Compare commits

..

4 Commits

Author SHA1 Message Date
9dfc3d49e8 fix pc build 2019-10-08 16:02:25 -04:00
3487895e2d small errors 2019-10-08 16:02:14 -04:00
6335f16874 add u2f length arg 2019-10-08 15:38:00 -04:00
82551c0b1c check FIDO2 credential IDs in U2F 2019-10-08 15:32:20 -04:00
27 changed files with 205 additions and 502 deletions

3
.gitignore vendored
View File

@ -34,8 +34,7 @@
*.app *.app
*.i*86 *.i*86
*.x86_64 *.x86_64
targets/*/*.hex *.hex
targets/*/*.sha2
# Debug files # Debug files
*.dSYM/ *.dSYM/

View File

@ -6,15 +6,14 @@ addons:
sources: sources:
- ubuntu-toolchain-r-test - ubuntu-toolchain-r-test
packages: packages:
- gcc-8 - gcc-7
- cppcheck - cppcheck
services:
- docker
before_install: before_install:
- sudo add-apt-repository -y ppa:team-gcc-arm-embedded/ppa - sudo add-apt-repository -y ppa:team-gcc-arm-embedded/ppa
- sudo apt-get update -q - sudo apt-get update -q
- sudo apt-get install -y gcc-arm-embedded python3-venv - sudo apt-get install -y gcc-arm-embedded
- sudo apt-get install -y python3-venv
script: script:
- export CC=gcc-8 - export CC=gcc-7
- pyenv shell 3.6.7 - pyenv shell 3.6.7
- make travis - make travis

View File

@ -1,38 +1,33 @@
FROM debian:9.11-slim FROM debian:stretch-slim
MAINTAINER SoloKeys <hello@solokeys.com> MAINTAINER SoloKeys <hello@solokeys.com>
# Install necessary packages RUN apt-get update -qq
RUN apt-get update \ RUN apt-get install -qq bzip2 git make wget >/dev/null
&& apt-get install -y --no-install-recommends \
ca-certificates \
make \
wget \
bzip2 \
git \
&& rm -rf /var/lib/apt/lists/*
# Install ARM compiler # 1. ARM GCC: for compilation
RUN set -eux; \ RUN wget -q -O gcc.tar.bz2 https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2018q4/gcc-arm-none-eabi-8-2018-q4-major-linux.tar.bz2?revision=d830f9dd-cd4f-406d-8672-cca9210dd220?product=GNU%20Arm%20Embedded%20Toolchain,64-bit,,Linux,8-2018-q4-major
url="https://developer.arm.com/-/media/Files/downloads/gnu-rm/8-2019q3/RC1.1/gcc-arm-none-eabi-8-2019-q3-update-linux.tar.bz2?revision=c34d758a-be0c-476e-a2de-af8c6e16a8a2?product=GNU%20Arm%20Embedded%20Toolchain,64-bit,,Linux,8-2019-q3-update"; \ # from website
wget -O gcc.tar.bz2 "$url"; \ RUN echo "f55f90d483ddb3bcf4dae5882c2094cd gcc.tar.bz2" > gcc.md5
echo "6341f11972dac8de185646d0fbd73bfc gcc.tar.bz2" | md5sum -c -; \ RUN md5sum -c gcc.md5
echo "b50b02b0a16e5aad8620e9d7c31110ef285c1dde28980b1a9448b764d77d8f92 gcc.tar.bz2" | sha256sum -c -; \ # self-generated
tar -C /opt -xf gcc.tar.bz2; \ RUN echo "fb31fbdfe08406ece43eef5df623c0b2deb8b53e405e2c878300f7a1f303ee52 gcc.tar.bz2" > gcc.sha256
rm gcc.tar.bz2; RUN sha256sum -c gcc.sha256
RUN tar -C /opt -xf gcc.tar.bz2
# Python3.7: for solo-python (merging etc.) # 2. Python3.7: for solo-python (merging etc.)
RUN set -eux; \ RUN wget -q -O miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-4.5.12-Linux-x86_64.sh
url="https://repo.anaconda.com/miniconda/Miniconda3-4.5.12-Linux-x86_64.sh"; \ # from website
wget -O miniconda.sh "$url"; \ RUN echo "866ae9dff53ad0874e1d1a60b1ad1ef8 miniconda.sh" > miniconda.md5
echo "866ae9dff53ad0874e1d1a60b1ad1ef8 miniconda.sh" | md5sum -c -; \ RUN md5sum -c miniconda.md5
echo "e5e5b4cd2a918e0e96b395534222773f7241dc59d776db1b9f7fedfcb489157a miniconda.sh" | sha256sum -c -; \ # self-generated
bash ./miniconda.sh -b -p /opt/conda; \ RUN echo "e5e5b4cd2a918e0e96b395534222773f7241dc59d776db1b9f7fedfcb489157a miniconda.sh" > miniconda.sha256
ln -s /opt/conda/bin/python /usr/local/bin/python3; \ RUN sha256sum -c miniconda.sha256
ln -s /opt/conda/bin/python /usr/local/bin/python; \
ln -s /opt/conda/bin/pip /usr/local/bin/pip3; \
ln -s /opt/conda/bin/pip /usr/local/bin/pip; \
rm miniconda.sh; \
pip install -U pip
# solo-python (Python3.7 script for merging etc.) RUN bash ./miniconda.sh -b -p /opt/conda
RUN pip install -U solo-python RUN ln -s /opt/conda/bin/python /usr/local/bin/python3
RUN ln -s /opt/conda/bin/python /usr/local/bin/python
RUN ln -s /opt/conda/bin/pip /usr/local/bin/pip3
RUN ln -s /opt/conda/bin/pip /usr/local/bin/pip
# 3. Source code
RUN git clone --recurse-submodules https://github.com/solokeys/solo /solo --config core.autocrlf=input

