70\x2e\x63\x6f\x6d\x30\x59\x30\x13\x06\x07"
"\x2a\x86\x48\xce\x3d\x02\x01\x06\x08\x2a\x86\x48\xce\x3d\x03\x01\x07\x03\x42\x00"
"\x04\x45\xa9\x02\xc1\x2e\x9c\x0a\x33\xfa\x3e\x84\x50\x4a\xb8\x02\xdc\x4d\xb9\xaf"
"\x15\xb1\xb6\x3a\xea\x8d\x3f\x03\x03\x55\x65\x7d\x70\x3f\xb4\x02\xa4\x97\xf4\x83"
"\xb8\xa6\xf9\x3c\xd0\x18\xad\x92\x0c\xb7\x8a\x5a\x3e\x14\x48\x92\xef\x08\xf8\xca"
"\xea\xfb\x32\xab\x20\xa3\x62\x30\x60\x30\x46\x06\x03\x55\x1d\x23\x04\x3f\x30\x3d"
"\xa1\x30\xa4\x2e\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13\x02\x55\x53\x31"
"\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e\x06\x03\x55\x04"
"\x0a\x0c\x07\x54\x45\x53\x54\x20\x43\x41\x82\x09\x00\xf7\xc9\xec\x89\xf2\x63\x94"
"\xd9\x30\x09\x06\x03\x55\x1d\x13\x04\x02\x30\x00\x30\x0b\x06\x03\x55\x1d\x0f\x04"
"\x04\x03\x02\x04\xf0\x30\x0a\x06\x08\x2a\x86\x48\xce\x3d\x04\x03\x02\x03\x48\x00"
"\x30\x45\x02\x20\x18\x38\xb0\x45\x03\x69\xaa\xa7\xb7\x38\x62\x01\xaf\x24\x97\x5e"
"\x7e\x74\x64\x1b\xa3\x7b\xf7\xe6\xd3\xaf\x79\x28\xdb\xdc\xa5\x88\x02\x21\x00\xcd"
"\x06\xf1\xe3\xab\x16\x21\x8e\xd8\xc0\x14\xaf\x09\x4f\x5b\x73\xef\x5e\x9e\x4b\xe7"
"\x35\xeb\xdd\x9b\x6d\x8f\x7d\xf3\xc4\x3a\xd7";
__attribute__((weak)) void device_attestation_read_cert_der(uint8_t * dst){
memmove(dst, _attestation_cert_der, device_attestation_cert_der_get_size());
}
__attribute__((weak)) uint8_t * device_get_attestation_key(){
static uint8_t attestation_key[] =
"\xcd\x67\xaa\x31\x0d\x09\x1e\xd1\x6e\x7e\x98\x92\xaa"
"\x07\x0e\x19\x94\xfc\xd7\x14\xae\x7c\x40\x8f\xb9\x46"
"\xb7\x2e\x5f\xe7\x5d\x30";
return attestation_key;
}
__attribute__((weak)) uint16_t device_attestation_cert_der_get_size(){
return sizeof(_attestation_cert_der)-1;
}
__attribute__((weak)) void device_reboot()
{
printf1(TAG_RED, "REBOOT command recieved!\r\n");
exit(100);
}
__attribute__((weak)) void device_set_status(uint32_t status)
{
static uint32_t __device_status = 0;
if (status != CTAPHID_STATUS_IDLE && __device_status != status)
{
ctaphid_update_status(status);
}
__device_status = status;
}
__attribute__((weak)) void usbhid_close(){/**/}
__attribute__((weak)) void device_init(int argc, char *argv[]){/**/}
__attribute__((weak)) void device_disable_up(bool disable)
{
_up_disabled = disable;
}
__attribute__((weak)) int ctap_user_presence_test(uint32_t d)
{
if (_up_disabled)
{
return 2;
}
return 1;
}
__attribute__((weak)) int ctap_user_verification(uint8_t arg)
{
return 1;
}
__attribute__((weak)) uint32_t ctap_atomic_count(uint32_t amount)
{
static uint32_t counter1 = 25;
counter1 += (amount + 1);
return counter1;
}
__attribute__((weak)) int ctap_generate_rng(uint8_t * dst, size_t num)
{
int i;
printf1(TAG_ERR, "Insecure RNG being used.\r\n");
for (i = 0; i < num; i++){
dst[i] = (uint8_t)rand();
}
}
__attribute__((weak)) int device_is_nfc()
{
return 0;
}
__attribute__((weak)) void device_wink()
{
printf1(TAG_GREEN,"*WINK*\n");
}
__attribute__((weak)) void device_set_clock_rate(DEVICE_CLOCK_RATE param){/**/}
static AuthenticatorState _tmp_state = {0};
__attribute__((weak)) int authenticator_read_state(AuthenticatorState * s){
if (_tmp_state.is_initialized != INITIALIZED_MARKER){
return 0;
}
else {
memmove(s, &_tmp_state, sizeof(AuthenticatorState));
return 1;
}
}
__attribute__((weak)) void authenticator_write_state(AuthenticatorState * s){
memmove(&_tmp_state, s, sizeof(AuthenticatorState));
}
__attribute__((weak)) void ctap_reset_rk()
{
memset(&RK_STORE,0xff,sizeof(RK_STORE));
}
__attribute__((weak)) uint32_t ctap_rk_size()
{
return RK_NUM;
}
__attribute__((weak)) void ctap_store_rk(int index, CTAP_residentKey * rk)
{
if (index < RK_NUM)
{
memmove(RK_STORE.rks + index, rk, sizeof(CTAP_residentKey));
}
else
{
printf1(TAG_ERR,"Out of bounds for store_rk\r\n");
}
}
__attribute__((weak)) void ctap_load_rk(int index, CTAP_residentKey * rk)
{
memmove(rk, RK_STORE.rks + index, sizeof(CTAP_residentKey));
}
__attribute__((weak)) void ctap_overwrite_rk(int index, CTAP_residentKey * rk)
{
if (index < RK_NUM)
{
memmove(RK_STORE.rks + index, rk, sizeof(CTAP_residentKey));
}
else
{
printf1(TAG_ERR,"Out of bounds for store_rk\r\n");
}
}
__attribute__((weak)) void device_read_aaguid(uint8_t * dst){
uint8_t * aaguid = (uint8_t *)"\x00\x76\x63\x1b\xd4\xa0\x42\x7f\x57\x73\x0e\xc7\x1c\x9e\x02\x79";
memmove(dst, aaguid, 16);
}

