Compare commits

..

2 Commits

Author SHA1 Message Date
75dbefad73 Merge pull request #205 from m3hm00d/sanitize
Fix minor typo in comment
2019-07-05 10:28:11 -04:00
e14700f398 Fix minor typo in comment
'USBD_HID_DeInit' is written as 'USBD_HID_Init'; likely a copy-paste
error. This patch should fix it.
2019-06-20 16:44:17 +00:00
26 changed files with 153 additions and 534 deletions

2
.gitignore vendored
View File

@ -83,5 +83,3 @@ targets/*/docs/
main
builds/*
tools/testing/.idea/*
tools/testing/tests/__pycache__/*

View File

@ -1,32 +0,0 @@
# Security Policy
## Supported Versions
We fix security issues as soon as they are found, and release firmware updates.
Each such release is accompanied by release notes, see <https://github.com/solokeys/solo/releases>.
The latest version can be determined using the file <https://github.com/solokeys/solo/blob/master/STABLE_VERSION>.
To update your key:
- either visit <https://update.solokeys.com>, or
- use our commandline tool <https://github.com/solokeys/solo-python>:
```
solo key update [--secure|--hacker]
```
## Reporting a Vulnerability
To report vulnerabilities you have found:
- preferably contact [@conor1](https://keybase.io/conor1), [@0x0ece](https://keybase.io/0x0ece) or [@nickray](https://keybase.io/nickray) via Keybase, or
- send us e-mail using OpenPGP to [security@solokeys.com](mailto:security@solokeys.com).
<https://keys.openpgp.org/vks/v1/by-fingerprint/85AFA2769F4381E5712C36A04DDFC46FEF1F7F3F>
We do not currently run a paid bug bounty program, but are happy to provide you with a bunch of Solo keys in recognition of your findings.
## Mailing List
Join our release notification mailing list to be informed about each release:
https://sendy.solokeys.com/subscription?f=9MLIqMDmox1Ucz89C892Kq09IqYMM7OB8UrBrkvtTkDI763QF3L5PMYlRhlVNo2AI892mO

View File

@ -1 +1 @@
2.4.0
2.2.2

View File

@ -1,40 +1,22 @@
# Building solo
To build, develop and debug the firmware for the STM32L432. This will work
for Solo Hacker, the Nucleo development board, or your own homemade Solo.
There exists a development board [NUCLEO-L432KC](https://www.st.com/en/evaluation-tools/nucleo-l432kc.html) you can use; The board does contain a debugger, so all you need is a USB cable (and some [udev](/udev) [rules](https://rust-embedded.github.io/book/intro/install/linux.html#udev-rules)).
## Prerequisites
# Prerequisites
Install the [latest ARM compiler toolchain](https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads) for your system. We recommend getting the latest compilers from ARM.
You can also install the ARM toolchain using a package manager like `apt-get` or `pacman`,
but be warned they might be out of date. Typically it will be called `gcc-arm-none-eabi binutils-arm-none-eabi`.
Install `solo-python` usually with `pip3 install solo-python`. The `solo` python application may also be used for [programming](#programming).
To program your build, you'll need one of the following programs.
- [openocd](http://openocd.org)
- [stlink](https://github.com/texane/stlink)
- [STM32CubeProg](https://www.st.com/en/development-tools/stm32cubeprog.html)
## Obtain source code and solo tool
Source code can be downloaded from:
- [github releases list](https://github.com/solokeys/solo/releases)
- [github repository](https://github.com/solokeys/solo)
**solo** tool can be downloaded from:
- from python programs [repository](https://pypi.org/project/solo-python/) `pip install solo-python`
- from installing prerequisites `pip3 install -r tools/requirements.txt`
- github repository: [repository](https://github.com/solokeys/solo-python)
- installation python enviroment witn command `make venv` from root directory of source code
## Compilation
# Compilation
Enter the `stm32l4xx` target directory.
@ -98,7 +80,8 @@ make build-release-locked
Programming `all.hex` will cause the device to permanently lock itself.
## Programming
# Programming
It's recommended to test a debug/hacker build first to make sure Solo is working as expected.
Then you can switch to a locked down build, which cannot be reprogrammed as easily (or not at all!).
@ -112,7 +95,7 @@ pip3 install -r tools/requirements.txt
If you're on Windows, you must also install [libusb](https://sourceforge.net/projects/libusb-win32/files/libusb-win32-releases/1.2.6.0/).
### Pre-programmed Solo Hacker
## Pre-programmed Solo Hacker
If your Solo device is already programmed (it flashes green when powered), we recommend
programming it using the Solo bootloader.
@ -135,7 +118,7 @@ If something bad happens, you can always boot the Solo bootloader by doing the f
If you hold the button for an additional 5 seconds, it will boot to the ST DFU (device firmware update).
Don't use the ST DFU unless you know what you're doing.
### ST USB DFU
## ST USB DFU
If your Solo has never been programmed, it will boot the ST USB DFU. The LED is turned
off and it enumerates as "STM BOOTLOADER".
@ -153,7 +136,7 @@ Make sure to program `all.hex`, as this contains both the bootloader and the Sol
If all goes well, you should see a slow-flashing green light.
### Solo Hacker vs Solo
## Solo Hacker vs Solo
A Solo hacker device doesn't need to be in bootloader mode to be programmed, it will automatically switch.
@ -161,7 +144,7 @@ Solo (locked) needs the button to be held down when plugged in to boot to the bo
A locked Solo will only accept signed updates.
### Signed updates
## Signed updates
If this is not a device with a hacker build, you can only program signed updates.
@ -179,7 +162,7 @@ solo sign /path/to/signing-key.pem /path/to/solo.hex /output-path/to/firmware.js
If your Solo isn't locked, you can always reprogram it using a debugger connected directly
to the token.
## Permanently locking the device
# Permanently locking the device
If you plan to be using your Solo for real, you should lock it permanently. This prevents
someone from connecting a debugger to your token and stealing credentials.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 129 KiB