View File

@ -23,8 +23,8 @@ else
endif endif
LDFLAGS += $(LIBCBOR) LDFLAGS += $(LIBCBOR)
VERSION:=$(shell git describe --abbrev=0 )
VERSION_FULL:=$(shell git describe) VERSION_FULL:=$(shell git describe)
VERSION:=$(shell python -c 'print("$(VERSION_FULL)".split("-")[0])')
VERSION_MAJ:=$(shell python -c 'print("$(VERSION)".split(".")[0])') VERSION_MAJ:=$(shell python -c 'print("$(VERSION)".split(".")[0])')
VERSION_MIN:=$(shell python -c 'print("$(VERSION)".split(".")[1])') VERSION_MIN:=$(shell python -c 'print("$(VERSION)".split(".")[1])')
VERSION_PAT:=$(shell python -c 'print("$(VERSION)".split(".")[2])') VERSION_PAT:=$(shell python -c 'print("$(VERSION)".split(".")[2])')
@ -62,7 +62,7 @@ test: venv
$(MAKE) clean $(MAKE) clean
$(MAKE) -C . main $(MAKE) -C . main
$(MAKE) clean $(MAKE) clean
$(MAKE) -C ./targets/stm32l432 test PREFIX=$(PREFIX) "VENV=$(VENV)" VERSION_FULL=${VERSION_FULL} $(MAKE) -C ./targets/stm32l432 test PREFIX=$(PREFIX) "VENV=$(VENV)"
$(MAKE) clean $(MAKE) clean
$(MAKE) cppcheck $(MAKE) cppcheck
@ -88,30 +88,18 @@ wink: venv
fido2-test: venv fido2-test: venv
venv/bin/python tools/ctap_test.py venv/bin/python tools/ctap_test.py
update: DOCKER_IMAGE := "solokeys/solo-firmware:local"
git fetch --tags SOLO_VERSIONISH := "master"
git checkout master docker-build:
git rebase origin/master docker build -t $(DOCKER_IMAGE) .
git submodule update --init --recursive
DOCKER_TOOLCHAIN_IMAGE := "solokeys/solo-firmware-toolchain"
docker-build-toolchain:
docker build -t $(DOCKER_TOOLCHAIN_IMAGE) .
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${VERSION}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${VERSION_MAJ}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${VERSION_MAJ}.${VERSION_MIN}
uncached-docker-build-toolchain:
docker build --no-cache -t $(DOCKER_TOOLCHAIN_IMAGE) .
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${VERSION}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${VERSION_MAJ}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${VERSION_MAJ}.${VERSION_MIN}
docker-build-all:
docker run --rm -v "$(CURDIR)/builds:/builds" \ docker run --rm -v "$(CURDIR)/builds:/builds" \
-v "$(CURDIR):/solo" \ -v "$(CURDIR)/in-docker-build.sh:/in-docker-build.sh" \
$(DOCKER_TOOLCHAIN_IMAGE) "solo/in-docker-build.sh" ${VERSION_FULL} $(DOCKER_IMAGE) "./in-docker-build.sh" $(SOLO_VERSIONISH)
uncached-docker-build:
docker build --no-cache -t $(DOCKER_IMAGE) .
docker run --rm -v "$(CURDIR)/builds:/builds" \
-v "$(CURDIR)/in-docker-build.sh:/in-docker-build.sh" \
$(DOCKER_IMAGE) "./in-docker-build.sh" $(SOLO_VERSIONISH)
CPPCHECK_FLAGS=--quiet --error-exitcode=2 CPPCHECK_FLAGS=--quiet --error-exitcode=2
@ -132,14 +120,6 @@ clean:
full-clean: clean full-clean: clean
rm -rf venv rm -rf venv
test-docker:
rm -rf builds/*
$(MAKE) uncached-docker-build-toolchain
# Check if there are 4 docker images/tas named "solokeys/solo-firmware-toolchain"
NTAGS=$$(docker images | grep -c "solokeys/solo-firmware-toolchain") && [ $$NTAGS -eq 4 ]
$(MAKE) docker-build-all
travis: travis:
$(MAKE) test VENV=". ../../venv/bin/activate;" $(MAKE) test VENV=". ../../venv/bin/activate;"
$(MAKE) test-docker $(MAKE) black
$(MAKE) black

View File

@ -1,3 +1,9 @@
**NEW!** We launched a new tiny security key called Somu, it's live on Crowd Supply and you can [pre-order it now](https://solokeys.com/somu)!
[<img src="https://miro.medium.com/max/1400/1*PnzCPLqq_5nt1gjgSEY2LQ.png" width="600">](https://solokeys.com/somu)
Somu is the micro version of Solo. We were inspired to make a secure Tomu, so we took its tiny form factor, we added the secure microcontroller and firmware of Solo, et voilà! Here we have Somu.
[![latest release](https://img.shields.io/github/release/solokeys/solo.svg)](https://update.solokeys.com/) [![latest release](https://img.shields.io/github/release/solokeys/solo.svg)](https://update.solokeys.com/)
[![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public) [![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public)
[![Build Status](https://travis-ci.com/solokeys/solo.svg?style=flat-square&branch=master)](https://travis-ci.com/solokeys/solo) [![Build Status](https://travis-ci.com/solokeys/solo.svg?style=flat-square&branch=master)](https://travis-ci.com/solokeys/solo)
@ -32,58 +38,10 @@ Check out [solokeys.com](https://solokeys.com), for options on where to buy Solo
If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.io/solo/building/). We support Python3. If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.io/solo/building/). We support Python3.
For example, if you want to turn off any blue light emission, you can edit [`led_rgb()`](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/app.h#L48) and change `LED_INIT_VALUE`
to be a different hex color.
Then recompile, load your new firmware, and enjoy a different LED color Solo.
In the Hacker version, hardware is the same but the firmware is unlocked, so you can 1) load an unsigned application, or 2) entirely reflash the key. By contrast, in a regular Solo you can only upgrade to a firmware signed by SoloKeys, and flash is locked and debug disabled permanently.
Hacker Solo isn't really secure so you should only use it for development. An attacker with physical access to a Solo for Hacker can reflash it following the steps above, and even a malware on your computer could possibly reflash it.
## Checking out the code
```bash ```bash
git clone --recurse-submodules https://github.com/solokeys/solo git clone --recurse-submodules https://github.com/solokeys/solo
cd solo cd solo
```
If you forgot the `--recurse-submodules` while cloning, simply run `git submodule update --init --recursive`.
`make update` will also checkout the latest code on `master` and submodules.
## Checking out the code to build a specific version
You can checkout the code to build a specific version of the firmware with:
```
VERSION_TO_BUILD=2.5.3
git fetch --tags
git checkout ${VERSION_TO_BUILD}
git submodule update --init --recursive
```
## Installing the toolchain
In order to compile ARM code, you need the ARM compiler and other things like bundling bootloader and firmware require the `solo-python` python package. Check our [documentation](https://docs.solokeys.io/solo/) for details
## Installing the toolkit and compiling in Docker
Alternatively, you can use Docker to create a container with the toolchain.
You can run:
```bash
# Build the toolchain container
make docker-build-toolchain
# Build all versions of the firmware in the "builds" folder
make docker-build-all
```
The `builds` folder will contain all the variation on the firmware in `.hex` files.
## Build locally
If you have the toolchain installed on your machine you can build the firmware with:
```bash
cd targets/stm32l432 cd targets/stm32l432
make cbor make cbor
make build-hacker make build-hacker
@ -95,6 +53,19 @@ solo program aux enter-bootloader
solo program bootloader targets/stm32l432/solo.hex solo program bootloader targets/stm32l432/solo.hex
``` ```
Alternatively, run `make docker-build` and use the firmware generated in `/tmp`.
If you forgot the `--recurse-submodules` when cloning, simply `git submodule update --init --recursive`.
For example, if you want to turn off any blue light emission, you can edit [`led_rgb()`](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/app.h#L48) and change `LED_INIT_VALUE`
to be a different hex color.
Then recompile, load your new firmware, and enjoy a different LED color Solo.
In the Hacker version, hardware is the same but the firmware is unlocked, so you can 1) load an unsigned application, or 2) entirely reflash the key. By contrast, in a regular Solo you can only upgrade to a firmware signed by SoloKeys, and flash is locked and debug disabled permanently.
Hacker Solo isn't really secure so you should only use it for development. An attacker with physical access to a Solo for Hacker can reflash it following the steps above, and even a malware on your computer could possibly reflash it.
# Developing Solo (No Hardware Needed) # Developing Solo (No Hardware Needed)
Clone Solo and build it Clone Solo and build it