View File

@ -9,82 +9,159 @@
#include "storage.h"
void device_init(int argc, char *argv[]);
/** Return a millisecond timestamp. Does not need to be synchronized to anything.
* *Optional* to compile, but will not calculate delays correctly without a correct implementation.
*/
uint32_t millis();
void delay(uint32_t ms);
// HID message size in bytes
#define HID_MESSAGE_SIZE 64
void usbhid_init();
int usbhid_recv(uint8_t * msg);
/** Called by HIDUSB layer to write bytes to the USB HID interface endpoint.
* Will write 64 bytes at a time.
*
* @param msg Pointer to a 64 byte buffer containing a payload to be sent via USB HID.
*
* **Required** to compile and work for FIDO application.
*/
void usbhid_send(uint8_t * msg);
void usbhid_close();
void main_loop_delay();
void heartbeat();
/** Reboot / power reset the device.
* **Optional** this is not used for FIDO2, and simply won't do anything if not implemented.
*/
void device_reboot();
void authenticator_read_state(AuthenticatorState * );
/** Read AuthenticatorState from nonvolatile memory.
* @param s pointer to AuthenticatorState buffer to be overwritten with contents from NV memory.
* @return 0 - state stored is NOT initialized.
* 1 - state stored is initialized.
*
* *Optional* this is required to make persistant updates to FIDO2 State (PIN and device master secret).
* Without it, changes simply won't be persistant.
*/
int authenticator_read_state(AuthenticatorState * s);
void authenticator_read_backup_state(AuthenticatorState * );
// Return 1 yes backup is init'd, else 0
//void authenticator_initialize()
int authenticator_is_backup_initialized();
void authenticator_write_state(AuthenticatorState *, int backup);
// Called each main loop. Doesn't need to do anything.
void device_manage();
/** Store changes in the authenticator state to nonvolatile memory.
* @param s pointer to valid Authenticator state to write to NV memory.
*
* *Optional* this is required to make persistant updates to FIDO2 State (PIN and device master secret).
* Without it, changes simply won't be persistant.
*/
void authenticator_write_state(AuthenticatorState * s);
// sets status that's uses for sending status updates ~100ms.
// A timer should be set up to call `ctaphid_update_status`
/** Updates status of the status of the FIDO2 layer application, which
* can be used for polling updates in the USBHID layer.
*
* @param status is one of the following, which can be used appropriately by USB HID layer.
#define CTAPHID_STATUS_IDLE 0
#define CTAPHID_STATUS_PROCESSING 1
#define CTAPHID_STATUS_UPNEEDED 2
*
* *Optional* to compile and run, but will be required to be used for proper FIDO2 operation with some platforms.
*/
void device_set_status(uint32_t status);
// Returns if button is currently pressed
/** Returns true if button is currently pressed. Debouncing does not need to be handled. Should not block.
* @return 1 if button is currently pressed.
*
* *Optional* to compile and run, but just returns one by default.
*/
int device_is_button_pressed();
// Test for user presence
//
// Return 2 for disabled, 1 for user is present, 0 user not present, -1 if cancel is requested.
/** Test for user presence.
* Perform test that user is present. Returns status on user presence. This is used by FIDO and U2F layer
* to check if an operation should continue, or if the UP flag should be set.
*
* @param delay number of milliseconds to delay waiting for user before timeout.
*
* @return 2 - User presence is disabled. Operation should continue, but UP flag not set.
* 1 - User presence confirmed. Operation should continue, and UP flag is set.
* 0 - User presence is not confirmed. Operation should be denied.
* -1 - Operation was canceled. Do not continue, reset transaction state.
*
* *Optional*, the default implementation will return 1, unless a FIDO2 operation calls for no UP, where this will then return 2.
*/
int ctap_user_presence_test(uint32_t delay);
// Generate @num bytes of random numbers to @dest
// return 1 if success, error otherwise
/** Disable the next user presence test. This is called by FIDO2 layer when a transaction
* requests UP to be disabled. The next call to ctap_user_presence_test should return 2,
* and then UP should be enabled again.
*
* @param request_active indicate to activate (true) or disable (false) UP.
*
* *Optional*, the default implementation will provide expected behaviour with the default ctap_user_presence_test(...).
*/
void device_disable_up(bool request_active);
/** Generate random numbers. Random numbers should be good enough quality for
* cryptographic use.
*
* @param dst the buffer to write into.
* @param num the number of bytes to generate and write to dst.
*
* @return 1 if successful, or else the RNG failed.
*
* *Optional*, if not implemented, the random numbers will be from rand() and an error will be logged.
*/
int ctap_generate_rng(uint8_t * dst, size_t num);
// Increment atomic counter and return it.
// @param amount the amount to increase the counter by.
/** Increment an atomic (non-volatile) counter and return the value.
*
* @param amount a non-zero amount to increment the counter by.
*
* *Optional*, if not implemented, the counter will not be persistant.
*/
uint32_t ctap_atomic_count(uint32_t amount);
// Verify the user
// return 1 if user is verified, 0 if not
int ctap_user_verification(uint8_t arg);
// Must be implemented by application
// data is HID_MESSAGE_SIZE long in bytes
void ctaphid_write_block(uint8_t * data);
// Resident key
/** Delete all resident keys.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_reset_rk();
/** Return the maximum amount of resident keys that can be stored.
* @return max number of resident keys that can be stored, including already stored RK's.
*
* *Optional*, if not implemented, returns 50.
*/
uint32_t ctap_rk_size();
/** Store a resident key into an index between [ 0, ctap_rk_size() ).
* Storage should be in non-volatile memory.
*
* @param index between RK index range.
* @param rk pointer to valid rk structure that should be written to NV memory.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_store_rk(int index,CTAP_residentKey * rk);
/** Read a resident key from an index into memory
* @param index to read resident key from.
* @param rk pointer to resident key structure to write into with RK.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_load_rk(int index,CTAP_residentKey * rk);
/** Overwrite the RK located in index with a new RK.
* @param index to write resident key to.
* @param rk pointer to valid rk structure that should be written to NV memory, and replace existing RK there.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_overwrite_rk(int index,CTAP_residentKey * rk);
// For Solo hacker
void boot_solo_bootloader();
void boot_st_bootloader();
// HID wink command
/** Called by HID layer to indicate that a wink behavior should be performed.
* Should not block, and the wink behavior should occur in parallel to FIDO operations.
*
* *Optional*.
*/
void device_wink();
typedef enum {
@ -93,21 +170,50 @@ typedef enum {
DEVICE_FAST = 2,
} DEVICE_CLOCK_RATE;
// Set the clock rate for the device.
// Three modes are targetted for Solo.
// 0: Lowest clock rate for NFC.
// 1: fastest clock rate supported at a low power setting for NFC FIDO.
// 2: fastest clock rate. Generally for USB interface.
/**
* Set the clock rate for the device. This gets called only when the device is running in NFC mode.
* Before Register and authenticate operations, the clock rate will be set to (1), and otherwise back to (0).
* @param param
0: Lowest clock rate for NFC.
1: fastest clock rate supported at a low power setting for NFC FIDO.
2: fastest clock rate. Generally for USB interface.
* *Optional*, by default nothing happens.
*/
void device_set_clock_rate(DEVICE_CLOCK_RATE param);
// Returns NFC_IS_NA, NFC_IS_ACTIVE, or NFC_IS_AVAILABLE
#define NFC_IS_NA 0
#define NFC_IS_ACTIVE 1
#define NFC_IS_AVAILABLE 2
/** Returns NFC status of the device.
* @return 0 - NFC is not available.
* 1 - NFC is active, and is powering the chip for a transaction.
* 2 - NFC is available, but not currently being used.
*/
int device_is_nfc();
void device_disable_up(bool request_active);
void device_init_button();
/** Return pointer to attestation key.
* @return pointer to attestation private key, raw encoded. For P256, this is 32 bytes.
*/
uint8_t * device_get_attestation_key();
/** Read the device's attestation certificate into buffer @dst.
* @param dst the destination to write the certificate.
*
* The size of the certificate can be retrieved using `device_attestation_cert_der_get_size()`.
*/
void device_attestation_read_cert_der(uint8_t * dst);
/** Returns the size in bytes of attestation_cert_der.
* @return number of bytes in attestation_cert_der, not including any C string null byte.
*/
uint16_t device_attestation_cert_der_get_size();
/** Read the device's 16 byte AAGUID into a buffer.
* @param dst buffer to write 16 byte AAGUID into.
* */
void device_read_aaguid(uint8_t * dst);
#endif

41
fido2/example_app.h Normal file
View File

@ -0,0 +1,41 @@
// Copyright 2019 SoloKeys Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#ifndef SRC_APP_H_
#define SRC_APP_H_
#include <stdbool.h>
#define USING_DEV_BOARD
#define USING_PC
#define ENABLE_U2F
#define ENABLE_U2F_EXTENSIONS
//#define BRIDGE_TO_WALLET
void printing_init();
extern bool use_udp;
// 0xRRGGBB
#define LED_INIT_VALUE 0x000800
#define LED_WINK_VALUE 0x000008
#define LED_MAX_SCALER 30
#define LED_MIN_SCALER 1
// # of ms between each change in LED
#define HEARTBEAT_PERIOD 100
// Each LED channel will be multiplied by a integer between LED_MAX_SCALER
// and LED_MIN_SCALER to cause the slow pulse. E.g.
// #define LED_INIT_VALUE 0x301000
// #define LED_MAX_SCALER 30
// #define LED_MIN_SCALER 1
// #define HEARTBEAT_PERIOD 8
// Will pulse from 0x301000 to 0x903000 to 0x301000 ...
// Which will take ~8 * (30)*2 ms
#endif /* SRC_APP_H_ */

View File

@ -7,7 +7,10 @@
#ifndef _LOG_H
#define _LOG_H
#ifdef APP_CONFIG
#include APP_CONFIG
#endif
#include <stdint.h>
#ifndef DEBUG_LEVEL
@ -50,7 +53,7 @@ typedef enum
TAG_FILENO = (1UL << 31)
} LOG_TAG;
#if DEBUG_LEVEL > 0
#if defined(DEBUG_LEVEL) && DEBUG_LEVEL > 0
void set_logging_mask(uint32_t mask);
#define printf1(tag,fmt, ...) LOG(tag & ~(TAG_FILENO), NULL, 0, fmt, ##__VA_ARGS__)

View File

@ -299,14 +299,19 @@ static int16_t u2f_authenticate(struct u2f_authenticate_request * req, uint8_t c
static int16_t u2f_register(struct u2f_register_request * req)
{
uint8_t i[] = {0x0,U2F_EC_FMT_UNCOMPRESSED};
uint8_t cert[1024];
struct u2f_key_handle key_handle;
uint8_t pubkey[64];
uint8_t hash[32];
uint8_t * sig = (uint8_t*)req;
const uint16_t attest_size = attestation_cert_der_size;
const uint16_t attest_size = device_attestation_cert_der_get_size();
if (attest_size > sizeof(cert)){
printf2(TAG_ERR,"Certificate is too large for buffer\r\n");
return U2F_SW_INSUFFICIENT_MEMORY;
}
if ( ! ctap_user_presence_test(750))
{
@ -341,7 +346,8 @@ static int16_t u2f_register(struct u2f_register_request * req)
u2f_response_writeback(i,1);
u2f_response_writeback((uint8_t*)&key_handle,U2F_KEY_HANDLE_SIZE);
u2f_response_writeback(attestation_cert_der,attest_size);
device_attestation_read_cert_der(cert);
u2f_response_writeback(cert,attest_size);
dump_signature_der(sig);

9
fido2/version.mk Normal file
View File

@ -0,0 +1,9 @@
SOLO_VERSION_FULL?=$(shell git describe)
SOLO_VERSION:=$(shell python -c 'print("$(SOLO_VERSION_FULL)".split("-")[0])')
SOLO_VERSION_MAJ:=$(shell python -c 'print("$(SOLO_VERSION)".split(".")[0])')
SOLO_VERSION_MIN:=$(shell python -c 'print("$(SOLO_VERSION)".split(".")[1])')
SOLO_VERSION_PAT:=$(shell python -c 'print("$(SOLO_VERSION)".split(".")[2])')
SOLO_VERSION_FLAGS := -DSOLO_VERSION_MAJ=$(SOLO_VERSION_MAJ) -DSOLO_VERSION_MIN=$(SOLO_VERSION_MIN) \
-DSOLO_VERSION_PATCH=$(SOLO_VERSION_PAT) -DSOLO_VERSION=\"$(SOLO_VERSION_FULL)\"

View File

@ -1,14 +1,10 @@
#!/bin/bash -xe
version=$1
version=${1:-master}
export PREFIX=/opt/gcc-arm-none-eabi-8-2018-q4-major/bin/
export PREFIX=/opt/gcc-arm-none-eabi-8-2019-q3-update/bin/
cd /solo/targets/stm32l432
git fetch --tags
git checkout ${version}
git submodule update --init --recursive
version=$(git describe)
ls
make cbor
@ -16,13 +12,12 @@ out_dir="/builds"
function build() {
part=${1}
variant=${2}
output=${3:-${part}}
what="${part}-${variant}"
output=${2}
what="${part}"
make full-clean
make ${what}
make ${what} VERSION_FULL=${version}
out_hex="${what}-${version}.hex"
out_sha2="${what}-${version}.sha2"
@ -32,24 +27,27 @@ function build() {
cp ${out_hex} ${out_sha2} ${out_dir}
}
build bootloader nonverifying
build bootloader verifying
build firmware hacker solo
build firmware hacker-debug-1 solo
build firmware hacker-debug-2 solo
build firmware secure solo
build firmware secure-non-solokeys solo
build bootloader-nonverifying bootloader
build bootloader-verifying bootloader
build firmware solo
build firmware-debug-1 solo
build firmware-debug-2 solo
build firmware solo
pip install -U pip
pip install -U solo-python
cd ${out_dir}
bundle="bundle-hacker-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-${version}.hex ${bundle}.hex
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2
bundle="bundle-hacker-debug-1-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-debug-1-${version}.hex ${bundle}.hex
bundle="bundle-hacker-debug-2-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-debug-2-${version}.hex ${bundle}.hex
bundle="bundle-secure-non-solokeys-${version}"
/opt/conda/bin/solo mergehex bootloader-verifying-${version}.hex firmware-secure-non-solokeys-${version}.hex ${bundle}.hex
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-debug-1-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2
bundle="bundle-hacker-debug-2-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-debug-2-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2
bundle="bundle-secure-non-solokeys-${version}"
/opt/conda/bin/solo mergehex --lock bootloader-verifying-${version}.hex firmware-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2

