Compare commits

...

27 Commits

Author SHA1 Message Date
abe306a649 Merge branch 'master' of github.com:solokeys/solo 2019-08-23 14:53:22 +08:00
41ceb78f6c add user presence to flags 2019-08-23 14:48:21 +08:00
8e192f2363 do not delay bootloader 2019-08-23 14:41:26 +08:00
affc256ca2 add delay to cap button improve reliability 2019-08-23 14:41:26 +08:00
b3ac739a35 make touch sensor edge based to avoid approving >1 transaction 2019-08-23 13:44:06 +08:00
3b53537077 refactor fido2 user presence handling & increase timeout to 29s 2019-08-23 13:19:28 +08:00
3fad9a7a7d add response to reset command and delete debug 2019-08-23 10:43:09 +08:00
8973608f59 docs: update .all-contributorsrc 2019-08-22 22:42:17 +02:00
8af6505f6d docs: update README.md 2019-08-22 22:42:17 +02:00
d39d7978fd small fix 2019-08-22 21:04:01 +08:00
c972a13034 fix reboot 2019-08-22 20:55:25 +08:00
a95e62e2ea reset 2019-08-22 20:55:25 +08:00
c79b7abfb6 add reset placeholder 2019-08-22 20:55:25 +08:00
dfb124dc8b refactoring 2019-08-22 20:55:12 +08:00
972760eb78 added APDU input chaining 2019-08-22 20:55:12 +08:00
0d621d13f9 fix decoding apdu 2019-08-22 20:55:12 +08:00
728acc1671 chaining not needs to go to the start 2019-08-21 12:13:16 +08:00
62b4418dac fix pck length math 2019-08-21 12:13:16 +08:00
8059a9765f was wrong buffer 2019-08-21 12:13:16 +08:00
b743d5fac5 sketch 2019-08-21 12:13:16 +08:00
dccfb0d1b3 stub pc build 2019-08-21 12:06:06 +08:00
a72f0ede05 take a lazy approach to key agreement generation to not hold up boot time for nfc 2019-08-21 12:06:06 +08:00
adcbd3aeb8 speed up public key derivation slightly for nfc 2019-08-21 12:06:06 +08:00
d931954a13 remove WTX, move debug log 2019-08-21 12:06:06 +08:00
b706cc30b0 for now, always gen key agreement 2019-08-21 12:06:06 +08:00
57fe39704b Merge pull request #282 from solokeys/update-udev-docs
Update udev docs
2019-08-21 02:48:33 +02:00
4b6619b705 Update udev docs 2019-08-21 02:37:15 +02:00
15 changed files with 312 additions and 117 deletions

View File

@ -168,6 +168,16 @@
"infra",
"tool"
]
},
{
"login": "kimusan",
"name": "Kim Schulz",
"avatar_url": "https://avatars1.githubusercontent.com/u/1150049?v=4",
"profile": "http://www.schulz.dk",
"contributions": [
"business",
"ideas"
]
}
],
"contributorsPerLine": 7,