View File

@ -1,122 +0,0 @@
// Copyright 2019 SoloKeys Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
// iso7816:2013. 5.3.2 Decoding conventions for command bodies
#include "apdu.h"
int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu)
{
EXT_APDU_HEADER *hapdu = (EXT_APDU_HEADER *)data;
apdu->cla = hapdu->cla;
apdu->ins = hapdu->ins;
apdu->p1 = hapdu->p1;
apdu->p2 = hapdu->p2;
apdu->lc = 0;
apdu->data = NULL;
apdu->le = 0;
apdu->extended_apdu = false;
apdu->case_type = 0x00;
uint8_t b0 = hapdu->lc[0];
// case 1
if (len == 4)
{
apdu->case_type = 0x01;
}
// case 2S (Le)
if (len == 5)
{
apdu->case_type = 0x02;
apdu->le = b0;
if (!apdu->le)
apdu->le = 0x100;
}
// case 3S (Lc + data)
if (len == 5U + b0 && b0 != 0)
{
apdu->case_type = 0x03;
apdu->lc = b0;
}
// case 4S (Lc + data + Le)
if (len == 5U + b0 + 1U && b0 != 0)
{
apdu->case_type = 0x04;
apdu->lc = b0;
apdu->le = data[len - 1];
if (!apdu->le)
apdu->le = 0x100;
}
// extended length apdu
if (len >= 7 && b0 == 0)
{
uint16_t extlen = (hapdu->lc[1] << 8) + hapdu->lc[2];
// case 2E (Le) - extended
if (len == 7)
{
apdu->case_type = 0x12;
apdu->extended_apdu = true;
apdu->le = extlen;
if (!apdu->le)
apdu->le = 0x10000;
}
// case 3E (Lc + data) - extended
if (len == 7U + extlen)
{
apdu->case_type = 0x13;
apdu->extended_apdu = true;
apdu->lc = extlen;
}
// case 4E (Lc + data + Le) - extended 2-byte Le
if (len == 7U + extlen + 2U)
{
apdu->case_type = 0x14;
apdu->extended_apdu = true;
apdu->lc = extlen;
apdu->le = (data[len - 2] << 8) + data[len - 1];
if (!apdu->le)
apdu->le = 0x10000;
}
// case 4E (Lc + data + Le) - extended 3-byte Le
if (len == 7U + extlen + 3U && data[len - 3] == 0)
{
apdu->case_type = 0x24;
apdu->extended_apdu = true;
apdu->lc = extlen;
apdu->le = (data[len - 2] << 8) + data[len - 1];
if (!apdu->le)
apdu->le = 0x10000;
}
}
if (!apdu->case_type)
return 1;
if (apdu->lc)
{
if (apdu->extended_apdu)
{
apdu->data = data + 7;
} else {
apdu->data = data + 5;
}
}
return 0;
}