View File

@ -15,8 +15,7 @@
"authenticationAlgorithm": 1,
"publicKeyAlgAndEncoding": 260,
"attestationTypes": [
15879,
15880
15879
],
"userVerificationDetails": [
[

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -18,6 +18,7 @@ nav:
- Application Ideas: solo/application-ideas.md
- Running on Nucleo32 board: solo/nucleo32-board.md
- Signed update process: solo/signed-updates.md
- Usage and Porting guide: solo/porting.md
- Code documentation: solo/code-overview.md
- Contributing Code: solo/contributing.md
- Contributing Docs: solo/documenting.md

View File

@ -11,7 +11,6 @@
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <time.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
@ -25,8 +24,7 @@
#define RK_NUM 50
bool use_udp = true;
static bool _up_disabled = false;
static bool use_udp = true;
struct ResidentKeyStore {
CTAP_residentKey rks[RK_NUM];
@ -34,21 +32,6 @@ struct ResidentKeyStore {
void authenticator_initialize();
uint32_t __device_status = 0;
void device_set_status(uint32_t status)
{
if (status != CTAPHID_STATUS_IDLE && __device_status != status)
{
ctaphid_update_status(status);
}
__device_status = status;
}
void device_reboot()
{
printf1(TAG_RED, "REBOOT command recieved!\r\n");
exit(100);
}
int udp_server()
{
@ -192,7 +175,6 @@ int usbhid_recv(uint8_t * msg)
return l;
}
// Send 64 byte USB HID message
void usbhid_send(uint8_t * msg)
{
if (use_udp)
@ -209,6 +191,8 @@ void usbhid_send(uint8_t * msg)
}
}
void usbhid_close()
{
close(fd);
@ -272,14 +256,6 @@ void device_init(int argc, char *argv[])
}
void main_loop_delay()
{
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 1000*1000*100;
nanosleep(&ts,NULL);
}
void delay(uint32_t ms)
{
struct timespec ts;
@ -289,40 +265,6 @@ void delay(uint32_t ms)
}
void heartbeat()
{
}
void ctaphid_write_block(uint8_t * data)
{
/*printf("<< "); dump_hex(data, 64);*/
usbhid_send(data);
}
int ctap_user_presence_test(uint32_t d)
{
if (_up_disabled)
{
return 2;
}
return 1;
}
int ctap_user_verification(uint8_t arg)
{
return 1;
}
uint32_t ctap_atomic_count(uint32_t amount)
{
static uint32_t counter1 = 25;
counter1 += (amount + 1);
return counter1;
}
int ctap_generate_rng(uint8_t * dst, size_t num)
{
int ret;
@ -344,10 +286,9 @@ int ctap_generate_rng(uint8_t * dst, size_t num)
const char * state_file = "authenticator_state.bin";
const char * backup_file = "authenticator_state2.bin";
const char * rk_file = "resident_keys.bin";
void authenticator_read_state(AuthenticatorState * state)
int authenticator_read_state(AuthenticatorState * state)
{
FILE * f;
int ret;
@ -366,104 +307,35 @@ void authenticator_read_state(AuthenticatorState * state)
perror("fwrite");
exit(1);
}
if (state->is_initialized == INITIALIZED_MARKER)
return 1;
else
return 0;
}
void authenticator_read_backup_state(AuthenticatorState * state )
void authenticator_write_state(AuthenticatorState * state)
{
FILE * f;
int ret;
f = fopen(backup_file, "rb");
f = fopen(state_file, "wb+");
if (f== NULL)
{
perror("fopen");
exit(1);
}
ret = fread(state, 1, sizeof(AuthenticatorState), f);
ret = fwrite(state, 1, sizeof(AuthenticatorState), f);
fclose(f);
if(ret != sizeof(AuthenticatorState))
{
perror("fwrite");
exit(1);
}
}
void authenticator_write_state(AuthenticatorState * state, int backup)
{
FILE * f;
int ret;
if (! backup)
{
f = fopen(state_file, "wb+");
if (f== NULL)
{
perror("fopen");
exit(1);
}
ret = fwrite(state, 1, sizeof(AuthenticatorState), f);
fclose(f);
if (ret != sizeof(AuthenticatorState))
{
perror("fwrite");
exit(1);
}
}
else
{
f = fopen(backup_file, "wb+");
if (f== NULL)
{
perror("fopen");
exit(1);
}
ret = fwrite(state, 1, sizeof(AuthenticatorState), f);
fclose(f);
if (ret != sizeof(AuthenticatorState))
{
perror("fwrite");
exit(1);
}
}
}
// Return 1 yes backup is init'd, else 0
int authenticator_is_backup_initialized()
{
uint8_t header[16];
AuthenticatorState * state = (AuthenticatorState*) header;
FILE * f;
int ret;
printf("state file exists\n");
f = fopen(backup_file, "rb");
if (f== NULL)
{
printf("Warning, backup file doesn't exist\n");
return 0;
}
ret = fread(header, 1, sizeof(header), f);
fclose(f);
if(ret != sizeof(header))
if (ret != sizeof(AuthenticatorState))
{
perror("fwrite");
exit(1);
}
return state->is_initialized == INITIALIZED_MARKER;
}
// Return 1 yes backup is init'd, else 0
/*int authenticator_is_initialized()*/
/*{*/
/*}*/
static void sync_rk()
{
@ -543,44 +415,18 @@ void authenticator_initialize()
exit(1);
}
f = fopen(backup_file, "wb+");
if (f== NULL)
{
perror("fopen");
exit(1);
}
mem = malloc(sizeof(AuthenticatorState));
memset(mem,0xff,sizeof(AuthenticatorState));
ret = fwrite(mem, 1, sizeof(AuthenticatorState), f);
free(mem);
fclose(f);
if (ret != sizeof(AuthenticatorState))
{
perror("fwrite");
exit(1);
}
// resident_keys
memset(&RK_STORE,0xff,sizeof(RK_STORE));
sync_rk();
}
}
void device_manage()
{
}
void ctap_reset_rk()
{
memset(&RK_STORE,0xff,sizeof(RK_STORE));
sync_rk();
}
uint32_t ctap_rk_size()
@ -622,22 +468,9 @@ void ctap_overwrite_rk(int index, CTAP_residentKey * rk)
}
}
void device_wink()
{
printf("*WINK*\n");
}
int device_is_nfc()
{
return 0;
}
void device_disable_up(bool disable)
{
_up_disabled = disable;
}
void device_set_clock_rate(DEVICE_CLOCK_RATE param)
{
}

View File

@ -9,6 +9,7 @@
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <time.h>
#include "cbor.h"
#include "device.h"
@ -17,9 +18,12 @@
#include "util.h"
#include "log.h"
#include "ctap.h"
#include APP_CONFIG
#include "app.h"
void device_init(int argc, char *argv[]);
int usbhid_recv(uint8_t * msg);
#if !defined(TEST)
int main(int argc, char *argv[])
@ -29,20 +33,21 @@ int main(int argc, char *argv[])
set_logging_mask(
/*0*/
//TAG_GEN|
// TAG_GEN|
// TAG_MC |
// TAG_GA |
TAG_WALLET |
TAG_STOR |
//TAG_NFC_APDU |
TAG_NFC |
//TAG_CP |
// TAG_CP |
// TAG_CTAP|
//TAG_HID|
// TAG_HID|
TAG_U2F|
//TAG_PARSE |
// TAG_PARSE |
//TAG_TIME|
// TAG_DUMP|
// TAG_DUMP2|
TAG_GREEN|
TAG_RED|
TAG_EXT|
@ -57,13 +62,6 @@ int main(int argc, char *argv[])
while(1)
{
if (millis() - t1 > HEARTBEAT_PERIOD)
{
heartbeat();
t1 = millis();
}
device_manage();
if (usbhid_recv(hidmsg) > 0)
{
@ -73,14 +71,16 @@ int main(int argc, char *argv[])
else
{
}
ctaphid_check_timeouts();
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 1000*1000*10;
nanosleep(&ts,NULL);
}
// Should never get here
usbhid_close();
printf1(TAG_GREEN, "done\n");
return 0;
}
#endif

View File

@ -2,8 +2,9 @@ ifndef DEBUG
DEBUG=0
endif
APPMAKE=build/application.mk
BOOTMAKE=build/bootloader.mk
VERSION_FULL?=$(shell git describe)
APPMAKE=build/application.mk VERSION_FULL=${VERSION_FULL}
BOOTMAKE=build/bootloader.mk VERSION_FULL=${VERSION_FULL}
merge_hex=solo mergehex
@ -12,20 +13,14 @@ merge_hex=solo mergehex
# The following are the main targets for reproducible builds.
# TODO: better explanation
firmware-hacker:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0'
firmware:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0
firmware-hacker-debug-1:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=1 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0'
firmware-debug-1:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=1
firmware-hacker-debug-2:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=2 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0'
firmware-secure-non-solokeys:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DFLASH_ROP=2'
firmware-secure:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DUSE_SOLOKEYS_CERT -DFLASH_ROP=2'
firmware-debug-2:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=2
bootloader-nonverifying:
$(MAKE) -f $(BOOTMAKE) -j8 bootloader.hex PREFIX=$(PREFIX) EXTRA_DEFINES='-DSOLO_HACKER' DEBUG=0
@ -95,7 +90,7 @@ flashboot: bootloader.hex
STM32_Programmer_CLI -c port=SWD -halt -d bootloader.hex -rst
flash-firmware:
arm-none-eabi-size -A solo.elf
$(SZ) -A solo.elf
solo program aux enter-bootloader
solo program bootloader solo.hex