View File

@ -134,6 +134,7 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
<td align="center"><a href="http://1bitsquared.com"><img src="https://avatars3.githubusercontent.com/u/17334?v=4" width="100px;" alt="Piotr Esden-Tempski"/><br /><sub><b>Piotr Esden-Tempski</b></sub></a><br /><a href="#business-esden" title="Business development">💼</a></td>
<td align="center"><a href="https://github.com/m3hm00d"><img src="https://avatars1.githubusercontent.com/u/42179593?v=4" width="100px;" alt="f.m3hm00d"/><br /><sub><b>f.m3hm00d</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=m3hm00d" title="Documentation">📖</a></td>
<td align="center"><a href="http://blogs.gnome.org/hughsie/"><img src="https://avatars0.githubusercontent.com/u/151380?v=4" width="100px;" alt="Richard Hughes"/><br /><sub><b>Richard Hughes</b></sub></a><br /><a href="#ideas-hughsie" title="Ideas, Planning, & Feedback">🤔</a> <a href="https://github.com/solokeys/solo/commits?author=hughsie" title="Code">💻</a> <a href="#infra-hughsie" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="#tool-hughsie" title="Tools">🔧</a></td>
<td align="center"><a href="http://www.schulz.dk"><img src="https://avatars1.githubusercontent.com/u/1150049?v=4" width="100px;" alt="Kim Schulz"/><br /><sub><b>Kim Schulz</b></sub></a><br /><a href="#business-kimusan" title="Business development">💼</a> <a href="#ideas-kimusan" title="Ideas, Planning, & Feedback">🤔</a></td>
</tr>
</table>
@ -167,7 +168,7 @@ You can buy Solo, Solo Tap, and Solo for Hackers at [solokeys.com](https://solok
<br/>
[![License](https://img.shields.io/github/license/solokeys/solo.svg)](https://github.com/solokeys/solo/blob/master/LICENSE)
[![All Contributors](https://img.shields.io/badge/all_contributors-17-orange.svg?style=flat-square)](#contributors)
[![All Contributors](https://img.shields.io/badge/all_contributors-18-orange.svg?style=flat-square)](#contributors)
[![Build Status](https://travis-ci.com/solokeys/solo.svg?branch=master)](https://travis-ci.com/solokeys/solo)
[![Discourse Users](https://img.shields.io/discourse/https/discourse.solokeys.com/users.svg)](https://discourse.solokeys.com)
[![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public)

View File

@ -1,20 +1,21 @@
# Summary
On Linux, by default USB dongles can't be accessed by users, for security reasons. To allow user access, so-called "udev rules" must be installed. (Under Fedora, your key may work without such a rule.)
On Linux, by default USB dongles can't be accessed by users, for security reasons. To allow user access, so-called "udev rules" must be installed.
Create a file like [`70-solokeys-access.rules`](https://github.com/solokeys/solo/blob/master/udev/70-solokeys-access.rules) in your `/etc/udev/rules.d` directory, for instance the following rule should cover normal access (it has to be on one line):
For some users, things will work automatically:
```
SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0483", ATTRS{idProduct}=="a2ca", TAG+="uaccess", MODE="0660", GROUP="plugdev"
```
- Fedora seems to use a ["universal" udev rule for FIDO devices](https://github.com/amluto/u2f-hidraw-policy)
- Our udev rule made it into [libu2f-host](https://github.com/Yubico/libu2f-host/) v1.1.10
- Arch Linux [has this package](https://www.archlinux.org/packages/community/x86_64/libu2f-host/)
- [Debian sid](https://packages.debian.org/sid/libu2f-udev) and [Ubuntu Eon](https://packages.ubuntu.com/eoan/libu2f-udev) can use the `libu2f-udev` package
- Debian Buster and Ubuntu Disco still distribute v1.1.10, so need the manual rule
- FreeBSD has support in [u2f-devd](https://github.com/solokeys/solo/issues/144#issuecomment-500216020)
Additionally, run the following command after you create this file (it is not necessary to do this again in the future):
There is hope that `udev` itself will adopt the Fedora approach (which is to check for HID usage page `F1D0`, and avoids manually whitelisting each U2F/FIDO2 key): <https://github.com/systemd/systemd/issues/11996>.
```
sudo udevadm control --reload-rules && sudo udevadm trigger
```
Further progress is tracked in: <https://github.com/solokeys/solo/issues/144>.
A simple way to setup both the udev rule and the udevadm reload is:
If you still need to setup a rule, a simple way to do it is:
```
git clone git@github.com:solokeys/solo.git
@ -22,9 +23,11 @@ cd solo/udev
make setup
```
We are working on getting user access to Solo keys enabled automatically in common Linux distributions: <https://github.com/solokeys/solo/issues/144>.
Or, manually, create a file like [`70-solokeys-access.rules`](https://github.com/solokeys/solo/blob/master/udev/70-solokeys-access.rules) in your `/etc/udev/rules.d` directory.
Additionally, run the following command after you create this file (it is not necessary to do this again in the future):
```
sudo udevadm control --reload-rules && sudo udevadm trigger
```
# How do udev rules work and why are they needed