View File

@ -1,99 +0,0 @@
# Using Solo for passwordless or second factor login on Linux
## Setup on Ubuntu 18.04
Before you can use Solo for passwordless or second factor login in your Linux system you have to install some packages.
This was tested under **Linux Mint 19.2**.
First you have to install PAM modules for u2f.
```
sudo apt install libpam-u2f pamu2fcfg
```
## Setting up key
To use Solo as passwordless or second factor login, you have to setup your system with your Solo.
First create a new folder named **Yubico** in your **.config** folder in your **home** directory
```
mkdir ~/.config/Yubico
```
Then create a new key for PAM U2F module. If it is your first key you want to register use following command:
```
pamu2fcfg > ~/.config/Yubico/u2f_keys
```
If you want to register an additional key use this command instead:
```
pamu2fcfg >> ~/.config/Yubico/u2f_keys
```
Now press the button on your Solo.
If you can't generate your key (error message), you may add Yubico Team from PPA and install latest libpam-u2f and pamu2fcfg and try again.
```
sudo add-apt-repository ppa:yubico/stable
sudo apt-get update
sudo apt-get upgrade
```
## Login into Linux
### Passwordless
To login passwordless into your Linux system, you have to edit the file **lightdm** (or **gdm** or which display manager you prefered).
In case of lightdm:
```
sudo vim /etc/pam.d/lightdm
```
Now search following entry:
```
@include common-auth
```
and add
```
auth sufficient pam_u2f.so
```
**before** @include common-auth.
Save the file and test it.<br>
Insert Solo in your USB port and logout.
Now you should be able to login into Linux without password, only with pressing your button on Solo and press enter.
Why **sufficient**? The difference between the keyword sufficient and required is, if you don't have your Solo available, you can also login, because the system falls back to password mode.
The login mechanism can be also used for additional features like:
: - Login after screen timeout - edit /etc/pam.d/mate-screensaver (or kde-screensaver, ...)
- Passwordless sudo - edit /etc/pam.d/sudo
Check out your folder **/etc/pam.d/** and do some experiments.
**But remember:** <br>
The login passwordless won't make your system more secure, but maybe more comfortable. If somebody have access to your Solo, this person will be also able to login into your system.
### Solo as second factor
To use Solo as second factor, for login into your Linux system, is nearly the same.
```
sudo vim /etc/pam.d/lightdm
```
Now search following entry:
```
@include common-auth
```
and add
```
auth required pam_u2f.so
```
**after** @include common-auth.
Save the file and test it. <br>
In case your Solo is not present, your password will be incrorrect. If Solo is plugged into your USB port, it will signal pressing the button and you will be able to login into Linux.
Why **required**? If you choose the option **sufficent** your Solo is optional. You could also login without second factor if your Solo is not connected.
**But remember:**<br>
If you loose your Solo you won't be able to login into your system.

View File

@ -1,17 +1,16 @@
# Booting into bootloader mode # Booting into bootloader mode
If you have a recent version of Solo, you can put it into bootloader mode by running this command. You can put Solo into bootloader mode by holding down the button, and plugging in Solo. After 2 seconds, bootloader mode will activate.
You'll see a yellowish flashing light and you can let go of the button.
Now Solo is ready to [accept firmware updates](/solo/signed-updates). If the Solo is a secured model, it can only accept signed updates, typically in the `firmware-*.json` format.
If Solo is running a hacker build, it can be put into bootloader mode on command. This makes it easier for development.
```bash ```bash
solo program aux enter-bootloader solo program aux enter-bootloader
``` ```
If your Solo is a bit older (<=2.5.3) You can put Solo into bootloader mode by using the button method:
Hold down button while plugging in Solo. After 2 seconds, bootloader mode will activate.
You'll see a yellowish flashing light and you can let go of the button.
Now Solo is ready to [accept firmware updates](/solo/signed-updates). If the Solo is a secured model, it can only accept signed updates, typically in the `firmware-*.json` format.
# The boot stages of Solo # The boot stages of Solo
Solo has 3 boot stages. Solo has 3 boot stages.
@ -22,8 +21,7 @@ The first stage is the DFU (Device Firmware Update) which is in a ROM on Solo.
This is what allows the entire firmware of Solo to be programmed. **It's not recommended to develop for Solo using the DFU because This is what allows the entire firmware of Solo to be programmed. **It's not recommended to develop for Solo using the DFU because
if you program broken firmware, you could brick your device**. if you program broken firmware, you could brick your device**.
On hacker/nonverifying-bootloader devices, you can boot into the DFU by holding down the button for 5 seconds, On hacker devices, you can boot into the DFU by holding down the button for 5 seconds, when Solo is already in bootloader mode.
when Solo is already in bootloader mode.
You can also run this command when Solo is in bootloader mode to put it in DFU mode. You can also run this command when Solo is in bootloader mode to put it in DFU mode.
@ -31,7 +29,7 @@ You can also run this command when Solo is in bootloader mode to put it in DFU m
solo program aux enter-dfu solo program aux enter-dfu
``` ```
Note it will stay in DFU mode until you to tell it to boot again. You can boot it again by running the following. Note it will stay in DFU mode until to tell it to boot again. You can boot it again by running the following.
```bash ```bash
solo program aux leave-dfu solo program aux leave-dfu