View File

@ -50,12 +50,15 @@ typedef struct {
uint8_t payload[255 - 10];
} __attribute__((packed)) BootloaderReq;
uint8_t * last_written_app_address = 0;
/**
* Erase all application pages. **APPLICATION_END_PAGE excluded**.
*/
static void erase_application()
{
int page;
last_written_app_address = (uint8_t*) 0;
for(page = APPLICATION_START_PAGE; page < APPLICATION_END_PAGE; page++)
{
flash_erase_page(page);
@ -106,17 +109,20 @@ int is_bootloader_disabled()
uint32_t * auth = (uint32_t *)(AUTH_WORD_ADDR+4);
return *auth == 0;
}
uint8_t * last_written_app_address;
#include "version.h"
bool is_firmware_version_newer_or_equal()
{
if (last_written_app_address == 0) {
return false;
}
printf1(TAG_BOOT,"Current firmware version: %u.%u.%u.%u (%02x.%02x.%02x.%02x)\r\n",
current_firmware_version.major, current_firmware_version.minor, current_firmware_version.patch, current_firmware_version.reserved,
current_firmware_version.major, current_firmware_version.minor, current_firmware_version.patch, current_firmware_version.reserved
);
volatile version_t * new_version = ((volatile version_t *) last_written_app_address);
volatile version_t * new_version = ((volatile version_t *) (last_written_app_address-8+4));
printf1(TAG_BOOT,"Uploaded firmware version: %u.%u.%u.%u (%02x.%02x.%02x.%02x)\r\n",
new_version->major, new_version->minor, new_version->patch, new_version->reserved,
new_version->major, new_version->minor, new_version->patch, new_version->reserved
@ -170,6 +176,7 @@ int bootloader_bridge(int klen, uint8_t * keyh)
uint32_t addr = ((*((uint32_t*)req->addr)) & 0xffffff) | 0x8000000;
uint32_t * ptr = (uint32_t *)addr;
uint32_t current_address;
switch(req->op){
case BootWrite:
@ -196,9 +203,16 @@ int bootloader_bridge(int klen, uint8_t * keyh)
printf2(TAG_ERR, "Error, boot check bypassed\n");
exit(1);
}
current_address = addr + len;
if (current_address < (uint32_t) last_written_app_address) {
printf2(TAG_ERR, "Error, only ascending writes allowed.\n");
has_erased = 0;
return CTAP2_ERR_NOT_ALLOWED;
}
last_written_app_address = (uint8_t*) current_address;
// Do the actual write
flash_write((uint32_t)ptr,req->payload, len);
last_written_app_address = (uint8_t *)ptr + len - 8 + 4;
break;
case BootDone:
// Writing to flash finished. Request code validation.

View File

@ -9,7 +9,7 @@
#define _APP_H_
#include <stdint.h>
#include "version.h"
#include "solo.h"
#define DEBUG_UART USART1
#ifndef DEBUG_LEVEL
@ -21,6 +21,7 @@
#define BOOT_TO_DFU 0
#define SOLO 1
#define IS_BOOTLOADER 1
#define ENABLE_U2F_EXTENSIONS
@ -64,4 +65,9 @@ int is_authorized_to_boot();
int is_bootloader_disabled();
void bootloader_heartbeat();
// Return 1 if Solo is secure/locked.
int solo_is_locked();
#endif

View File

@ -46,9 +46,7 @@ int main()
{
uint8_t hidmsg[64];
uint32_t t1 = 0;
#ifdef SOLO_HACKER
uint32_t stboot_time = 0;
#endif
uint32_t boot = 1;
set_logging_mask(
@ -98,7 +96,6 @@ int main()
}
#ifdef SOLO_HACKER
if (!is_bootloader_disabled())
{
stboot_time = millis();
@ -108,7 +105,6 @@ int main()
goto start_bootloader;
}
}
#endif
if (is_authorized_to_boot() && (boot || is_bootloader_disabled()))
{
@ -119,9 +115,8 @@ int main()
printf1(TAG_RED,"Not authorized to boot (%08x == %08lx)\r\n", AUTH_WORD_ADDR, *(uint32_t*)AUTH_WORD_ADDR);
}
#ifdef SOLO_HACKER
start_bootloader:
#endif
SystemClock_Config();
init_gpio();
init_millisecond_timer(0);

View File

@ -2,14 +2,14 @@ include build/common.mk
# ST related
SRC = src/main.c src/init.c src/redirect.c src/flash.c src/rng.c src/led.c src/device.c
SRC += src/fifo.c src/crypto.c src/attestation.c src/nfc.c src/ams.c src/sense.c
SRC += src/fifo.c src/attestation.c src/nfc.c src/ams.c src/sense.c
SRC += src/startup_stm32l432xx.s src/system_stm32l4xx.c
SRC += $(DRIVER_LIBS) $(USB_LIB)
# FIDO2 lib
SRC += ../../fido2/apdu.c ../../fido2/util.c ../../fido2/u2f.c ../../fido2/test_power.c
SRC += ../../fido2/stubs.c ../../fido2/log.c ../../fido2/ctaphid.c ../../fido2/ctap.c
SRC += ../../fido2/ctap_parse.c ../../fido2/main.c
SRC += ../../fido2/ctap_parse.c ../../fido2/crypto.c
SRC += ../../fido2/version.c
SRC += ../../fido2/data_migration.c
SRC += ../../fido2/extensions/extensions.c ../../fido2/extensions/solo.c
@ -22,7 +22,9 @@ SRC += ../../crypto/cifra/src/sha512.c ../../crypto/cifra/src/blockwise.c
OBJ1=$(SRC:.c=.o)
OBJ=$(OBJ1:.s=.o)
INC = -Isrc/ -Isrc/cmsis/ -Ilib/ -Ilib/usbd/ -I../../fido2/ -I../../fido2/extensions
INC = -Isrc/ -Isrc/cmsis/ -Ilib/ -Ilib/usbd/
INC+= -I../../fido2/ -I../../fido2/extensions
INC += -I../../tinycbor/src -I../../crypto/sha256 -I../../crypto/micro-ecc
INC += -I../../crypto/tiny-AES-c
INC += -I../../crypto/cifra/src -I../../crypto/cifra/src/ext
@ -66,9 +68,6 @@ all: $(TARGET).elf
../../crypto/micro-ecc/uECC.o: ../../crypto/micro-ecc/uECC.c
$(CC) $^ $(HW) -O3 $(ECC_CFLAGS) -o $@
%.o: %.s
$(CC) $^ $(HW) -Os $(CFLAGS) -o $@
%.elf: $(OBJ)
$(CC) $^ $(HW) $(LDFLAGS) -o $@
@echo "Built version: $(VERSION_FLAGS)"

View File

@ -4,13 +4,14 @@ include build/common.mk
SRC = bootloader/main.c bootloader/bootloader.c
SRC += bootloader/pubkey_bootloader.c bootloader/version_check.c
SRC += src/init.c src/redirect.c src/flash.c src/rng.c src/led.c src/device.c
SRC += src/fifo.c src/crypto.c src/attestation.c src/sense.c
SRC += src/fifo.c src/attestation.c src/sense.c
SRC += src/startup_stm32l432xx.s src/system_stm32l4xx.c
SRC += $(DRIVER_LIBS) $(USB_LIB)
# FIDO2 lib
SRC += ../../fido2/util.c ../../fido2/u2f.c ../../fido2/extensions/extensions.c
SRC += ../../fido2/stubs.c ../../fido2/log.c ../../fido2/ctaphid.c ../../fido2/ctap.c
SRC += ../../fido2/crypto.c
# Crypto libs
SRC += ../../crypto/sha256/sha256.c ../../crypto/micro-ecc/uECC.c
@ -66,7 +67,7 @@ all: $(TARGET).elf
%.elf: $(OBJ)
$(CC) $^ $(HW) $(LDFLAGS) -o $@
arm-none-eabi-size $@
$(SZ) $@
%.hex: %.elf
$(CP) -O ihex $^ $(TARGET).hex

View File

@ -1,7 +1,10 @@
include ../../fido2/version.mk
CC=$(PREFIX)arm-none-eabi-gcc
CP=$(PREFIX)arm-none-eabi-objcopy
SZ=$(PREFIX)arm-none-eabi-size
AR=$(PREFIX)arm-none-eabi-ar
AS=$(PREFIX)arm-none-eabi-as
DRIVER_LIBS := lib/stm32l4xx_hal_pcd.c lib/stm32l4xx_hal_pcd_ex.c lib/stm32l4xx_ll_gpio.c \
lib/stm32l4xx_ll_rcc.c lib/stm32l4xx_ll_rng.c lib/stm32l4xx_ll_tim.c \
@ -13,17 +16,20 @@ USB_LIB := lib/usbd/usbd_cdc.c lib/usbd/usbd_cdc_if.c lib/usbd/usbd_composite.c
lib/usbd/usbd_ctlreq.c lib/usbd/usbd_desc.c lib/usbd/usbd_hid.c \
lib/usbd/usbd_ccid.c
VERSION:=$(shell git describe --abbrev=0 )
VERSION_FULL:=$(shell git describe)
VERSION_MAJ:=$(shell python -c 'print("$(VERSION)".split(".")[0])')
VERSION_MIN:=$(shell python -c 'print("$(VERSION)".split(".")[1])')
VERSION_PAT:=$(shell python -c 'print("$(VERSION)".split(".")[2])')
VERSION_FULL?=$(SOLO_VERSION_FULL)
VERSION:=$(SOLO_VERSION)
VERSION_MAJ:=$(SOLO_VERSION_MAJ)
VERSION_MIN:=$(SOLO_VERSION_MIN)
VERSION_PAT:=$(SOLO_VERSION_PAT)
VERSION_FLAGS= -DSOLO_VERSION_MAJ=$(VERSION_MAJ) -DSOLO_VERSION_MIN=$(VERSION_MIN) \
-DSOLO_VERSION_PATCH=$(VERSION_PAT) -DSOLO_VERSION=\"$(VERSION_FULL)\"
_all:
echo $(VERSION_FULL)
echo $(VERSION_MAJ)
echo $(VERSION_MIN)
echo $(VERSION_PAT)
echo $(SOLO_VERSION_FULL)
echo $(SOLO_VERSION_MAJ)
echo $(SOLO_VERSION_MIN)
echo $(SOLO_VERSION_PAT)
%.o: %.s
$(AS) -o $@ $^