View File

@ -13,7 +13,7 @@ int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu)
{
EXT_APDU_HEADER *hapdu = (EXT_APDU_HEADER *)data;
apdu->cla = hapdu->cla;
apdu->cla = hapdu->cla & 0xef; // mask chaining bit if any
apdu->ins = hapdu->ins;
apdu->p1 = hapdu->p1;
apdu->p2 = hapdu->p2;

View File

@ -42,14 +42,20 @@ extern int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu);
#define APDU_FIDO_U2F_AUTHENTICATE 0x02
#define APDU_FIDO_U2F_VERSION 0x03
#define APDU_FIDO_NFCCTAP_MSG 0x10
#define APDU_FIDO_U2F_VENDOR_FIRST 0xc0 // First vendor defined command
#define APDU_FIDO_U2F_VENDOR_LAST 0xff // Last vendor defined command
#define APDU_SOLO_RESET 0xee
#define APDU_INS_SELECT 0xA4
#define APDU_INS_READ_BINARY 0xB0
#define APDU_GET_RESPONSE 0xC0
#define SW_SUCCESS 0x9000
#define SW_GET_RESPONSE 0x6100 // Command successfully executed; 'XX' bytes of data are available and can be requested using GET RESPONSE.
#define SW_WRONG_LENGTH 0x6700
#define SW_COND_USE_NOT_SATISFIED 0x6985
#define SW_FILE_NOT_FOUND 0x6a82
#define SW_INCORRECT_P1P2 0x6a86
#define SW_INS_INVALID 0x6d00 // Instruction code not supported or invalid
#define SW_CLA_INVALID 0x6e00
#define SW_INTERNAL_EXCEPTION 0x6f00

View File

@ -262,6 +262,11 @@ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8
memmove(y,pubkey+32,32);
}
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len)
{
_signing_key = key;

View File

@ -26,6 +26,7 @@ void crypto_sha512_final(uint8_t * hash);
void crypto_ecc256_init();
void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8_t * y);
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey);
void crypto_ecc256_load_key(uint8_t * data, int len, uint8_t * data2, int len2);
void crypto_ecc256_load_attestation_key();