View File

@ -2,8 +2,6 @@
#define _APDU_H_
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
typedef struct
{
@ -14,30 +12,6 @@ typedef struct
uint8_t lc;
} __attribute__((packed)) APDU_HEADER;
typedef struct
{
uint8_t cla;
uint8_t ins;
uint8_t p1;
uint8_t p2;
uint8_t lc[3];
} __attribute__((packed)) EXT_APDU_HEADER;
typedef struct
{
uint8_t cla;
uint8_t ins;
uint8_t p1;
uint8_t p2;
uint16_t lc;
uint8_t *data;
uint32_t le;
bool extended_apdu;
uint8_t case_type;
} __attribute__((packed)) APDU_STRUCT;
extern int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu);
#define APDU_FIDO_U2F_REGISTER 0x01
#define APDU_FIDO_U2F_AUTHENTICATE 0x02
#define APDU_FIDO_U2F_VERSION 0x03
@ -51,7 +25,6 @@ extern int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu);
#define SW_COND_USE_NOT_SATISFIED 0x6985
#define SW_FILE_NOT_FOUND 0x6a82
#define SW_INS_INVALID 0x6d00 // Instruction code not supported or invalid
#define SW_CLA_INVALID 0x6e00
#define SW_INTERNAL_EXCEPTION 0x6f00
#endif //_APDU_H_

View File

@ -38,7 +38,6 @@ void generate_private_key(uint8_t * data, int len, uint8_t * data2, int len2, ui
void crypto_ecc256_make_key_pair(uint8_t * pubkey, uint8_t * privkey);
void crypto_ecc256_shared_secret(const uint8_t * pubkey, const uint8_t * privkey, uint8_t * shared_secret);
#define CRYPTO_TRANSPORT_KEY2 ((uint8_t*)2)
#define CRYPTO_TRANSPORT_KEY ((uint8_t*)1)
#define CRYPTO_MASTER_KEY ((uint8_t*)0)

View File

@ -355,9 +355,9 @@ static int ctap_make_extensions(CTAP_extensions * ext, uint8_t * ext_encoder_buf
}
// Generate credRandom
crypto_sha256_hmac_init(CRYPTO_TRANSPORT_KEY2, 0, credRandom);
crypto_sha256_hmac_init(CRYPTO_TRANSPORT_KEY, 0, credRandom);
crypto_sha256_update((uint8_t*)&ext->hmac_secret.credential->id, sizeof(CredentialId));
crypto_sha256_hmac_final(CRYPTO_TRANSPORT_KEY2, 0, credRandom);
crypto_sha256_hmac_final(CRYPTO_TRANSPORT_KEY, 0, credRandom);
// Decrypt saltEnc
crypto_aes256_init(shared_secret, NULL);
@ -432,12 +432,6 @@ static unsigned int get_credential_id_size(CTAP_credentialDescriptor * cred)
return sizeof(CredentialId);
}
static int ctap2_user_presence_test()
{
device_set_status(CTAPHID_STATUS_UPNEEDED);
return ctap_user_presence_test(CTAP2_UP_DELAY_MS);
}
static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * auth_data_buf, uint32_t * len, CTAP_credInfo * credInfo)
{
CborEncoder cose_key;
@ -465,9 +459,11 @@ static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * au
count = auth_data_update_count(&authData->head);
device_set_status(CTAPHID_STATUS_UPNEEDED);
int but;
but = ctap2_user_presence_test(CTAP2_UP_DELAY_MS);
but = ctap_user_presence_test(CTAP2_UP_DELAY_MS);
if (!but)
{
@ -477,7 +473,6 @@ static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * au
{
return CTAP2_ERR_KEEPALIVE_CANCEL;
}
device_set_status(CTAPHID_STATUS_PROCESSING);
authData->head.flags = (but << 0);
@ -610,6 +605,7 @@ int ctap_calculate_signature(uint8_t * data, int datalen, uint8_t * clientDataHa
crypto_sha256_final(hashbuf);
crypto_ecc256_sign(hashbuf, 32, sigbuf);
return ctap_encode_der_sig(sigbuf,sigder);
}
@ -705,11 +701,11 @@ uint8_t ctap_make_credential(CborEncoder * encoder, uint8_t * request, int lengt
}
if (MC.pinAuthEmpty)
{
if (!ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
if (!ctap_user_presence_test(CTAP2_UP_DELAY_MS))
{
return CTAP2_ERR_OPERATION_DENIED;
}
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_AUTH_INVALID : CTAP2_ERR_PIN_NOT_SET;
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_INVALID : CTAP2_ERR_PIN_NOT_SET;
}
if ((MC.paramsParsed & MC_requiredMask) != MC_requiredMask)
{
@ -1060,7 +1056,7 @@ uint8_t ctap_end_get_assertion(CborEncoder * map, CTAP_credentialDescriptor * cr
else
#endif
{
sigder_sz = ctap_calculate_signature(auth_data_buf, auth_data_buf_sz, clientDataHash, auth_data_buf, sigbuf, sigder);
sigder_sz = ctap_calculate_signature(auth_data_buf, sizeof(CTAP_authDataHeader), clientDataHash, auth_data_buf, sigbuf, sigder);
}
{
@ -1141,11 +1137,11 @@ uint8_t ctap_get_assertion(CborEncoder * encoder, uint8_t * request, int length)
if (GA.pinAuthEmpty)
{
if (!ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
if (!ctap_user_presence_test(CTAP2_UP_DELAY_MS))
{
return CTAP2_ERR_OPERATION_DENIED;
}
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_AUTH_INVALID : CTAP2_ERR_PIN_NOT_SET;
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_INVALID : CTAP2_ERR_PIN_NOT_SET;
}
if (GA.pinAuthPresent)
{
@ -1608,6 +1604,7 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
switch(cmd)
{
case CTAP_MAKE_CREDENTIAL:
device_set_status(CTAPHID_STATUS_PROCESSING);
printf1(TAG_CTAP,"CTAP_MAKE_CREDENTIAL\n");
timestamp();
status = ctap_make_credential(&encoder, pkt_raw, length);
@ -1618,6 +1615,7 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break;
case CTAP_GET_ASSERTION:
device_set_status(CTAPHID_STATUS_PROCESSING);
printf1(TAG_CTAP,"CTAP_GET_ASSERTION\n");
timestamp();
status = ctap_get_assertion(&encoder, pkt_raw, length);
@ -1649,7 +1647,7 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break;
case CTAP_RESET:
printf1(TAG_CTAP,"CTAP_RESET\n");
if (ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
if (ctap_user_presence_test(CTAP2_UP_DELAY_MS))
{
ctap_reset();
}
@ -1989,5 +1987,5 @@ void ctap_reset()
memset(PIN_CODE_HASH,0,sizeof(PIN_CODE_HASH));
ctap_reset_key_agreement();
crypto_load_master_secret(STATE.key_space);
crypto_reset_master_secret();
}