View File

@ -8,6 +8,9 @@
#define _APP_H_
#include <stdint.h>
#include "version.h"
#include "solo.h"
#define SOLO
#define DEBUG_UART USART1
@ -46,6 +49,9 @@
void printing_init();
void hw_init(int lf);
// Return 1 if Solo is secure/locked.
int solo_is_locked();
//#define TEST
//#define TEST_POWER

View File

@ -5,12 +5,16 @@
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#include <stdint.h>
#include <string.h>
#include "crypto.h"
#include "memory_layout.h"
#include "device.h"
#include "sense.h"
#include "log.h"
#ifdef USE_SOLOKEYS_CERT
const uint8_t attestation_cert_der[] =
"\x30\x82\x02\xe1\x30\x82\x02\x88\xa0\x03\x02\x01\x02\x02\x01\x01\x30\x0a\x06\x08"
const uint8_t attestation_solo_cert_der[] =
"\x30\x82\x03\x03\x30\x82\x02\xaa\xa0\x03\x02\x01\x02\x02\x01\x01\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x81\x80\x31\x0b\x30\x09\x06\x03\x55\x04\x06"
"\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08\x4d\x61\x72\x79\x6c"
"\x61\x6e\x64\x31\x12\x30\x10\x06\x03\x55\x04\x0a\x0c\x09\x53\x6f\x6c\x6f\x20\x4b"
@ -18,42 +22,40 @@ const uint8_t attestation_cert_der[] =
"\x41\x31\x15\x30\x13\x06\x03\x55\x04\x03\x0c\x0c\x73\x6f\x6c\x6f\x6b\x65\x79\x73"
"\x2e\x63\x6f\x6d\x31\x21\x30\x1f\x06\x09\x2a\x86\x48\x86\xf7\x0d\x01\x09\x01\x16"
"\x12\x68\x65\x6c\x6c\x6f\x40\x73\x6f\x6c\x6f\x6b\x65\x79\x73\x2e\x63\x6f\x6d\x30"
"\x20\x17\x0d\x31\x38\x31\x31\x31\x31\x31\x32\x35\x32\x30\x30\x5a\x18\x0f\x32\x30"
"\x36\x38\x31\x30\x32\x39\x31\x32\x35\x32\x30\x30\x5a\x30\x81\x92\x31\x0b\x30\x09"
"\x20\x17\x0d\x31\x39\x31\x32\x30\x31\x31\x39\x32\x33\x34\x39\x5a\x18\x0f\x32\x30"
"\x36\x39\x31\x31\x31\x38\x31\x39\x32\x33\x34\x39\x5a\x30\x81\x91\x31\x0b\x30\x09"
"\x06\x03\x55\x04\x06\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08"
"\x4d\x61\x72\x79\x6c\x61\x6e\x64\x31\x12\x30\x10\x06\x03\x55\x04\x0a\x0c\x09\x53"
"\x6f\x6c\x6f\x20\x4b\x65\x79\x73\x31\x22\x30\x20\x06\x03\x55\x04\x0b\x0c\x19\x41"
"\x75\x74\x68\x65\x6e\x74\x69\x63\x61\x74\x6f\x72\x20\x41\x74\x74\x65\x73\x74\x61"
"\x74\x69\x6f\x6e\x31\x15\x30\x13\x06\x03\x55\x04\x03\x0c\x0c\x73\x6f\x6c\x6f\x6b"
"\x65\x79\x73\x2e\x63\x6f\x6d\x31\x21\x30\x1f\x06\x09\x2a\x86\x48\x86\xf7\x0d\x01"
"\x09\x01\x16\x12\x68\x65\x6c\x6c\x6f\x40\x73\x6f\x6c\x6f\x6b\x65\x79\x73\x2e\x63"
"\x6f\x6d\x30\x59\x30\x13\x06\x07\x2a\x86\x48\xce\x3d\x02\x01\x06\x08\x2a\x86\x48"
"\xce\x3d\x03\x01\x07\x03\x42\x00\x04\x22\xfe\x0f\xb5\x2a\x78\xbe\xc6\x45\x37\x1a"
"\x28\xa7\x57\x43\x49\xa4\x6f\x85\x4d\xca\x4e\x25\x1c\x9f\x75\x30\x3d\xbf\x10\xd5"
"\xd2\xd2\x0b\xb9\x69\x2c\xdd\xb2\x5c\x14\xd8\x39\x85\x12\xf6\x23\xee\x91\xba\xc6"
"\xac\xff\x4a\x1a\x27\xef\xe0\xc1\x54\x3f\xd4\xd9\xc5\xa3\x81\xdc\x30\x81\xd9\x30"
"\x1d\x06\x03\x55\x1d\x0e\x04\x16\x04\x14\x3b\xe6\xd2\xc0\x6f\xf2\xe7\xb0\x7c\x9d"
"\x9e\x28\xc0\x20\xb0\x0d\x07\xc8\x15\xc8\x30\x81\x9f\x06\x03\x55\x1d\x23\x04\x81"
"\x97\x30\x81\x94\xa1\x81\x86\xa4\x81\x83\x30\x81\x80\x31\x0b\x30\x09\x06\x03\x55"
"\x04\x06\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08\x4d\x61\x72"
"\x79\x6c\x61\x6e\x64\x31\x12\x30\x10\x06\x03\x55\x04\x0a\x0c\x09\x53\x6f\x6c\x6f"
"\x20\x4b\x65\x79\x73\x31\x10\x30\x0e\x06\x03\x55\x04\x0b\x0c\x07\x52\x6f\x6f\x74"
"\x20\x43\x41\x31\x15\x30\x13\x06\x03\x55\x04\x03\x0c\x0c\x73\x6f\x6c\x6f\x6b\x65"
"\x4d\x61\x72\x79\x6c\x61\x6e\x64\x31\x11\x30\x0f\x06\x03\x55\x04\x0a\x0c\x08\x53"
"\x6f\x6c\x6f\x4b\x65\x79\x73\x31\x22\x30\x20\x06\x03\x55\x04\x0b\x0c\x19\x41\x75"
"\x74\x68\x65\x6e\x74\x69\x63\x61\x74\x6f\x72\x20\x41\x74\x74\x65\x73\x74\x61\x74"
"\x69\x6f\x6e\x31\x15\x30\x13\x06\x03\x55\x04\x03\x0c\x0c\x73\x6f\x6c\x6f\x6b\x65"
"\x79\x73\x2e\x63\x6f\x6d\x31\x21\x30\x1f\x06\x09\x2a\x86\x48\x86\xf7\x0d\x01\x09"
"\x01\x16\x12\x68\x65\x6c\x6c\x6f\x40\x73\x6f\x6c\x6f\x6b\x65\x79\x73\x2e\x63\x6f"
"\x6d\x82\x09\x00\xc4\x47\x63\x92\x8f\xf4\xbe\x8c\x30\x09\x06\x03\x55\x1d\x13\x04"
"\x02\x30\x00\x30\x0b\x06\x03\x55\x1d\x0f\x04\x04\x03\x02\x04\xf0\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x03\x47\x00\x30\x44\x02\x20\x71\x10\x46\x2c\xf5"
"\x16\x18\x97\x55\xca\x64\x50\x3b\x69\xb2\xdf\x17\x71\xab\xad\x8e\xc0\xd6\xa6\x07"
"\x3d\x66\x8a\x3b\xbb\xfe\x61\x02\x20\x1e\x82\xef\xeb\x5e\x4e\x3a\x00\x84\x64\xd2"
"\xf8\x84\xc3\x78\x35\x93\x63\x81\x2e\xbe\xa6\x12\x32\x6e\x29\x90\xc8\x91\x4b\x71"
"\x52"
"\x6d\x30\x59\x30\x13\x06\x07\x2a\x86\x48\xce\x3d\x02\x01\x06\x08\x2a\x86\x48\xce"
"\x3d\x03\x01\x07\x03\x42\x00\x04\x22\xfe\x0f\xb5\x2a\x78\xbe\xc6\x45\x37\x1a\x28"
"\xa7\x57\x43\x49\xa4\x6f\x85\x4d\xca\x4e\x25\x1c\x9f\x75\x30\x3d\xbf\x10\xd5\xd2"
"\xd2\x0b\xb9\x69\x2c\xdd\xb2\x5c\x14\xd8\x39\x85\x12\xf6\x23\xee\x91\xba\xc6\xac"
"\xff\x4a\x1a\x27\xef\xe0\xc1\x54\x3f\xd4\xd9\xc5\xa3\x81\xff\x30\x81\xfc\x30\x1d"
"\x06\x03\x55\x1d\x0e\x04\x16\x04\x14\x3b\xe6\xd2\xc0\x6f\xf2\xe7\xb0\x7c\x9d\x9e"
"\x28\xc0\x20\xb0\x0d\x07\xc8\x15\xc8\x30\x81\x9f\x06\x03\x55\x1d\x23\x04\x81\x97"
"\x30\x81\x94\xa1\x81\x86\xa4\x81\x83\x30\x81\x80\x31\x0b\x30\x09\x06\x03\x55\x04"
"\x06\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08\x4d\x61\x72\x79"
"\x6c\x61\x6e\x64\x31\x12\x30\x10\x06\x03\x55\x04\x0a\x0c\x09\x53\x6f\x6c\x6f\x20"
"\x4b\x65\x79\x73\x31\x10\x30\x0e\x06\x03\x55\x04\x0b\x0c\x07\x52\x6f\x6f\x74\x20"
"\x43\x41\x31\x15\x30\x13\x06\x03\x55\x04\x03\x0c\x0c\x73\x6f\x6c\x6f\x6b\x65\x79"
"\x73\x2e\x63\x6f\x6d\x31\x21\x30\x1f\x06\x09\x2a\x86\x48\x86\xf7\x0d\x01\x09\x01"
"\x16\x12\x68\x65\x6c\x6c\x6f\x40\x73\x6f\x6c\x6f\x6b\x65\x79\x73\x2e\x63\x6f\x6d"
"\x82\x09\x00\xc4\x47\x63\x92\x8f\xf4\xbe\x8c\x30\x09\x06\x03\x55\x1d\x13\x04\x02"
"\x30\x00\x30\x0b\x06\x03\x55\x1d\x0f\x04\x04\x03\x02\x04\xf0\x30\x21\x06\x0b\x2b"
"\x06\x01\x04\x01\x82\xe5\x1c\x01\x01\x04\x04\x12\x04\x10\x88\x76\x63\x1b\xd4\xa0"
"\x42\x7f\x57\x73\x0e\xc7\x1c\x9e\x02\x79\x30\x0a\x06\x08\x2a\x86\x48\xce\x3d\x04"
"\x03\x02\x03\x47\x00\x30\x44\x02\x20\x4d\xea\x09\x15\x6c\x86\x48\x57\x2a\xa8\x8d"
"\x87\xc3\xfa\xb6\x6b\x29\x9b\xfb\x8b\x4d\x4d\x29\x77\x5b\xa1\x04\x4c\x7f\x12\x8d"
"\x71\x02\x20\x47\x4c\x3d\xb2\xa1\x74\xe3\x9c\xfe\xe1\x23\xbf\xec\x47\x96\xf4\xe5"
"\x9b\x65\x76\xac\xc8\x69\x1d\xe2\x74\xff\x4e\xa4\xcf\x02\x6d"
;
#else
// For testing/development only
const uint8_t attestation_cert_der[] =
const uint8_t attestation_hacker_cert_der[] =
"\x30\x82\x02\xe9\x30\x82\x02\x8e\xa0\x03\x02\x01\x02\x02\x01\x01\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x81\x82\x31\x0b\x30\x09\x06\x03\x55\x04\x06"
"\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08\x4d\x61\x72\x79\x6c"
@ -94,8 +96,36 @@ const uint8_t attestation_cert_der[] =
"\xf3\x87\x61\x82\xd8\xcd\x48\xfc\x57"
;
#endif
const uint16_t attestation_cert_der_size = sizeof(attestation_cert_der)-1;
const uint16_t attestation_solo_cert_der_size = sizeof(attestation_solo_cert_der)-1;
const uint16_t attestation_hacker_cert_der_size = sizeof(attestation_hacker_cert_der)-1;
const uint16_t attestation_key_size = 32;
uint8_t * device_get_attestation_key(){
flash_attestation_page * page =(flash_attestation_page *)ATTESTATION_PAGE_ADDR;
return page->attestation_key;
}
uint16_t device_attestation_cert_der_get_size(){
uint16_t sz = (uint16_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert_size;
return sz;
}
void device_attestation_read_cert_der(uint8_t * dst){
const uint8_t * der = ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert;
uint16_t sz = device_attestation_cert_der_get_size();
memmove(dst, der, sz);
// Overwrite respective x509 fields if Tap or Somu.
if (memcmp(dst + 0x2c6, "\xea\x09\x15\x6c\x86\x48\x57\x2a\xa8\x8d", 10) == 0){
if (device_is_nfc()){
dst[0x2a2] = 0x89;//tap aaguid byte
memmove(dst + 0xac, "\x34\x33\x38\x5a\x18\x0f\x32\x30\x36\x39\x31\x31\x31\x38\x31\x39\x32\x34\x33\x38", 20);//tap-id
memmove(dst + 0x2c5, "\x6d\x7b\x41\x2b\xff\x57\xf0\x03\xbd\x5b\x39\x4a\xf7\xa9\x2d\x6d\xcb\x9e\x2d\x88\xbf\xb3\x93\xc5\x66\x3b\xd1\xbc\x34\xfa\x5c\x4c\x02\x20\x59\x01\x49\x39\x1b\xb7\xa9\x1c\xed\x49\x78\x4f\x92\xa9\x61\x14\xa5\x6e\x96\x3f\x29\x02\x93\xe0\x5d\xe2\x75\xd0\x60\xd9\x74\xc2", 66);//tap-sig
} else if (tsc_sensor_exists()) {
dst[0x2a2] = 0x98;//somu aaguid byte
memmove(dst + 0xac, "\x35\x30\x32\x5a\x18\x0f\x32\x30\x36\x39\x31\x31\x31\x38\x31\x39\x32\x35\x30\x32", 20);//somu-id
memmove(dst + 0x2c5, "\x4d\x08\xc8\x9d\xc4\x50\x49\x70\x48\x4d\xd0\x12\xd9\x7c\x62\x5e\x6b\xd3\x84\xd5\x36\x42\xfe\x86\x8e\x7a\x23\x59\xa0\x20\xf0\xc5\x02\x20\x5f\x70\x93\x61\x5a\xe4\x20\xcf\xb9\x8a\xf5\xdd\x87\xd0\x48\x6d\x7d\x59\xef\x9e\x0e\x11\xa3\x8e\xf7\xe3\xe2\xf5\x35\x37\x99\x1a", 66);//somu-sig
}
}
}