View File

@ -36,21 +36,17 @@ Enter the `stm32l4xx` target directory.
cd targets/stm32l432 cd targets/stm32l432
``` ```
Now build the Solo application. Now build Solo.
``` ```
make firmware make build-hacker
``` ```
The `firmware` recipe builds the solo application, and outputs `solo.hex`. You can use this The `build-hacker` recipe does a few things. First it builds the bootloader, with
to reprogram any unlocked/hacker Solo model. Note that it does not include the Solo bootloader,
so it is not a full reprogram.
<!-- First it builds the bootloader, with
signature checking disabled. Then it builds the Solo application with "hacker" features signature checking disabled. Then it builds the Solo application with "hacker" features
enabled, like being able to jump to the bootloader on command. It then merges bootloader enabled, like being able to jump to the bootloader on command. It then merges bootloader
and solo builds into the same binary. I.e. it combines `bootloader.hex` and `solo.hex` and solo builds into the same binary. I.e. it combines `bootloader.hex` and `solo.hex`
into `all.hex`. --> into `all.hex`.
If you're just planning to do development, **please don't try to reprogram the bootloader**, If you're just planning to do development, **please don't try to reprogram the bootloader**,
as this can be risky if done often. Just use `solo.hex`. as this can be risky if done often. Just use `solo.hex`.
@ -61,13 +57,13 @@ If you're developing, you probably want to see debug messages! Solo has a USB
Serial port that it will send debug messages through (from `printf`). You can read them using Serial port that it will send debug messages through (from `printf`). You can read them using
a normal serial terminal like `picocom` or `putty`. a normal serial terminal like `picocom` or `putty`.
Just add `-debug-1` or `-debug-2` to your build recipe, like this. Just add `DEBUG=1` or `DEBUG=2` to your build recipe, like this.
``` ```
make firmware-debug-1 make build-hacker DEBUG=1
``` ```
If you use `debug-2`, that means Solo will not boot until something starts reading If you use `DEBUG=2`, that means Solo will not boot until something starts reading
its debug messages. So it basically waits to tether to a serial terminal so that you don't its debug messages. So it basically waits to tether to a serial terminal so that you don't
miss any debug messages. miss any debug messages.
@ -82,45 +78,27 @@ solo monitor <serial-port>
[See issue 62](https://github.com/solokeys/solo/issues/62). [See issue 62](https://github.com/solokeys/solo/issues/62).
### Building a complete Solo build (application + bootloader + certificate) ### Building a Solo release
To make a complete Solo build, you need to build the bootloader. We provide To build Solo
two easy recipes:
* `bootloader-nonverifying`: bootloader with no signature checking on updates. I.e. "unlocked". If you want to build a release of Solo, we recommend trying a Hacker build first
* `bootloader-verifying`: bootloader with signature checking enforced on updated. I.e. "Locked". just to make sure that it's working. Otherwise it may not be as easy or possible to
fix any mistakes.
To be safe, let's use the `-nonverifying` build. If you're ready to program a full release, run this recipe to build.
``` ```
make bootloader-nonverifying make build-release-locked
``` ```
This outputs `bootloader.hex`. We can then merge the bootloader and application. This outputs bootloader.hex, solo.hex, and the combined all.hex.
``` Programming `all.hex` will cause the device to permanently lock itself. This means debuggers cannot be used and signature checking
solo mergehex bootloader.hex solo.hex bundle.hex will be enforced on all future updates.
```
`bundle.hex` is our complete firmware build. Note it is in this step that you can Note if you program a secured `solo.hex` file onto a Solo Hacker, it will lock the flash, but the bootloader
include a custom attestation certificate or lock the device from debugging/DFU. will still accept unsigned firmware updates. So you can switch it back to being a hacker, but you will
By default the "hacker" attestation certifcate and key is used. not be able to replace the unlocked bootloader anymore, since the permanently locked flash also disables the DFU.
[Read more on Solo's boot stages](/solo/bootloader-mode).
```
solo mergehex \
--attestation-key "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF" \
--attestation-cert attestation.der \
--lock \
solo.hex \
bootloader.hex \
bundle.hex
```
See [here for more information on custom attestation](/solo/customization/).
If you use `--lock`, this will permanently lock the device to this new bootloader. You
won't be able to program the bootloader again or be able to connect a hardware debugger.
The new bootloader may be able to accept (signed) updates still, depending on how you configured it.
To learn more about normal updates or a "full" update, you should [read more on Solo's boot stages](/solo/bootloader-mode).

View File

@ -114,27 +114,28 @@ If the checks succeed, you are ready to program the device attestation key and c
### Programming an attestation key and certificate ### Programming an attestation key and certificate
First, [Build your solo application and bootloader](/solo/building). Convert the DER format of the device attestation certificate to "C" bytes using our utility script. You may first need to
first install prerequisite python modules (`pip install -r tools/requirements.txt`).
Print your attestation key in a hex string format. Using our utility script: ```
python tools/gencert/cbytes.py device_cert.der
```
Copy the byte string portion into the [`attestation.c` source file of Solo](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/attestation.c). Overwrite the development or "default" certificate that is already there.
Now [build the Solo firmware](/solo/building), either a secure or hacker build. You will need to produce a `bootloader.hex` file and a `solo.hex` file.
Print your attestation key in a hex string format.
``` ```
python tools/print_x_y.py device_key.pem python tools/print_x_y.py device_key.pem
``` ```
Merge the `bootloader.hex`, `solo.hex`, attestion key, and certificate into one firmware file. Merge the `bootloader.hex`, `solo.hex`, and attestion key into one firmware file.
``` ```
solo mergehex \ solo mergehex --attestation-key <attestation-key-hex-string> bootloader.hex solo.hex all.hex
--attestation-key "(The 32-byte hex string extracted from device_key.pem)" \
--attestation-cert device_cert.der \
--lock \
solo.hex \
bootloader.hex \
bundle.hex
``` ```
Now you have a newly created `bundle.hex` file with a custom attestation key and cert. You can [program this `bundle.hex` file Now you have a newly create `all.hex` file with a custom attestation key. You can [program this `all.hex` file
with Solo in DFU mode](/solo/programming#procedure). with Solo in DFU mode](/solo/programming#procedure).
Are you interested in customizing in bulk? Contact hello@solokeys.com and we can help.

View File

@ -22,11 +22,12 @@ solo key update <--secure | --hacker>
You can manually install the [latest release](https://github.com/solokeys/solo/releases), or use a build that you made. You can manually install the [latest release](https://github.com/solokeys/solo/releases), or use a build that you made.
```bash ```bash
# If it's a hacker, it will automatically boot into bootloader mode.
solo program bootloader <firmware.hex | firmware.json> solo program bootloader <firmware.hex | firmware.json>
``` ```
Note you won't be able to use `all.hex` or the `bundle-*.hex` builds, as these include the solo bootloader. You shouldn't Note you won't be able to use `all.hex` or the `bundle-*.hex` builds, as these include the solo bootloader. You shouldn't
risk changing the Solo bootloader unless you want to make it a secure device, or [make other customizations](/solo/customization/). risk changing the Solo bootloader unless you want to make it a secure device, or [make other customizations]().
## Updating a Hacker to a Secure Solo ## Updating a Hacker to a Secure Solo
@ -37,14 +38,14 @@ You can use a firmware build from the [latest release](https://github.com/soloke
a build that you made yourself. a build that you made yourself.
You need to use a firmware file that has the combined bootloader and application (or at the very least just the bootloader). You need to use a firmware file that has the combined bootloader and application (or at the very least just the bootloader).
This means using the `bundle-*.hex` file or the `bundle.hex` from your build. If you overwrite the Solo flash with a missing bootloader, This means using the `bundle-*.hex` file or the `all.hex` from your build. If you overwrite the Solo flash with a missing bootloader,
it will be bricked. it will be bricked.
We provide two types of bundled builds. The `bundle-hacker-*.hex` build is the hacker build. If you update with this, We provide two types of bundled builds. The `bundle-hacker-*.hex` build is the hacker build. If you update with this,
you will update the bootloader and application, but nothing will be secured. The `bundle-secure-non-solokeys.hex` you will update the bootloader and application, but nothing will be secured. The `bundle-secure-non-solokeys.hex`
is a secured build that will lock your device and it will behave just like a Secure Solo. The main difference is that is a secured build that will lock your device and it will behave just like a Secure Solo. The main difference is that
it uses a "default" attestation key in the device, rather than the SoloKeys attestation key. There is no security it uses a "default" attestation key in the device, rather than the SoloKeys attestation key. There is no security
concern with using our default attestation key, aside from a small privacy implication that services can distinguish it from Solo Secure. concern with using our default attestation key, aside from a privacy implication that services can distinguish it from Solo Secure.
### Procedure ### Procedure
@ -60,7 +61,7 @@ concern with using our default attestation key, aside from a small privacy impli
2. Program the device 2. Program the device
solo program dfu <bundle-secure-non-solokeys.hex | bundle.hex> solo program dfu <bundle-secure-non-solokeys.hex | all.hex>
Double check you programmed it with bootloader + application (or just bootloader). Double check you programmed it with bootloader + application (or just bootloader).
If you messed it up, simply don't do the next step and repeat this step correctly. If you messed it up, simply don't do the next step and repeat this step correctly.