View File

@ -929,15 +929,7 @@ uint8_t parse_credential_descriptor(CborValue * arr, CTAP_credentialDescriptor *
buflen = sizeof(type);
ret = cbor_value_copy_text_string(&val, type, &buflen, NULL);
if (ret == CborErrorOutOfMemory)
{
cred->type = PUB_KEY_CRED_UNKNOWN;
}
else
{
check_ret(ret);
}
if (strncmp(type, "public-key",11) == 0)
{

View File

@ -105,8 +105,6 @@ void device_set_clock_rate(DEVICE_CLOCK_RATE param);
#define NFC_IS_AVAILABLE 2
int device_is_nfc();
void request_from_nfc(bool request_active);
void device_init_button();
#endif

View File

@ -113,14 +113,14 @@ end:
printf1(TAG_U2F,"u2f resp: "); dump_hex1(TAG_U2F, _u2f_resp->data, _u2f_resp->length);
}
void u2f_request_nfc(uint8_t * header, uint8_t * data, int datalen, CTAP_RESPONSE * resp)
void u2f_request_nfc(uint8_t * req, int len, CTAP_RESPONSE * resp)
{
if (!header)
if (len < 5 || !req)
return;
request_from_nfc(true); // disable presence test
u2f_request_ex((APDU_HEADER *)header, data, datalen, resp);
request_from_nfc(false); // enable presence test
uint32_t alen = req[4];
u2f_request_ex((APDU_HEADER *)req, &req[5], alen, resp);
}
void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp)

View File

@ -101,7 +101,7 @@ void u2f_request(struct u2f_request_apdu* req, CTAP_RESPONSE * resp);
// u2f_request send a U2F message to NFC protocol
// @req data with iso7816 apdu message
// @len data length
void u2f_request_nfc(uint8_t * header, uint8_t * data, int datalen, CTAP_RESPONSE * resp);
void u2f_request_nfc(uint8_t * req, int len, CTAP_RESPONSE * resp);
int8_t u2f_authenticate_credential(struct u2f_key_handle * kh, uint8_t * appid);

View File

@ -20,9 +20,6 @@
],
"userVerificationDetails": [
[
{
"userVerification": 1
},
{
"userVerification": 4
}