View File

@ -1,368 +0,0 @@
// Copyright 2019 SoloKeys Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
/*
* Wrapper for crypto implementation on device
*
* */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#include "crypto.h"
#ifdef USE_SOFTWARE_IMPLEMENTATION
#include "sha256.h"
#include "uECC.h"
#include "aes.h"
#include "ctap.h"
#include "device.h"
// stuff for SHA512
#include "sha2.h"
#include "blockwise.h"
#include APP_CONFIG
#include "log.h"
#include "memory_layout.h"
typedef enum
{
MBEDTLS_ECP_DP_NONE = 0,
MBEDTLS_ECP_DP_SECP192R1, /*!< 192-bits NIST curve */
MBEDTLS_ECP_DP_SECP224R1, /*!< 224-bits NIST curve */
MBEDTLS_ECP_DP_SECP256R1, /*!< 256-bits NIST curve */
MBEDTLS_ECP_DP_SECP384R1, /*!< 384-bits NIST curve */
MBEDTLS_ECP_DP_SECP521R1, /*!< 521-bits NIST curve */
MBEDTLS_ECP_DP_BP256R1, /*!< 256-bits Brainpool curve */
MBEDTLS_ECP_DP_BP384R1, /*!< 384-bits Brainpool curve */
MBEDTLS_ECP_DP_BP512R1, /*!< 512-bits Brainpool curve */
MBEDTLS_ECP_DP_CURVE25519, /*!< Curve25519 */
MBEDTLS_ECP_DP_SECP192K1, /*!< 192-bits "Koblitz" curve */
MBEDTLS_ECP_DP_SECP224K1, /*!< 224-bits "Koblitz" curve */
MBEDTLS_ECP_DP_SECP256K1, /*!< 256-bits "Koblitz" curve */
} mbedtls_ecp_group_id;
static SHA256_CTX sha256_ctx;
static cf_sha512_context sha512_ctx;
static const struct uECC_Curve_t * _es256_curve = NULL;
static const uint8_t * _signing_key = NULL;
static int _key_len = 0;
// Secrets for testing only
static uint8_t master_secret[64];
static uint8_t transport_secret[32];
void crypto_sha256_init(void)
{
sha256_init(&sha256_ctx);
}
void crypto_sha512_init(void)
{
cf_sha512_init(&sha512_ctx);
}
void crypto_load_master_secret(uint8_t * key)
{
#if KEY_SPACE_BYTES < 96
#error "need more key bytes"
#endif
memmove(master_secret, key, 64);
memmove(transport_secret, key+64, 32);
}
void crypto_reset_master_secret(void)
{
memset(master_secret, 0, 64);
memset(transport_secret, 0, 32);
ctap_generate_rng(master_secret, 64);
ctap_generate_rng(transport_secret, 32);
}
void crypto_sha256_update(uint8_t * data, size_t len)
{
sha256_update(&sha256_ctx, data, len);
}
void crypto_sha512_update(const uint8_t * data, size_t len) {
cf_sha512_update(&sha512_ctx, data, len);
}
void crypto_sha256_update_secret()
{
sha256_update(&sha256_ctx, master_secret, 32);
}
void crypto_sha256_final(uint8_t * hash)
{
sha256_final(&sha256_ctx, hash);
}
void crypto_sha512_final(uint8_t * hash)
{
// NB: there is also cf_sha512_digest
cf_sha512_digest_final(&sha512_ctx, hash);
}
void crypto_sha256_hmac_init(uint8_t * key, uint32_t klen, uint8_t * hmac)
{
uint8_t buf[64];
unsigned int i;
memset(buf, 0, sizeof(buf));
if (key == CRYPTO_MASTER_KEY)
{
key = master_secret;
klen = sizeof(master_secret)/2;
}
else if (key == CRYPTO_TRANSPORT_KEY)
{
key = transport_secret;
klen = 32;
}
if(klen > 64)
{
printf2(TAG_ERR, "Error, key size must be <= 64\n");
exit(1);
}
memmove(buf, key, klen);
for (i = 0; i < sizeof(buf); i++)
{
buf[i] = buf[i] ^ 0x36;
}
crypto_sha256_init();
crypto_sha256_update(buf, 64);
}
void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac)
{
uint8_t buf[64];
unsigned int i;
crypto_sha256_final(hmac);
memset(buf, 0, sizeof(buf));
if (key == CRYPTO_MASTER_KEY)
{
key = master_secret;
klen = sizeof(master_secret)/2;
}
else if (key == CRYPTO_TRANSPORT_KEY2)
{
key = transport_secret;
klen = 32;
}
if(klen > 64)
{
printf2(TAG_ERR, "Error, key size must be <= 64\n");
exit(1);
}
memmove(buf, key, klen);
for (i = 0; i < sizeof(buf); i++)
{
buf[i] = buf[i] ^ 0x5c;
}
crypto_sha256_init();
crypto_sha256_update(buf, 64);
crypto_sha256_update(hmac, 32);
crypto_sha256_final(hmac);
}
void crypto_ecc256_init(void)
{
uECC_set_rng((uECC_RNG_Function)ctap_generate_rng);
_es256_curve = uECC_secp256r1();
}
void crypto_ecc256_load_attestation_key(void)
{
static uint8_t _key [32];
memmove(_key, (uint8_t*)ATTESTATION_KEY_ADDR, 32);
_signing_key = _key;
_key_len = 32;
}
void crypto_ecc256_sign(uint8_t * data, int len, uint8_t * sig)
{
if ( uECC_sign(_signing_key, data, len, sig, _es256_curve) == 0)
{
printf2(TAG_ERR, "error, uECC failed\n");
exit(1);
}
}
void crypto_ecc256_load_key(uint8_t * data, int len, uint8_t * data2, int len2)
{
static uint8_t privkey[32];
generate_private_key(data,len,data2,len2,privkey);
_signing_key = privkey;
_key_len = 32;
}
void crypto_ecdsa_sign(uint8_t * data, int len, uint8_t * sig, int MBEDTLS_ECP_ID)
{
const struct uECC_Curve_t * curve = NULL;
switch(MBEDTLS_ECP_ID)
{
case MBEDTLS_ECP_DP_SECP192R1:
curve = uECC_secp192r1();
if (_key_len != 24) goto fail;
break;
case MBEDTLS_ECP_DP_SECP224R1:
curve = uECC_secp224r1();
if (_key_len != 28) goto fail;
break;
case MBEDTLS_ECP_DP_SECP256R1:
curve = uECC_secp256r1();
if (_key_len != 32) goto fail;
break;
case MBEDTLS_ECP_DP_SECP256K1:
curve = uECC_secp256k1();
if (_key_len != 32) goto fail;
break;
default:
printf2(TAG_ERR, "error, invalid ECDSA alg specifier\n");
exit(1);
}
if ( uECC_sign(_signing_key, data, len, sig, curve) == 0)
{
printf2(TAG_ERR, "error, uECC failed\n");
exit(1);
}
return;
fail:
printf2(TAG_ERR, "error, invalid key length\n");
exit(1);
}
void generate_private_key(uint8_t * data, int len, uint8_t * data2, int len2, uint8_t * privkey)
{
crypto_sha256_hmac_init(CRYPTO_MASTER_KEY, 0, privkey);
crypto_sha256_update(data, len);
crypto_sha256_update(data2, len2);
crypto_sha256_update(master_secret, 32); // TODO AES
crypto_sha256_hmac_final(CRYPTO_MASTER_KEY, 0, privkey);
crypto_aes256_init(master_secret + 32, NULL);
crypto_aes256_encrypt(privkey, 32);
}
/*int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve);*/
void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8_t * y)
{
uint8_t privkey[32];
uint8_t pubkey[64];
generate_private_key(data,len,NULL,0,privkey);
memset(pubkey,0,sizeof(pubkey));
uECC_compute_public_key(privkey, pubkey, _es256_curve);
memmove(x,pubkey,32);
memmove(y,pubkey+32,32);
}
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len)
{
_signing_key = key;
_key_len = len;
}
void crypto_ecc256_make_key_pair(uint8_t * pubkey, uint8_t * privkey)
{
if (uECC_make_key(pubkey, privkey, _es256_curve) != 1)
{
printf2(TAG_ERR, "Error, uECC_make_key failed\n");
exit(1);
}
}
void crypto_ecc256_shared_secret(const uint8_t * pubkey, const uint8_t * privkey, uint8_t * shared_secret)
{
if (uECC_shared_secret(pubkey, privkey, shared_secret, _es256_curve) != 1)
{
printf2(TAG_ERR, "Error, uECC_shared_secret failed\n");
exit(1);
}
}
struct AES_ctx aes_ctx;
void crypto_aes256_init(uint8_t * key, uint8_t * nonce)