View File

@ -47,7 +47,7 @@ typedef enum
#endif #endif
const uint8_t * attestation_cert_der; const uint8_t attestation_cert_der[];
const uint16_t attestation_cert_der_size; const uint16_t attestation_cert_der_size;
const uint8_t attestation_key[]; const uint8_t attestation_key[];
const uint16_t attestation_key_size; const uint16_t attestation_key_size;
@ -338,7 +338,7 @@ void crypto_aes256_encrypt(uint8_t * buf, int length)
} }
const uint8_t _attestation_cert_der[] = const uint8_t attestation_cert_der[] =
"\x30\x82\x01\xfb\x30\x82\x01\xa1\xa0\x03\x02\x01\x02\x02\x01\x00\x30\x0a\x06\x08" "\x30\x82\x01\xfb\x30\x82\x01\xa1\xa0\x03\x02\x01\x02\x02\x01\x00\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13" "\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13"
"\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e" "\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e"
@ -365,11 +365,9 @@ const uint8_t _attestation_cert_der[] =
"\x7e\x74\x64\x1b\xa3\x7b\xf7\xe6\xd3\xaf\x79\x28\xdb\xdc\xa5\x88\x02\x21\x00\xcd" "\x7e\x74\x64\x1b\xa3\x7b\xf7\xe6\xd3\xaf\x79\x28\xdb\xdc\xa5\x88\x02\x21\x00\xcd"
"\x06\xf1\xe3\xab\x16\x21\x8e\xd8\xc0\x14\xaf\x09\x4f\x5b\x73\xef\x5e\x9e\x4b\xe7" "\x06\xf1\xe3\xab\x16\x21\x8e\xd8\xc0\x14\xaf\x09\x4f\x5b\x73\xef\x5e\x9e\x4b\xe7"
"\x35\xeb\xdd\x9b\x6d\x8f\x7d\xf3\xc4\x3a\xd7"; "\x35\xeb\xdd\x9b\x6d\x8f\x7d\xf3\xc4\x3a\xd7";
const uint8_t * attestation_cert_der = (const uint8_t *)_attestation_cert_der;
uint16_t attestation_cert_der_get_size(){
return sizeof(_attestation_cert_der)-1; const uint16_t attestation_cert_der_size = sizeof(attestation_cert_der)-1;
}
const uint8_t attestation_key[] = "\xcd\x67\xaa\x31\x0d\x09\x1e\xd1\x6e\x7e\x98\x92\xaa\x07\x0e\x19\x94\xfc\xd7\x14\xae\x7c\x40\x8f\xb9\x46\xb7\x2e\x5f\xe7\x5d\x30"; const uint8_t attestation_key[] = "\xcd\x67\xaa\x31\x0d\x09\x1e\xd1\x6e\x7e\x98\x92\xaa\x07\x0e\x19\x94\xfc\xd7\x14\xae\x7c\x40\x8f\xb9\x46\xb7\x2e\x5f\xe7\x5d\x30";

View File

@ -54,7 +54,10 @@ void crypto_reset_master_secret();
void crypto_load_master_secret(uint8_t * key); void crypto_load_master_secret(uint8_t * key);
extern const uint8_t * attestation_cert_der; extern const uint8_t attestation_cert_der[];
uint16_t attestation_cert_der_get_size(); extern const uint16_t attestation_cert_der_size;
extern const uint8_t attestation_key[];
extern const uint16_t attestation_key_size;
#endif #endif

View File

@ -661,7 +661,7 @@ uint8_t ctap_add_attest_statement(CborEncoder * map, uint8_t * sigder, int len)
ret = cbor_encoder_create_array(&stmtmap, &x5carr, 1); ret = cbor_encoder_create_array(&stmtmap, &x5carr, 1);
check_ret(ret); check_ret(ret);
{ {
ret = cbor_encode_byte_string(&x5carr, attestation_cert_der, attestation_cert_der_get_size()); ret = cbor_encode_byte_string(&x5carr, attestation_cert_der, attestation_cert_der_size);
check_ret(ret); check_ret(ret);
ret = cbor_encoder_close_container(&stmtmap, &x5carr); ret = cbor_encoder_close_container(&stmtmap, &x5carr);
check_ret(ret); check_ret(ret);

View File

@ -696,7 +696,7 @@ uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE
{ {
ctap_response_init(ctap_resp); ctap_response_init(ctap_resp);
#if !defined(IS_BOOTLOADER) && (defined(SOLO_EXPERIMENTAL)) #if !defined(IS_BOOTLOADER) && (defined(SOLO_HACKER) || defined(SOLO_EXPERIMENTAL))
uint32_t param; uint32_t param;
#endif #endif
#if defined(IS_BOOTLOADER) #if defined(IS_BOOTLOADER)
@ -710,20 +710,23 @@ uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE
printf1(TAG_HID,"CTAPHID_BOOT\n"); printf1(TAG_HID,"CTAPHID_BOOT\n");
u2f_set_writeback_buffer(ctap_resp); u2f_set_writeback_buffer(ctap_resp);
is_busy = bootloader_bridge(len, ctap_buffer); is_busy = bootloader_bridge(len, ctap_buffer);
wb->bcnt = 1 + ctap_resp->length;
ctaphid_write(wb, &is_busy, 1); ctaphid_write(wb, &is_busy, 1);
ctaphid_write(wb, ctap_resp->data, ctap_resp->length); ctaphid_write(wb, ctap_resp->data, ctap_resp->length);
ctaphid_write(wb, NULL, 0); ctaphid_write(wb, NULL, 0);
return 1; return 1;
#endif #endif
#if defined(SOLO) #if defined(SOLO_HACKER)
case CTAPHID_ENTERBOOT: case CTAPHID_ENTERBOOT:
printf1(TAG_HID,"CTAPHID_ENTERBOOT\n"); printf1(TAG_HID,"CTAPHID_ENTERBOOT\n");
boot_solo_bootloader(); boot_solo_bootloader();
wb->bcnt = 0; wb->bcnt = 0;
ctaphid_write(wb, NULL, 0); ctaphid_write(wb, NULL, 0);
return 1; return 1;
case CTAPHID_ENTERSTBOOT:
printf1(TAG_HID,"CTAPHID_ENTERBOOT\n");
boot_st_bootloader();
return 1;
#endif #endif
#if !defined(IS_BOOTLOADER) #if !defined(IS_BOOTLOADER)
@ -742,21 +745,16 @@ uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE
case CTAPHID_GETVERSION: case CTAPHID_GETVERSION:
printf1(TAG_HID,"CTAPHID_GETVERSION\n"); printf1(TAG_HID,"CTAPHID_GETVERSION\n");
wb->bcnt = 4; wb->bcnt = 3;
ctap_buffer[0] = SOLO_VERSION_MAJ; ctap_buffer[0] = SOLO_VERSION_MAJ;
ctap_buffer[1] = SOLO_VERSION_MIN; ctap_buffer[1] = SOLO_VERSION_MIN;
ctap_buffer[2] = SOLO_VERSION_PATCH; ctap_buffer[2] = SOLO_VERSION_PATCH;
#if defined(SOLO) ctaphid_write(wb, ctap_buffer, 3);
ctap_buffer[3] = solo_is_locked();
#else
ctap_buffer[3] = 0;
#endif
ctaphid_write(wb, ctap_buffer, 4);
ctaphid_write(wb, NULL, 0); ctaphid_write(wb, NULL, 0);
return 1; return 1;
break; break;
#if !defined(IS_BOOTLOADER) && (defined(SOLO_EXPERIMENTAL)) #if !defined(IS_BOOTLOADER) && (defined(SOLO_HACKER) || defined(SOLO_EXPERIMENTAL))
case CTAPHID_LOADKEY: case CTAPHID_LOADKEY:
/** /**
* Load external key. Useful for enabling backups. * Load external key. Useful for enabling backups.