View File

@ -256,7 +256,9 @@ static int ctap_generate_cose_key(CborEncoder * cose_key, uint8_t * hmac_input,
switch(algtype)
{
case COSE_ALG_ES256:
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
crypto_ecc256_derive_public_key(hmac_input, len, x, y);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
break;
default:
printf2(TAG_ERR,"Error, COSE alg %d not supported\n", algtype);
@ -435,7 +437,19 @@ static unsigned int get_credential_id_size(CTAP_credentialDescriptor * cred)
static int ctap2_user_presence_test()
{
device_set_status(CTAPHID_STATUS_UPNEEDED);
return ctap_user_presence_test(CTAP2_UP_DELAY_MS);
int ret = ctap_user_presence_test(CTAP2_UP_DELAY_MS);
if ( ret > 0 )
{
return CTAP1_ERR_SUCCESS;
}
else if (ret < 0)
{
return CTAP2_ERR_KEEPALIVE_CANCEL;
}
else
{
return CTAP2_ERR_ACTION_TIMEOUT;
}
}
static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * auth_data_buf, uint32_t * len, CTAP_credInfo * credInfo)
@ -468,19 +482,11 @@ static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * au
int but;
but = ctap2_user_presence_test(CTAP2_UP_DELAY_MS);
if (!but)
{
return CTAP2_ERR_OPERATION_DENIED;
}
else if (but < 0) // Cancel
{
return CTAP2_ERR_KEEPALIVE_CANCEL;
}
check_retr(but);
device_set_status(CTAPHID_STATUS_PROCESSING);
authData->head.flags = (but << 0);
authData->head.flags = (1 << 0); // User presence
authData->head.flags |= (ctap_is_pin_set() << 2);
@ -705,10 +711,7 @@ uint8_t ctap_make_credential(CborEncoder * encoder, uint8_t * request, int lengt
}
if (MC.pinAuthEmpty)
{
if (!ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
{
return CTAP2_ERR_OPERATION_DENIED;
}
check_retr( ctap2_user_presence_test(CTAP2_UP_DELAY_MS) );
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_AUTH_INVALID : CTAP2_ERR_PIN_NOT_SET;
}
if ((MC.paramsParsed & MC_requiredMask) != MC_requiredMask)
@ -1141,10 +1144,7 @@ uint8_t ctap_get_assertion(CborEncoder * encoder, uint8_t * request, int length)
if (GA.pinAuthEmpty)
{
if (!ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
{
return CTAP2_ERR_OPERATION_DENIED;
}
check_retr( ctap2_user_presence_test(CTAP2_UP_DELAY_MS) );
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_AUTH_INVALID : CTAP2_ERR_PIN_NOT_SET;
}
if (GA.pinAuthPresent)
@ -1479,6 +1479,11 @@ uint8_t ctap_client_pin(CborEncoder * encoder, uint8_t * request, int length)
ret = cbor_encode_int(&map, RESP_keyAgreement);
check_ret(ret);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
crypto_ecc256_compute_public_key(KEY_AGREEMENT_PRIV, KEY_AGREEMENT_PUB);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
ret = ctap_add_cose_key(&map, KEY_AGREEMENT_PUB, KEY_AGREEMENT_PUB+32, PUB_KEY_CRED_PUB_KEY, COSE_ALG_ECDH_ES_HKDF_256);
check_retr(ret);
@ -1649,14 +1654,11 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break;
case CTAP_RESET:
printf1(TAG_CTAP,"CTAP_RESET\n");
if (ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
status = ctap2_user_presence_test(CTAP2_UP_DELAY_MS);
if (status == CTAP1_ERR_SUCCESS)
{
ctap_reset();
}
else
{
status = CTAP2_ERR_OPERATION_DENIED;
}
break;
case GET_NEXT_ASSERTION:
printf1(TAG_CTAP,"CTAP_NEXT_ASSERTION\n");
@ -1678,7 +1680,7 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break;
default:
status = CTAP1_ERR_INVALID_COMMAND;
printf2(TAG_ERR,"error, invalid cmd\n");
printf2(TAG_ERR,"error, invalid cmd: 0x%02x\n", cmd);
}
done:
@ -1767,10 +1769,7 @@ void ctap_init()
exit(1);
}
if (device_is_nfc() != NFC_IS_ACTIVE)
{
ctap_reset_key_agreement();
}
#ifdef BRIDGE_TO_WALLET
wallet_init();
@ -1969,7 +1968,7 @@ int8_t ctap_load_key(uint8_t index, uint8_t * key)
static void ctap_reset_key_agreement()
{
crypto_ecc256_make_key_pair(KEY_AGREEMENT_PUB, KEY_AGREEMENT_PRIV);
ctap_generate_rng(KEY_AGREEMENT_PRIV, sizeof(KEY_AGREEMENT_PRIV));
}
void ctap_reset()

View File

@ -131,7 +131,7 @@
#define PIN_LOCKOUT_ATTEMPTS 8 // Number of attempts total
#define PIN_BOOT_ATTEMPTS 3 // number of attempts per boot
#define CTAP2_UP_DELAY_MS 5000
#define CTAP2_UP_DELAY_MS 29000
typedef struct
{

View File

@ -49,6 +49,7 @@
#define CTAP2_ERR_PIN_POLICY_VIOLATION 0x37
#define CTAP2_ERR_PIN_TOKEN_EXPIRED 0x38
#define CTAP2_ERR_REQUEST_TOO_LARGE 0x39
#define CTAP2_ERR_ACTION_TIMEOUT 0x3A
#define CTAP1_ERR_OTHER 0x7F
#define CTAP2_ERR_SPEC_LAST 0xDF
#define CTAP2_ERR_EXTENSION_FIRST 0xE0