{
if (key == CRYPTO_TRANSPORT_KEY)
{
AES_init_ctx(&aes_ctx, transport_secret);
}
else
{
AES_init_ctx(&aes_ctx, key);
}
if (nonce == NULL)
{
memset(aes_ctx.Iv, 0, 16);
}
else
{
memmove(aes_ctx.Iv, nonce, 16);
}
}
// prevent round key recomputation
void crypto_aes256_reset_iv(uint8_t * nonce)
{
if (nonce == NULL)
{
memset(aes_ctx.Iv, 0, 16);
}
else
{
memmove(aes_ctx.Iv, nonce, 16);
}
}
void crypto_aes256_decrypt(uint8_t * buf, int length)
{
AES_CBC_decrypt_buffer(&aes_ctx, buf, length);
}
void crypto_aes256_encrypt(uint8_t * buf, int length)
{
AES_CBC_encrypt_buffer(&aes_ctx, buf, length);
}
#else
#error "No crypto implementation defined"
#endif

View File

@ -34,6 +34,8 @@
#define LOW_FREQUENCY 1
#define HIGH_FREQUENCY 0
#define SOLO_FLAG_LOCKED 0x2
void wait_for_usb_tether(void);
@ -191,7 +193,113 @@ void device_init_button(void)
}
}
void device_init(int argc, char *argv[])
int solo_is_locked(){
uint64_t device_settings = ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings;
uint32_t tag = (uint32_t)(device_settings >> 32ull);
return tag == ATTESTATION_CONFIGURED_TAG && (device_settings & SOLO_FLAG_LOCKED) != 0;
}
// Locks solo flash from debugging. Locks on next reboot.
// This should be removed in next Solo release.
void solo_lock_if_not_already() {
uint8_t buf[2048];
memmove(buf, (uint8_t*)ATTESTATION_PAGE_ADDR, 2048);
((flash_attestation_page *)buf)->device_settings |= SOLO_FLAG_LOCKED;
flash_erase_page(ATTESTATION_PAGE);
flash_write(ATTESTATION_PAGE_ADDR, buf, 2048);
}
/** device_migrate
* Depending on version of device, migrates:
* * Moves attestation certificate to data segment.
* * Creates locked variable and stores in data segment.
*
* Once in place, this allows all devices to accept same firmware,
* rather than using "hacker" and "secure" builds.
*/
static void device_migrate(){
extern const uint16_t attestation_solo_cert_der_size;
extern const uint16_t attestation_hacker_cert_der_size;
extern uint8_t attestation_solo_cert_der[];
extern uint8_t attestation_hacker_cert_der[];
uint64_t device_settings = ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings;
uint32_t configure_tag = (uint32_t)(device_settings >> 32);
if (configure_tag != ATTESTATION_CONFIGURED_TAG)
{
printf1(TAG_RED,"Migrating certificate and lock information to data segment.\r\n");
device_settings = ATTESTATION_CONFIGURED_TAG;
device_settings <<= 32;
// Read current device lock level.
uint32_t optr = FLASH->OPTR;
if ((optr & 0xff) != 0xAA){
device_settings |= SOLO_FLAG_LOCKED;
}
uint8_t tmp_attestation_key[32];
memmove(tmp_attestation_key,
((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_key,
32);
flash_erase_page(ATTESTATION_PAGE);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_key,
tmp_attestation_key,
32
);
// Check if this is Solo Hacker attestation (not confidential)
// then write solo or hacker attestation cert to flash page.
uint8_t solo_hacker_attestation_key[32] = "\x1b\x26\x26\xec\xc8\xf6\x9b\x0f\x69\xe3\x4f"
"\xb2\x36\xd7\x64\x66\xba\x12\xac\x16\xc3\xab"
"\x57\x50\xba\x06\x4e\x8b\x90\xe0\x24\x48";
if (memcmp(solo_hacker_attestation_key,
tmp_attestation_key,
32) == 0)
{
printf1(TAG_GREEN,"Updating solo hacker cert\r\n");
flash_write_dword(
(uint32_t)&((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert_size,
(uint64_t)attestation_hacker_cert_der_size
);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert,
attestation_hacker_cert_der,
attestation_hacker_cert_der_size
);
}
else
{
printf1(TAG_GREEN,"Updating solo secure cert\r\n");
flash_write_dword(
(uint32_t)&((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert_size,
(uint64_t)attestation_solo_cert_der_size
);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert,
attestation_solo_cert_der,
attestation_solo_cert_der_size
);
}
// Save / done.
flash_write_dword(
(uint32_t) & ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings,
(uint64_t)device_settings);
}
}
void device_init()
{
hw_init(LOW_FREQUENCY);
@ -219,6 +327,8 @@ void device_init(int argc, char *argv[])
ctaphid_init();
ctap_init();
device_migrate();
#if BOOT_TO_DFU
flash_option_bytes_init(1);
#else
@ -372,20 +482,8 @@ void heartbeat(void)
}
void authenticator_read_state(AuthenticatorState * a)
{
uint32_t * ptr = (uint32_t *)flash_addr(STATE1_PAGE);
memmove(a,ptr,sizeof(AuthenticatorState));
}
void authenticator_read_backup_state(AuthenticatorState * a)
{
uint32_t * ptr = (uint32_t *)flash_addr(STATE2_PAGE);
memmove(a,ptr,sizeof(AuthenticatorState));
}
// Return 1 yes backup is init'd, else 0
int authenticator_is_backup_initialized(void)
static int authenticator_is_backup_initialized(void)
{
uint8_t header[16];
uint32_t * ptr = (uint32_t *)flash_addr(STATE2_PAGE);
@ -394,20 +492,35 @@ int authenticator_is_backup_initialized(void)
return state->is_initialized == INITIALIZED_MARKER;
}
void authenticator_write_state(AuthenticatorState * a, int backup)
int authenticator_read_state(AuthenticatorState * a)
{
if (! backup)
{
flash_erase_page(STATE1_PAGE);
uint32_t * ptr = (uint32_t *) flash_addr(STATE1_PAGE);
memmove(a, ptr, sizeof(AuthenticatorState));
flash_write(flash_addr(STATE1_PAGE), (uint8_t*)a, sizeof(AuthenticatorState));
}
else
{
flash_erase_page(STATE2_PAGE);
if (a->is_initialized != INITIALIZED_MARKER){
flash_write(flash_addr(STATE2_PAGE), (uint8_t*)a, sizeof(AuthenticatorState));
if (authenticator_is_backup_initialized()){
printf1(TAG_ERR,"Warning: memory corruption detected. restoring from backup..\n");
ptr = (uint32_t *) flash_addr(STATE2_PAGE);
memmove(a, ptr, sizeof(AuthenticatorState));
authenticator_write_state(a);
return 1;
}
return 0;
}
return 1;
}
void authenticator_write_state(AuthenticatorState * a)
{
flash_erase_page(STATE1_PAGE);
flash_write(flash_addr(STATE1_PAGE), (uint8_t*)a, sizeof(AuthenticatorState));
flash_erase_page(STATE2_PAGE);
flash_write(flash_addr(STATE2_PAGE), (uint8_t*)a, sizeof(AuthenticatorState));
}
#if !defined(IS_BOOTLOADER)
@ -656,11 +769,6 @@ int ctap_generate_rng(uint8_t * dst, size_t num)
}
int ctap_user_verification(uint8_t arg)
{
return 1;
}
void ctap_reset_rk(void)
{
int i;
@ -765,6 +873,17 @@ void boot_solo_bootloader(void)
}
void device_read_aaguid(uint8_t * dst){
uint8_t * aaguid = (uint8_t *)"\x88\x76\x63\x1b\xd4\xa0\x42\x7f\x57\x73\x0e\xc7\x1c\x9e\x02\x79";
memmove(dst, aaguid, 16);
if (device_is_nfc()){
dst[0] = 0x89;
}
else if (tsc_sensor_exists()){
dst[0] = 0x98;
}
dump_hex1(TAG_GREEN,dst, 16);
}
void _Error_Handler(char *file, int line)