View File

@ -7,7 +7,7 @@ SRC += src/startup_stm32l432xx.s src/system_stm32l4xx.c
SRC += $(DRIVER_LIBS) $(USB_LIB)
# FIDO2 lib
SRC += ../../fido2/apdu.c ../../fido2/util.c ../../fido2/u2f.c ../../fido2/test_power.c
SRC += ../../fido2/util.c ../../fido2/u2f.c ../../fido2/test_power.c
SRC += ../../fido2/stubs.c ../../fido2/log.c ../../fido2/ctaphid.c ../../fido2/ctap.c
SRC += ../../fido2/ctap_parse.c ../../fido2/main.c
SRC += ../../fido2/extensions/extensions.c ../../fido2/extensions/solo.c

View File

@ -309,7 +309,7 @@ static uint8_t USBD_HID_Init (USBD_HandleTypeDef *pdev, uint8_t cfgidx)
}
/**
* @brief USBD_HID_Init
* @brief USBD_HID_DeInit
* DeInitialize the HID layer
* @param pdev: device instance
* @param cfgidx: Configuration index
@ -342,7 +342,6 @@ static uint8_t USBD_HID_Setup (USBD_HandleTypeDef *pdev,
uint8_t *pbuf = NULL;
uint16_t status_info = 0U;
USBD_StatusTypeDef ret = USBD_OK;
req->wLength = req->wLength & 0x7f;
switch (req->bmRequest & USB_REQ_TYPE_MASK)
{
@ -387,7 +386,6 @@ static uint8_t USBD_HID_Setup (USBD_HandleTypeDef *pdev,
break;
case USB_REQ_GET_DESCRIPTOR:
req->wLength = req->wLength & 0x7f;
if(req->wValue >> 8 == HID_REPORT_DESC)
{
len = MIN(HID_FIDO_REPORT_DESC_SIZE , req->wLength);

View File

@ -31,7 +31,7 @@
// #define DISABLE_CTAPHID_WINK
// #define DISABLE_CTAPHID_CBOR
// #define ENABLE_SERIAL_PRINTING
#define ENABLE_SERIAL_PRINTING
#if defined(SOLO_HACKER)
#define SOLO_PRODUCT_NAME "Solo Hacker " SOLO_VERSION

View File

@ -157,11 +157,6 @@ void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac)
key = master_secret;
klen = sizeof(master_secret)/2;
}
else if (key == CRYPTO_TRANSPORT_KEY2)
{
key = transport_secret;
klen = 32;
}
if(klen > 64)

View File

@ -43,7 +43,6 @@ uint32_t __last_update = 0;
extern PCD_HandleTypeDef hpcd;
static int _NFC_status = 0;
static bool isLowFreq = 0;
static bool _RequestComeFromNFC = false;
// #define IS_BUTTON_PRESSED() (0 == (LL_GPIO_ReadInputPort(SOLO_BUTTON_PORT) & SOLO_BUTTON_PIN))
static int is_physical_button_pressed()
@ -58,10 +57,6 @@ static int is_touch_button_pressed()
int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed;
void request_from_nfc(bool request_active) {
_RequestComeFromNFC = request_active;
}
// Timer6 overflow handler. happens every ~90ms.
void TIM6_DAC_IRQHandler()
{
@ -496,7 +491,7 @@ static int handle_packets()
int ctap_user_presence_test(uint32_t up_delay)
{
int ret;
if (device_is_nfc() == NFC_IS_ACTIVE || _RequestComeFromNFC)
if (device_is_nfc() == NFC_IS_ACTIVE)
{
return 1;
}