View File

@ -30,6 +30,7 @@ void main_loop_delay();
void heartbeat();
void device_reboot();
void authenticator_read_state(AuthenticatorState * );

View File

@ -43,7 +43,11 @@ void device_set_status(uint32_t status)
__device_status = status;
}
void device_reboot()
{
printf1(TAG_RED, "REBOOT command recieved!\r\n");
exit(100);
}
int udp_server()
{
@ -628,3 +632,8 @@ int device_is_nfc()
{
return 0;
}
void device_set_clock_rate(DEVICE_CLOCK_RATE param)
{
}

View File

@ -282,6 +282,11 @@ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8
memmove(x,pubkey,32);
memmove(y,pubkey+32,32);
}
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len)
{

View File

@ -55,11 +55,43 @@ static int is_physical_button_pressed()
static int is_touch_button_pressed()
{
return tsc_read_button(0) || tsc_read_button(1);
int is_pressed = (tsc_read_button(0) || tsc_read_button(1));
#ifndef IS_BOOTLOADER
if (is_pressed)
{
// delay for debounce, and longer than polling timer period.
delay(95);
return (tsc_read_button(0) || tsc_read_button(1));
}
#endif
return is_pressed;
}
int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed;
static void edge_detect_touch_button()
{
static uint8_t last_touch = 0;
uint8_t current_touch = 0;
if (is_touch_button_pressed == IS_BUTTON_PRESSED)
{
current_touch = (tsc_read_button(0) || tsc_read_button(1));
// 1 sample per 25 ms
if ((millis() - __last_button_bounce_time) > 25)
{
// Detect "touch / rising edge"
if (!last_touch && current_touch)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
last_touch = current_touch;
}
}
}
void request_from_nfc(bool request_active) {
_RequestComeFromNFC = request_active;
}
@ -78,19 +110,7 @@ void TIM6_DAC_IRQHandler()
}
}
if (is_touch_button_pressed == IS_BUTTON_PRESSED)
{
if (IS_BUTTON_PRESSED())
{
// Only allow 1 press per 25 ms.
if ((millis() - __last_button_bounce_time) > 25)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
}
}
edge_detect_touch_button();
#ifndef IS_BOOTLOADER
// NFC sending WTX if needs
@ -142,7 +162,6 @@ void device_set_status(uint32_t status)
int device_is_button_pressed()
{
return IS_BUTTON_PRESSED();
}