View File

@ -31,21 +31,18 @@ static void flash_unlock(void)
// Locks flash and turns off DFU
void flash_option_bytes_init(int boot_from_dfu)
{
#ifndef FLASH_ROP
#define FLASH_ROP 0
#endif
#if FLASH_ROP == 0
uint32_t val = 0xfffff8aa;
#elif FLASH_ROP == 2
uint32_t val = 0xfffff8cc;
#else
uint32_t val = 0xfffff8b9;
#endif
if (boot_from_dfu)
{
if (boot_from_dfu){
val &= ~(1<<27); // nBOOT0 = 0 (boot from system rom)
}
else {
if (solo_is_locked())
{
val = 0xfffff8cc;
}
}
val &= ~(1<<26); // nSWBOOT0 = 0 (boot from nBoot0)
val &= ~(1<<25); // SRAM2_RST = 1 (erase sram on reset)
val &= ~(1<<24); // SRAM2_PE = 1 (parity check en)

View File

@ -146,12 +146,14 @@ void device_set_clock_rate(DEVICE_CLOCK_RATE param)
case DEVICE_LOW_POWER_IDLE:
SET_CLOCK_RATE0();
break;
#if !defined(IS_BOOTLOADER)
case DEVICE_LOW_POWER_FAST:
SET_CLOCK_RATE1();
break;
case DEVICE_FAST:
SET_CLOCK_RATE2();
break;
#endif
}
}

View File

@ -4,105 +4,83 @@
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "stm32l4xx.h"
#include "stm32l4xx_ll_gpio.h"
#include "stm32l4xx_ll_rcc.h"
#include "stm32l4xx_ll_system.h"
#include "stm32l4xx_ll_pwr.h"
#include "stm32l4xx_ll_utils.h"
#include "stm32l4xx_ll_cortex.h"
#include "stm32l4xx_ll_gpio.h"
#include "stm32l4xx_ll_usart.h"
#include "stm32l4xx_ll_bus.h"
#include "stm32l4xx_ll_usb.h"
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include "stm32l4xx_hal_pcd.h"
#include "usbd_core.h"
#include "usbd_desc.h"
#include "usbd_hid.h"
/*#include "usbd_hid.h"*/
#include APP_CONFIG
#include "flash.h"
#include "rng.h"
#include "led.h"
#include "cbor.h"
#include "device.h"
#include "ctaphid.h"
//#include "bsp.h"
#include "util.h"
#include "fifo.h"
#include "log.h"
#include "ctap.h"
#include APP_CONFIG
#ifdef TEST_SOLO_STM32
#define Error_Handler() _Error_Handler(__FILE__,__LINE__)
#define PAGE_SIZE 2048
#define PAGES 128
// Pages 119-127 are data
#define COUNTER2_PAGE (PAGES - 4)
#define COUNTER1_PAGE (PAGES - 3)
#define STATE2_PAGE (PAGES - 2)
#define STATE1_PAGE (PAGES - 1)
#if !defined(TEST)
uint32_t __90_ms = 0;
#define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN))
// Timer6 overflow handler. happens every ~90ms.
void TIM6_DAC_IRQHandler()
int main(int argc, char *argv[])
{
// timer is only 16 bits, so roll it over here
TIM6->SR = 0;
__90_ms += 1;
}
uint8_t hidmsg[64];
uint32_t t1 = 0;
set_logging_mask(
/*0*/
//TAG_GEN|
// TAG_MC |
// TAG_GA |
TAG_WALLET |
TAG_STOR |
//TAG_NFC_APDU |
TAG_NFC |
//TAG_CP |
// TAG_CTAP|
//TAG_HID|
TAG_U2F|
//TAG_PARSE |
//TAG_TIME|
// TAG_DUMP|
TAG_GREEN|
TAG_RED|
TAG_EXT|
TAG_CCID|
TAG_ERR
);
device_init(argc, argv);
memset(hidmsg,0,sizeof(hidmsg));
uint32_t millis(void)
{
return (((uint32_t)TIM6->CNT) + (__90_ms * 90));
}
void _Error_Handler(char *file, int line)
{
while(1)
{
}
}
int main(void)
{
uint32_t i = 5;
hw_init();
LL_GPIO_SetPinMode(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinPull(SOLO_BUTTON_PORT,SOLO_BUTTON_PIN,LL_GPIO_PULL_UP);
flash_option_bytes_init(1);
while (1)
{
uint32_t t0 = millis() % 750;
if (! IS_BUTTON_PRESSED())
if (millis() - t1 > HEARTBEAT_PERIOD)
{
if (t0 < 750*1/3)
{
led_rgb(0 | (0 << 8) | (i << 17));
}
else if (t0 < 750*2/3)
{
led_rgb(0 | (i << 8) | (0 << 16));
}
else
{
led_rgb(i | (0 << 8) | (0 << 16));
}
heartbeat();
t1 = millis();
}
device_manage();
if (usbhid_recv(hidmsg) > 0)
{
ctaphid_handle_packet(hidmsg);
memset(hidmsg, 0, sizeof(hidmsg));
}
else
{
led_rgb(0x151515);
}
ctaphid_check_timeouts();
}
// Should never get here
usbhid_close();
printf1(TAG_GREEN, "done\n");
return 0;
}
#endif
#endif

View File

@ -17,8 +17,11 @@
#define COUNTER1_PAGE (PAGES - 3)
// State of FIDO2 application
#define STATE2_PAGE (PAGES - 2)
#define STATE1_PAGE (PAGES - 1)
#define STATE2_PAGE (PAGES - 2)
#define STATE1_PAGE (PAGES - 1)
#define STATE1_PAGE_ADDR (0x08000000 + ((STATE1_PAGE)*PAGE_SIZE))
#define STATE2_PAGE_ADDR (0x08000000 + ((STATE2_PAGE)*PAGE_SIZE))
// Storage of FIDO2 resident keys
#define RK_NUM_PAGES 10
@ -32,8 +35,8 @@
#define APPLICATION_START_ADDR (0x08000000 + ((APPLICATION_START_PAGE)*PAGE_SIZE))
// where attestation key is located
#define ATTESTATION_KEY_PAGE (PAGES - 15)
#define ATTESTATION_KEY_ADDR (0x08000000 + ATTESTATION_KEY_PAGE*PAGE_SIZE)
#define ATTESTATION_PAGE (PAGES - 15)
#define ATTESTATION_PAGE_ADDR (0x08000000 + ATTESTATION_PAGE*PAGE_SIZE)
// End of application code. Leave some extra room for future data storage.
// NOT included in application
@ -48,7 +51,6 @@
#define BOOT_VERSION_ADDR (0x08000000 + BOOT_VERSION_PAGE*FLASH_PAGE_SIZE + 8)
#define LAST_PAGE (APPLICATION_END_PAGE-1)
struct flash_memory_st{
uint8_t bootloader[APPLICATION_START_PAGE*2*1024];
uint8_t application[(APPLICATION_END_PAGE-APPLICATION_START_PAGE)*2*1024-8];
@ -65,5 +67,19 @@ typedef struct flash_memory_st flash_memory_st;
#include <assert.h>
static_assert(sizeof(flash_memory_st) == 256*1024, "Data structure doesn't match flash size");
#define ATTESTATION_CONFIGURED_TAG 0xaa551e79
struct flash_attestation_page{
uint8_t attestation_key[32];
// DWORD padded.
uint64_t device_settings;
uint64_t attestation_cert_size;
uint8_t attestation_cert[2048 - 32 - 8 - 8];
} __attribute__((packed));
typedef struct flash_attestation_page flash_attestation_page;
static_assert(sizeof(flash_attestation_page) == 2048, "Data structure doesn't match flash size");
#endif

View File

@ -0,0 +1,25 @@
#ifndef _SOLO_H_
#define _SOLO_H_
void device_init();
void main_loop_delay();
void usbhid_init();
void usbhid_close();
int usbhid_recv(uint8_t * msg);
void heartbeat();
// Called each main loop. Doesn't need to do anything.
void device_manage();
void device_init_button();
// For Solo hacker
void boot_solo_bootloader();
void boot_st_bootloader();
void delay(uint32_t ms);
#endif

View File

@ -1,5 +1,4 @@
ecdsa
fido2
intelhex
pyserial
solo-python