View File

@ -306,7 +306,7 @@ static int16_t u2f_register(struct u2f_register_request * req)
uint8_t * sig = (uint8_t*)req; uint8_t * sig = (uint8_t*)req;
const uint16_t attest_size = attestation_cert_der_get_size(); const uint16_t attest_size = attestation_cert_der_size;
if ( ! ctap_user_presence_test(750)) if ( ! ctap_user_presence_test(750))
{ {

View File

@ -1,10 +1,14 @@
#!/bin/bash -xe #!/bin/bash -xe
version=$1
export PREFIX=/opt/gcc-arm-none-eabi-8-2019-q3-update/bin/ version=${1:-master}
export PREFIX=/opt/gcc-arm-none-eabi-8-2018-q4-major/bin/
cd /solo/targets/stm32l432 cd /solo/targets/stm32l432
ls git fetch --tags
git checkout ${version}
git submodule update --init --recursive
version=$(git describe)
make cbor make cbor
@ -12,12 +16,13 @@ out_dir="/builds"
function build() { function build() {
part=${1} part=${1}
output=${2} variant=${2}
what="${part}" output=${3:-${part}}
what="${part}-${variant}"
make full-clean make full-clean
make ${what} VERSION_FULL=${version} make ${what}
out_hex="${what}-${version}.hex" out_hex="${what}-${version}.hex"
out_sha2="${what}-${version}.sha2" out_sha2="${what}-${version}.sha2"
@ -27,27 +32,24 @@ function build() {
cp ${out_hex} ${out_sha2} ${out_dir} cp ${out_hex} ${out_sha2} ${out_dir}
} }
build bootloader-nonverifying bootloader build bootloader nonverifying
build bootloader-verifying bootloader build bootloader verifying
build firmware solo build firmware hacker solo
build firmware-debug-1 solo build firmware hacker-debug-1 solo
build firmware-debug-2 solo build firmware hacker-debug-2 solo
build firmware solo build firmware secure solo
build firmware secure-non-solokeys solo
pip install -U pip
pip install -U solo-python
cd ${out_dir} cd ${out_dir}
bundle="bundle-hacker-${version}" bundle="bundle-hacker-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-${version}.hex ${bundle}.hex /opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2 sha256sum ${bundle}.hex > ${bundle}.sha2
bundle="bundle-hacker-debug-1-${version}" bundle="bundle-hacker-debug-1-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-debug-1-${version}.hex ${bundle}.hex /opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-debug-1-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2
bundle="bundle-hacker-debug-2-${version}" bundle="bundle-hacker-debug-2-${version}"
/opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-debug-2-${version}.hex ${bundle}.hex /opt/conda/bin/solo mergehex bootloader-nonverifying-${version}.hex firmware-hacker-debug-2-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2
bundle="bundle-secure-non-solokeys-${version}" bundle="bundle-secure-non-solokeys-${version}"
/opt/conda/bin/solo mergehex --lock bootloader-verifying-${version}.hex firmware-${version}.hex ${bundle}.hex /opt/conda/bin/solo mergehex bootloader-verifying-${version}.hex firmware-secure-non-solokeys-${version}.hex ${bundle}.hex
sha256sum ${bundle}.hex > ${bundle}.sha2 sha256sum ${bundle}.hex > ${bundle}.sha2

View File

@ -15,7 +15,6 @@ nav:
- Bootloader mode: solo/bootloader-mode.md - Bootloader mode: solo/bootloader-mode.md
- Customization: solo/customization.md - Customization: solo/customization.md
- Solo Extras: solo/solo-extras.md - Solo Extras: solo/solo-extras.md
- Application Ideas: solo/application-ideas.md
- Running on Nucleo32 board: solo/nucleo32-board.md - Running on Nucleo32 board: solo/nucleo32-board.md
- Signed update process: solo/signed-updates.md - Signed update process: solo/signed-updates.md
- Code documentation: solo/code-overview.md - Code documentation: solo/code-overview.md

View File

@ -2,9 +2,8 @@ ifndef DEBUG
DEBUG=0 DEBUG=0
endif endif
VERSION_FULL?=$(shell git describe) APPMAKE=build/application.mk
APPMAKE=build/application.mk VERSION_FULL=${VERSION_FULL} BOOTMAKE=build/bootloader.mk
BOOTMAKE=build/bootloader.mk VERSION_FULL=${VERSION_FULL}
merge_hex=solo mergehex merge_hex=solo mergehex
@ -13,14 +12,20 @@ merge_hex=solo mergehex
# The following are the main targets for reproducible builds. # The following are the main targets for reproducible builds.
# TODO: better explanation # TODO: better explanation
firmware: firmware-hacker:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 $(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0'
firmware-debug-1: firmware-hacker-debug-1:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=1 $(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=1 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0'
firmware-debug-2: firmware-hacker-debug-2:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=2 $(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=2 EXTRA_DEFINES='-DSOLO_HACKER -DFLASH_ROP=0'
firmware-secure-non-solokeys:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DFLASH_ROP=2'
firmware-secure:
$(MAKE) -f $(APPMAKE) -j8 solo.hex PREFIX=$(PREFIX) DEBUG=0 EXTRA_DEFINES='-DUSE_SOLOKEYS_CERT -DFLASH_ROP=2'
bootloader-nonverifying: bootloader-nonverifying:
$(MAKE) -f $(BOOTMAKE) -j8 bootloader.hex PREFIX=$(PREFIX) EXTRA_DEFINES='-DSOLO_HACKER' DEBUG=0 $(MAKE) -f $(BOOTMAKE) -j8 bootloader.hex PREFIX=$(PREFIX) EXTRA_DEFINES='-DSOLO_HACKER' DEBUG=0
@ -90,7 +95,7 @@ flashboot: bootloader.hex
STM32_Programmer_CLI -c port=SWD -halt -d bootloader.hex -rst STM32_Programmer_CLI -c port=SWD -halt -d bootloader.hex -rst
flash-firmware: flash-firmware:
$(SZ) -A solo.elf arm-none-eabi-size -A solo.elf
solo program aux enter-bootloader solo program aux enter-bootloader
solo program bootloader solo.hex solo program bootloader solo.hex

View File

@ -9,6 +9,7 @@
#define _APP_H_ #define _APP_H_
#include <stdint.h> #include <stdint.h>
#include "version.h" #include "version.h"
#define DEBUG_UART USART1 #define DEBUG_UART USART1
#ifndef DEBUG_LEVEL #ifndef DEBUG_LEVEL
@ -20,7 +21,6 @@
#define BOOT_TO_DFU 0 #define BOOT_TO_DFU 0
#define SOLO 1
#define IS_BOOTLOADER 1 #define IS_BOOTLOADER 1
#define ENABLE_U2F_EXTENSIONS #define ENABLE_U2F_EXTENSIONS
@ -64,9 +64,4 @@ int is_authorized_to_boot();
int is_bootloader_disabled(); int is_bootloader_disabled();
void bootloader_heartbeat(); void bootloader_heartbeat();
// Return 1 if Solo is secure/locked.
int solo_is_locked();
#endif #endif