View File

@ -14,6 +14,11 @@
#define IS_IRQ_ACTIVE() (1 == (LL_GPIO_ReadInputPort(SOLO_AMS_IRQ_PORT) & SOLO_AMS_IRQ_PIN))
// chain buffer for 61XX responses
static uint8_t chain_buffer[2048] = {0};
static size_t chain_buffer_len = 0;
static bool chain_buffer_tx = false;
uint8_t p14443_block_offset(uint8_t pcb) {
uint8_t offset = 1;
// NAD following
@ -213,7 +218,7 @@ bool nfc_write_response(uint8_t req0, uint16_t resp)
return nfc_write_response_ex(req0, NULL, 0, resp);
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
void nfc_write_response_chaining_plain(uint8_t req0, uint8_t * data, int len)
{
uint8_t res[32 + 2];
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 0x0f);
@ -284,6 +289,38 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
}
}
void append_get_response(uint8_t *data, size_t rest_len)
{
data[0] = 0x61;
data[1] = 0x00;
if (rest_len <= 0xff)
data[1] = rest_len & 0xff;
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len, bool extapdu)
{
chain_buffer_len = 0;
chain_buffer_tx = true;
// if we dont need to break data to parts that need to exchange via GET RESPONSE command (ISO 7816-4 7.1.3)
if (len <= 255 || extapdu)
{
nfc_write_response_chaining_plain(req0, data, len);
} else {
size_t pcklen = MIN(253, len);
chain_buffer_len = len - pcklen;
printf1(TAG_NFC, "61XX chaining %d/%d.\r\n", pcklen, chain_buffer_len);
memmove(chain_buffer, data, pcklen);
append_get_response(&chain_buffer[pcklen], chain_buffer_len);
nfc_write_response_chaining_plain(req0, chain_buffer, pcklen + 2); // 2 for 61XX
// put the rest data into chain buffer
memmove(chain_buffer, &data[pcklen], chain_buffer_len);
}
}
// WTX on/off:
// sends/receives WTX frame to reader every `WTX_time` time in ms
// works via timer interrupts
@ -483,37 +520,70 @@ int select_applet(uint8_t * aid, int len)
return APP_NOTHING;
}
void nfc_process_iblock(uint8_t * buf, int len)
void apdu_process(uint8_t buf0, uint8_t *apduptr, APDU_STRUCT *apdu)
{
int selected;
CTAP_RESPONSE ctap_resp;
int status;
uint16_t reslen;
printf1(TAG_NFC,"Iblock: ");
dump_hex1(TAG_NFC, buf, len);
uint8_t block_offset = p14443_block_offset(buf[0]);
APDU_STRUCT apdu;
if (apdu_decode(buf + block_offset, len - block_offset, &apdu)) {
printf1(TAG_NFC,"apdu decode error\r\n");
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
return;
}
printf1(TAG_NFC,"apdu ok. %scase=%02x cla=%02x ins=%02x p1=%02x p2=%02x lc=%d le=%d\r\n",
apdu.extended_apdu ? "[e]":"", apdu.case_type, apdu.cla, apdu.ins, apdu.p1, apdu.p2, apdu.lc, apdu.le);
// check CLA
if (apdu.cla != 0x00 && apdu.cla != 0x80) {
printf1(TAG_NFC, "Unknown CLA %02x\r\n", apdu.cla);
nfc_write_response(buf[0], SW_CLA_INVALID);
if (apdu->cla != 0x00 && apdu->cla != 0x80) {
printf1(TAG_NFC, "Unknown CLA %02x\r\n", apdu->cla);
nfc_write_response(buf0, SW_CLA_INVALID);
return;
}
// TODO this needs to be organized better
switch(apdu.ins)
switch(apdu->ins)
{
// ISO 7816. 7.1 GET RESPONSE command
case APDU_GET_RESPONSE:
if (apdu->p1 != 0x00 || apdu->p2 != 0x00)
{
nfc_write_response(buf0, SW_INCORRECT_P1P2);
printf1(TAG_NFC, "P1 or P2 error\r\n");
return;
}
// too many bytes needs. 0x00 and 0x100 - any length
if (apdu->le != 0 && apdu->le != 0x100 && apdu->le > chain_buffer_len)
{
uint16_t wlresp = SW_WRONG_LENGTH; // here can be 6700, 6C00, 6FXX. but the most standard way - 67XX or 6700
if (chain_buffer_len <= 0xff)
wlresp += chain_buffer_len & 0xff;
nfc_write_response(buf0, wlresp);
printf1(TAG_NFC, "buffer length less than requesteds\r\n");
return;
}
// create temporary packet
uint8_t pck[255] = {0};
size_t pcklen = 253;
if (apdu->le)
pcklen = apdu->le;
if (pcklen > chain_buffer_len)
pcklen = chain_buffer_len;
printf1(TAG_NFC, "GET RESPONSE. pck len: %d buffer len: %d\r\n", pcklen, chain_buffer_len);
// create packet and add 61XX there if we have another portion(s) of data
memmove(pck, chain_buffer, pcklen);