View File

@ -66,7 +66,7 @@ all: $(TARGET).elf
%.elf: $(OBJ) %.elf: $(OBJ)
$(CC) $^ $(HW) $(LDFLAGS) -o $@ $(CC) $^ $(HW) $(LDFLAGS) -o $@
$(SZ) $@ arm-none-eabi-size $@
%.hex: %.elf %.hex: %.elf
$(CP) -O ihex $^ $(TARGET).hex $(CP) -O ihex $^ $(TARGET).hex

View File

@ -13,8 +13,8 @@ USB_LIB := lib/usbd/usbd_cdc.c lib/usbd/usbd_cdc_if.c lib/usbd/usbd_composite.c
lib/usbd/usbd_ctlreq.c lib/usbd/usbd_desc.c lib/usbd/usbd_hid.c \ lib/usbd/usbd_ctlreq.c lib/usbd/usbd_desc.c lib/usbd/usbd_hid.c \
lib/usbd/usbd_ccid.c lib/usbd/usbd_ccid.c
VERSION_FULL?=$(shell git describe) VERSION:=$(shell git describe --abbrev=0 )
VERSION:=$(shell python -c 'print("$(VERSION_FULL)".split("-")[0])') VERSION_FULL:=$(shell git describe)
VERSION_MAJ:=$(shell python -c 'print("$(VERSION)".split(".")[0])') VERSION_MAJ:=$(shell python -c 'print("$(VERSION)".split(".")[0])')
VERSION_MIN:=$(shell python -c 'print("$(VERSION)".split(".")[1])') VERSION_MIN:=$(shell python -c 'print("$(VERSION)".split(".")[1])')
VERSION_PAT:=$(shell python -c 'print("$(VERSION)".split(".")[2])') VERSION_PAT:=$(shell python -c 'print("$(VERSION)".split(".")[2])')

View File

@ -9,8 +9,6 @@
#include <stdint.h> #include <stdint.h>
#include "version.h" #include "version.h"
#define SOLO
#define DEBUG_UART USART1 #define DEBUG_UART USART1
#ifndef DEBUG_LEVEL #ifndef DEBUG_LEVEL
@ -48,9 +46,6 @@
void printing_init(); void printing_init();
void hw_init(int lf); void hw_init(int lf);
// Return 1 if Solo is secure/locked.
int solo_is_locked();
//#define TEST //#define TEST
//#define TEST_POWER //#define TEST_POWER

View File

@ -6,10 +6,10 @@
// copied, modified, or distributed except according to those terms. // copied, modified, or distributed except according to those terms.
#include <stdint.h> #include <stdint.h>
#include "crypto.h" #include "crypto.h"
#include "memory_layout.h"
#ifdef USE_SOLOKEYS_CERT
const uint8_t attestation_solo_cert_der[] = const uint8_t attestation_cert_der[] =
"\x30\x82\x02\xe1\x30\x82\x02\x88\xa0\x03\x02\x01\x02\x02\x01\x01\x30\x0a\x06\x08" "\x30\x82\x02\xe1\x30\x82\x02\x88\xa0\x03\x02\x01\x02\x02\x01\x01\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x81\x80\x31\x0b\x30\x09\x06\x03\x55\x04\x06" "\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x81\x80\x31\x0b\x30\x09\x06\x03\x55\x04\x06"
"\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08\x4d\x61\x72\x79\x6c" "\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08\x4d\x61\x72\x79\x6c"
@ -49,8 +49,11 @@ const uint8_t attestation_solo_cert_der[] =
"\xf8\x84\xc3\x78\x35\x93\x63\x81\x2e\xbe\xa6\x12\x32\x6e\x29\x90\xc8\x91\x4b\x71" "\xf8\x84\xc3\x78\x35\x93\x63\x81\x2e\xbe\xa6\x12\x32\x6e\x29\x90\xc8\x91\x4b\x71"
"\x52" "\x52"
; ;
#else
const uint8_t attestation_hacker_cert_der[] = // For testing/development only
const uint8_t attestation_cert_der[] =
"\x30\x82\x02\xe9\x30\x82\x02\x8e\xa0\x03\x02\x01\x02\x02\x01\x01\x30\x0a\x06\x08" "\x30\x82\x02\xe9\x30\x82\x02\x8e\xa0\x03\x02\x01\x02\x02\x01\x01\x30\x0a\x06\x08"
"\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x81\x82\x31\x0b\x30\x09\x06\x03\x55\x04\x06" "\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x81\x82\x31\x0b\x30\x09\x06\x03\x55\x04\x06"
"\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08\x4d\x61\x72\x79\x6c" "\x13\x02\x55\x53\x31\x11\x30\x0f\x06\x03\x55\x04\x08\x0c\x08\x4d\x61\x72\x79\x6c"
@ -91,16 +94,8 @@ const uint8_t attestation_hacker_cert_der[] =
"\xf3\x87\x61\x82\xd8\xcd\x48\xfc\x57" "\xf3\x87\x61\x82\xd8\xcd\x48\xfc\x57"
; ;
#endif
const uint16_t attestation_solo_cert_der_size = sizeof(attestation_solo_cert_der)-1; const uint16_t attestation_cert_der_size = sizeof(attestation_cert_der)-1;
const uint16_t attestation_hacker_cert_der_size = sizeof(attestation_hacker_cert_der)-1;
// const uint16_t attestation_key_size = 32;
const uint8_t * attestation_cert_der = ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert;
#include "log.h"
uint16_t attestation_cert_der_get_size(){
uint16_t sz = (uint16_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert_size;
return sz;
}
const uint16_t attestation_key_size = 32;

View File

@ -194,10 +194,9 @@ void crypto_ecc256_init(void)
void crypto_ecc256_load_attestation_key(void) void crypto_ecc256_load_attestation_key(void)
{ {
// static uint8_t _key [32]; static uint8_t _key [32];
flash_attestation_page * page =(flash_attestation_page *)ATTESTATION_PAGE_ADDR; memmove(_key, (uint8_t*)ATTESTATION_KEY_ADDR, 32);
// memmove(_key, (uint8_t *)ATTESTATION_KEY_ADDR, 32); _signing_key = _key;
_signing_key = page->attestation_key;
_key_len = 32; _key_len = 32;
} }

View File

@ -34,8 +34,6 @@
#define LOW_FREQUENCY 1 #define LOW_FREQUENCY 1
#define HIGH_FREQUENCY 0 #define HIGH_FREQUENCY 0
#define SOLO_FLAG_LOCKED 0x2
void wait_for_usb_tether(void); void wait_for_usb_tether(void);
@ -193,98 +191,6 @@ void device_init_button(void)
} }
} }
int solo_is_locked(){
uint64_t device_settings = ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings;
uint32_t tag = (uint32_t)(device_settings >> 32ull);
return tag == ATTESTATION_CONFIGURED_TAG && (device_settings & SOLO_FLAG_LOCKED) != 0;
}
/** device_migrate
* Depending on version of device, migrates:
* * Moves attestation certificate to data segment.
* * Creates locked variable and stores in data segment.
*
* Once in place, this allows all devices to accept same firmware,
* rather than using "hacker" and "secure" builds.
*/
static void device_migrate(){
extern const uint16_t attestation_solo_cert_der_size;
extern const uint16_t attestation_hacker_cert_der_size;
extern uint8_t attestation_solo_cert_der[];
extern uint8_t attestation_hacker_cert_der[];
uint64_t device_settings = ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings;
uint32_t configure_tag = (uint32_t)(device_settings >> 32);
if (configure_tag != ATTESTATION_CONFIGURED_TAG)
{
printf1(TAG_RED,"Migrating certificate and lock information to data segment.\r\n");
device_settings = ATTESTATION_CONFIGURED_TAG;
device_settings <<= 32;
// Read current device lock level.
uint32_t optr = FLASH->OPTR;
if ((optr & 0xff) != 0xAA){
device_settings |= SOLO_FLAG_LOCKED;
}
uint8_t tmp_attestation_key[32];
memmove(tmp_attestation_key,
((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_key,
32);
flash_erase_page(ATTESTATION_PAGE);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_key,
tmp_attestation_key,
32
);
// Check if this is Solo Hacker attestation (not confidential)
// then write solo or hacker attestation cert to flash page.
uint8_t solo_hacker_attestation_key[32] = "\x1b\x26\x26\xec\xc8\xf6\x9b\x0f\x69\xe3\x4f"
"\xb2\x36\xd7\x64\x66\xba\x12\xac\x16\xc3\xab"
"\x57\x50\xba\x06\x4e\x8b\x90\xe0\x24\x48";
if (memcmp(solo_hacker_attestation_key,
tmp_attestation_key,
32) == 0)
{
printf1(TAG_GREEN,"Updating solo hacker cert\r\n");
flash_write_dword(
(uint32_t)&((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert_size,
(uint64_t)attestation_hacker_cert_der_size
);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert,
attestation_hacker_cert_der,
attestation_hacker_cert_der_size
);
}
else
{
printf1(TAG_GREEN,"Updating solo secure cert\r\n");
flash_write_dword(
(uint32_t)&((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert_size,
(uint64_t)attestation_solo_cert_der_size
);
flash_write(
(uint32_t)((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->attestation_cert,
attestation_solo_cert_der,
attestation_solo_cert_der_size
);
}
// Save / done.
flash_write_dword(
(uint32_t) & ((flash_attestation_page *)ATTESTATION_PAGE_ADDR)->device_settings,
(uint64_t)device_settings);
}
}
void device_init(int argc, char *argv[]) void device_init(int argc, char *argv[])
{ {
@ -313,8 +219,6 @@ void device_init(int argc, char *argv[])
ctaphid_init(); ctaphid_init();
ctap_init(); ctap_init();
device_migrate();
#if BOOT_TO_DFU #if BOOT_TO_DFU
flash_option_bytes_init(1); flash_option_bytes_init(1);
#else #else

View File

@ -31,18 +31,21 @@ static void flash_unlock(void)
// Locks flash and turns off DFU // Locks flash and turns off DFU
void flash_option_bytes_init(int boot_from_dfu) void flash_option_bytes_init(int boot_from_dfu)
{ {
#ifndef FLASH_ROP
#define FLASH_ROP 0
#endif
#if FLASH_ROP == 0
uint32_t val = 0xfffff8aa; uint32_t val = 0xfffff8aa;
#elif FLASH_ROP == 2
uint32_t val = 0xfffff8cc;
#else
uint32_t val = 0xfffff8b9;
#endif
if (boot_from_dfu){ if (boot_from_dfu)
{
val &= ~(1<<27); // nBOOT0 = 0 (boot from system rom) val &= ~(1<<27); // nBOOT0 = 0 (boot from system rom)
} }
else {
if (solo_is_locked())
{
val = 0xfffff8cc;
}
}
val &= ~(1<<26); // nSWBOOT0 = 0 (boot from nBoot0) val &= ~(1<<26); // nSWBOOT0 = 0 (boot from nBoot0)
val &= ~(1<<25); // SRAM2_RST = 1 (erase sram on reset) val &= ~(1<<25); // SRAM2_RST = 1 (erase sram on reset)
val &= ~(1<<24); // SRAM2_PE = 1 (parity check en) val &= ~(1<<24); // SRAM2_PE = 1 (parity check en)

View File

@ -17,11 +17,8 @@
#define COUNTER1_PAGE (PAGES - 3) #define COUNTER1_PAGE (PAGES - 3)
// State of FIDO2 application // State of FIDO2 application
#define STATE2_PAGE (PAGES - 2) #define STATE2_PAGE (PAGES - 2)
#define STATE1_PAGE (PAGES - 1) #define STATE1_PAGE (PAGES - 1)
#define STATE1_PAGE_ADDR (0x08000000 + ((STATE1_PAGE)*PAGE_SIZE))
#define STATE2_PAGE_ADDR (0x08000000 + ((STATE2_PAGE)*PAGE_SIZE))
// Storage of FIDO2 resident keys // Storage of FIDO2 resident keys
#define RK_NUM_PAGES 10 #define RK_NUM_PAGES 10
@ -35,8 +32,8 @@
#define APPLICATION_START_ADDR (0x08000000 + ((APPLICATION_START_PAGE)*PAGE_SIZE)) #define APPLICATION_START_ADDR (0x08000000 + ((APPLICATION_START_PAGE)*PAGE_SIZE))
// where attestation key is located // where attestation key is located
#define ATTESTATION_PAGE (PAGES - 15) #define ATTESTATION_KEY_PAGE (PAGES - 15)
#define ATTESTATION_PAGE_ADDR (0x08000000 + ATTESTATION_PAGE*PAGE_SIZE) #define ATTESTATION_KEY_ADDR (0x08000000 + ATTESTATION_KEY_PAGE*PAGE_SIZE)
// End of application code. Leave some extra room for future data storage. // End of application code. Leave some extra room for future data storage.
// NOT included in application // NOT included in application
@ -51,6 +48,7 @@
#define BOOT_VERSION_ADDR (0x08000000 + BOOT_VERSION_PAGE*FLASH_PAGE_SIZE + 8) #define BOOT_VERSION_ADDR (0x08000000 + BOOT_VERSION_PAGE*FLASH_PAGE_SIZE + 8)
#define LAST_PAGE (APPLICATION_END_PAGE-1) #define LAST_PAGE (APPLICATION_END_PAGE-1)
struct flash_memory_st{ struct flash_memory_st{
uint8_t bootloader[APPLICATION_START_PAGE*2*1024]; uint8_t bootloader[APPLICATION_START_PAGE*2*1024];
uint8_t application[(APPLICATION_END_PAGE-APPLICATION_START_PAGE)*2*1024-8]; uint8_t application[(APPLICATION_END_PAGE-APPLICATION_START_PAGE)*2*1024-8];
@ -67,19 +65,5 @@ typedef struct flash_memory_st flash_memory_st;
#include <assert.h> #include <assert.h>
static_assert(sizeof(flash_memory_st) == 256*1024, "Data structure doesn't match flash size"); static_assert(sizeof(flash_memory_st) == 256*1024, "Data structure doesn't match flash size");
#define ATTESTATION_CONFIGURED_TAG 0xaa551e78
struct flash_attestation_page{
uint8_t attestation_key[32];
// DWORD padded.
uint64_t device_settings;
uint64_t attestation_cert_size;
uint8_t attestation_cert[2048 - 32 - 8 - 8];
} __attribute__((packed));
typedef struct flash_attestation_page flash_attestation_page;
static_assert(sizeof(flash_attestation_page) == 2048, "Data structure doesn't match flash size");
#endif #endif