size_t dlen = 0;
if (chain_buffer_len - pcklen)
{
append_get_response(&pck[pcklen], chain_buffer_len - pcklen);
dlen = 2;
}
// send
nfc_write_response_chaining_plain(buf0, pck, pcklen + dlen); // dlen for 61XX
// shift the buffer
chain_buffer_len -= pcklen;
memmove(chain_buffer, &chain_buffer[pcklen], chain_buffer_len);
break;
case APDU_INS_SELECT:
// if (apdu->p1 == 0 && apdu->p2 == 0x0c)
// {
@ -529,49 +599,49 @@ void nfc_process_iblock(uint8_t * buf, int len)
// }
// else
{
selected = select_applet(apdu.data, apdu.lc);
selected = select_applet(apdu->data, apdu->lc);
if (selected == APP_FIDO)
{
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
nfc_write_response_ex(buf0, (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
printf1(TAG_NFC, "FIDO applet selected.\r\n");
}
else if (selected != APP_NOTHING)
{
nfc_write_response(buf[0], SW_SUCCESS);
nfc_write_response(buf0, SW_SUCCESS);
printf1(TAG_NFC, "SELECTED %d\r\n", selected);
}
else
{
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected "); dump_hex1(TAG_NFC, apdu.data, apdu.lc);
nfc_write_response(buf0, SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected "); dump_hex1(TAG_NFC, apdu->data, apdu->lc);
}
}
break;
case APDU_FIDO_U2F_VERSION:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F GetVersion command.\r\n");
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
break;
case APDU_FIDO_U2F_REGISTER:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F Register command.\r\n");
if (apdu.lc != 64)
if (apdu->lc != 64)
{
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", apdu.lc);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", apdu->lc);
nfc_write_response(buf0, SW_WRONG_LENGTH);
return;
}
@ -582,61 +652,61 @@ void nfc_process_iblock(uint8_t * buf, int len)
// SystemClock_Config_LF32();
// delay(300);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register P2 took %d\r\n", timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"U2F Register answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_FIDO_U2F_AUTHENTICATE:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F Authenticate command.\r\n");
if (apdu.lc != 64 + 1 + apdu.data[64])
if (apdu->lc != 64 + 1 + apdu->data[64])
{
delay(5);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", apdu.lc, apdu.data[64]);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", apdu->lc, apdu->data[64]);
nfc_write_response(buf0, SW_WRONG_LENGTH);
return;
}
timestamp();
// WTX_on(WTX_TIME_DEFAULT);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Authenticate processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"U2F Authenticate answered %d (took %d)\r\n", millis(), timestamp);
break;
case APDU_FIDO_NFCCTAP_MSG:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
nfc_write_response(buf0, SW_INS_INVALID);
return;
}
printf1(TAG_NFC, "FIDO2 CTAP message. %d\r\n", timestamp());
WTX_on(WTX_TIME_DEFAULT);
// WTX_on(WTX_TIME_DEFAULT);
request_from_nfc(true);
ctap_response_init(&ctap_resp);
status = ctap_request(apdu.data, apdu.lc, &ctap_resp);
status = ctap_request(apdu->data, apdu->lc, &ctap_resp);
request_from_nfc(false);
if (!WTX_off())
return;
// if (!WTX_off())
// return;
printf1(TAG_NFC, "CTAP resp: 0x%02x len: %d\r\n", status, ctap_resp.length);
@ -652,44 +722,108 @@ void nfc_process_iblock(uint8_t * buf, int len)
ctap_resp.data[ctap_resp.length - 1] = SW_SUCCESS & 0xff;
printf1(TAG_NFC,"CTAP processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"CTAP answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_INS_READ_BINARY:
// response length
reslen = apdu.le & 0xffff;
reslen = apdu->le & 0xffff;
switch(NFC_STATE.selected_applet)
{
case APP_CAPABILITY_CONTAINER:
printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n");
if (reslen == 0 || reslen > sizeof(NFC_CC))
reslen = sizeof(NFC_CC);
nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, reslen, SW_SUCCESS);
nfc_write_response_ex(buf0, (uint8_t *)&NFC_CC, reslen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
case APP_NDEF_TAG:
printf1(TAG_NFC,"APP_NDEF_TAG\r\n");
if (reslen == 0 || reslen > sizeof(NDEF_SAMPLE) - 1)
reslen = sizeof(NDEF_SAMPLE) - 1;
nfc_write_response_ex(buf[0], NDEF_SAMPLE, reslen, SW_SUCCESS);
nfc_write_response_ex(buf0, NDEF_SAMPLE, reslen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
default:
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
nfc_write_response(buf0, SW_FILE_NOT_FOUND);
printf1(TAG_ERR, "No binary applet selected!\r\n");
return;
break;
}
break;
case APDU_SOLO_RESET:
if (apdu->lc == 4 && !memcmp(apdu->data, "\x12\x56\xab\xf0", 4)) {
printf1(TAG_NFC, "Reset...\r\n");
nfc_write_response(buf0, SW_SUCCESS);
delay(20);
device_reboot();
while(1);
} else {
printf1(TAG_NFC, "Reset FAIL\r\n");
nfc_write_response(buf0, SW_INS_INVALID);
}
break;
default:
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu.ins);
nfc_write_response(buf[0], SW_INS_INVALID);
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu->ins);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
}
void nfc_process_iblock(uint8_t * buf, int len)
{
uint8_t block_offset = p14443_block_offset(buf[0]);
// clear tx chain buffer if we have some other command than GET RESPONSE
if (chain_buffer_tx && buf[block_offset + 1] != APDU_GET_RESPONSE) {
chain_buffer_len = 0;
chain_buffer_tx = false;
}
APDU_STRUCT apdu;
if (apdu_decode(buf + block_offset, len - block_offset, &apdu)) {
printf1(TAG_NFC,"apdu decode error\r\n");
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
return;
}
printf1(TAG_NFC,"apdu ok. %scase=%02x cla=%02x ins=%02x p1=%02x p2=%02x lc=%d le=%d\r\n",
apdu.extended_apdu ? "[e]":"", apdu.case_type, apdu.cla, apdu.ins, apdu.p1, apdu.p2, apdu.lc, apdu.le);
// APDU level chaining. ISO7816-4, 5.1.1. class byte
if (!chain_buffer_tx && buf[block_offset] & 0x10) {
if (chain_buffer_len + len > sizeof(chain_buffer)) {
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
memmove(&chain_buffer[chain_buffer_len], apdu.data, apdu.lc);
chain_buffer_len += apdu.lc;
delay(1);
nfc_write_response(buf[0], SW_SUCCESS);
printf1(TAG_NFC, "APDU chaining ok. %d/%d\r\n", apdu.lc, chain_buffer_len);
return;
}
// if we have ISO 7816 APDU chain - move there all the data
if (!chain_buffer_tx && chain_buffer_len > 0) {
delay(1);
memmove(&apdu.data[chain_buffer_len], apdu.data, apdu.lc);
memmove(apdu.data, chain_buffer, chain_buffer_len);
apdu.lc += chain_buffer_len; // here apdu struct does not match with memory!
printf1(TAG_NFC, "APDU chaining merge. %d/%d\r\n", chain_buffer_len, apdu.lc);
}
apdu_process(buf[0], &buf[block_offset], &apdu);
printf1(TAG_NFC,"prev.Iblock: ");
dump_hex1(TAG_NFC, buf, len);
}
static uint8_t ibuf[1024];
static int ibuflen = 0;
@ -721,7 +855,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
uint8_t block_offset = p14443_block_offset(buf[0]);
if (buf[0] & 0x10)
{
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d\r\n", ibuflen, len);
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d offs=%d\r\n", ibuflen, len, block_offset);
if (ibuflen + len > sizeof(ibuf))
{
printf1(TAG_NFC, "I block memory error! must have %d but have only %d\r\n", ibuflen + len, sizeof(ibuf));
@ -754,14 +888,15 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
memmove(ibuf, buf, block_offset);
ibuflen += block_offset;
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d\r\n", ibuflen, len);
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d offset=%d\r\n", ibuflen, len, block_offset);
printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len);
nfc_process_iblock(ibuf, ibuflen);
} else {
nfc_process_iblock(buf, len);
memcpy(ibuf, buf, len); // because buf only 32b
nfc_process_iblock(ibuf, len);
}
clear_ibuf();
}