View File

@ -14,16 +14,6 @@
#define IS_IRQ_ACTIVE() (1 == (LL_GPIO_ReadInputPort(SOLO_AMS_IRQ_PORT) & SOLO_AMS_IRQ_PIN))
uint8_t p14443_block_offset(uint8_t pcb) {
uint8_t offset = 1;
// NAD following
if (pcb & 0x04) offset++;
// CID following
if (pcb & 0x08) offset++;
return offset;
}
// Capability container
const CAPABILITY_CONTAINER NFC_CC = {
.cclen_hi = 0x00, .cclen_lo = 0x0f,
@ -122,7 +112,6 @@ bool ams_receive_with_timeout(uint32_t timeout_ms, uint8_t * data, int maxlen, i
while (tstart + timeout_ms > millis())
{
uint8_t int0 = ams_read_reg(AMS_REG_INT0);
if (int0) process_int0(int0);
uint8_t buffer_status2 = ams_read_reg(AMS_REG_BUF2);
if (buffer_status2 && (int0 & AMS_INT_RXE))
@ -172,18 +161,14 @@ bool nfc_write_response_ex(uint8_t req0, uint8_t * data, uint8_t len, uint16_t r
if (len > 32 - 3)
return false;
res[0] = NFC_CMD_IBLOCK | (req0 & 0x0f);
res[1] = 0;
res[2] = 0;
uint8_t block_offset = p14443_block_offset(req0);
res[0] = NFC_CMD_IBLOCK | (req0 & 3);
if (len && data)
memcpy(&res[block_offset], data, len);
memcpy(&res[1], data, len);
res[len + block_offset + 0] = resp >> 8;
res[len + block_offset + 1] = resp & 0xff;
nfc_write_frame(res, block_offset + len + 2);
res[len + 1] = resp >> 8;
res[len + 2] = resp & 0xff;
nfc_write_frame(res, 3 + len);
return true;
}
@ -197,24 +182,21 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
{
uint8_t res[32 + 2];
int sendlen = 0;
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 0x0f);
uint8_t block_offset = p14443_block_offset(req0);
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 3);
if (len <= 31)
{
uint8_t res[32] = {0};
res[0] = iBlock;
if (len && data)
memcpy(&res[block_offset], data, len);
nfc_write_frame(res, len + block_offset);
memcpy(&res[1], data, len);
nfc_write_frame(res, len + 1);
} else {
do {
// transmit I block
int vlen = MIN(32 - block_offset, len - sendlen);
int vlen = MIN(31, len - sendlen);
res[0] = iBlock;
res[1] = 0;
res[2] = 0;
memcpy(&res[block_offset], &data[sendlen], vlen);
memcpy(&res[1], &data[sendlen], vlen);
// if not a last block
if (vlen + sendlen < len)
@ -223,7 +205,7 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
}
// send data
nfc_write_frame(res, vlen + block_offset);
nfc_write_frame(res, vlen + 1);
sendlen += vlen;
// wait for transmit (32 bytes aprox 2,5ms)
@ -244,10 +226,9 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
break;
}
uint8_t rblock_offset = p14443_block_offset(recbuf[0]);
if (reclen != rblock_offset)
if (reclen != 1)
{
printf1(TAG_NFC, "R block length error. len: %d. %d/%d \r\n", reclen, sendlen, len);
printf1(TAG_NFC, "R block length error. len: %d. %d/%d \r\n", reclen,sendlen,len);
dump_hex1(TAG_NFC, recbuf, reclen);
break;
}
@ -390,72 +371,39 @@ int answer_rats(uint8_t parameter)
nfc_write_frame(res, sizeof(res));
if (!ams_wait_for_tx(10))
{
printf1(TAG_NFC, "RATS TX timeout.\r\n");
ams_write_command(AMS_CMD_DEFAULT);
return 1;
}
ams_wait_for_tx(10);
return 0;
}
void rblock_acknowledge(uint8_t req0, bool ack)
void rblock_acknowledge()
{
uint8_t buf[32] = {0};
uint8_t block_offset = p14443_block_offset(req0);
uint8_t buf[32];
NFC_STATE.block_num = !NFC_STATE.block_num;
buf[0] = NFC_CMD_RBLOCK | (req0 & 0x0f);
if (ack)
buf[0] |= NFC_CMD_RBLOCK_ACK;
nfc_write_frame(buf, block_offset);
}
// international AID = RID:PIX
// RID length == 5 bytes
// usually aid length must be between 5 and 16 bytes
int applet_cmp(uint8_t * aid, int len, uint8_t * const_aid, int const_len)
{
if (len > const_len)
return 10;
// if international AID
if ((const_aid[0] & 0xf0) == 0xa0)
{
if (len < 5)
return 11;
return memcmp(aid, const_aid, MIN(len, const_len));
} else {
if (len != const_len)
return 11;
return memcmp(aid, const_aid, const_len);
}
buf[0] = NFC_CMD_RBLOCK | NFC_STATE.block_num;
nfc_write_frame(buf,1);
}
// Selects application. Returns 1 if success, 0 otherwise
int select_applet(uint8_t * aid, int len)
{
if (applet_cmp(aid, len, (uint8_t *)AID_FIDO, sizeof(AID_FIDO) - 1) == 0)
if (memcmp(aid,AID_FIDO,sizeof(AID_FIDO)) == 0)
{
NFC_STATE.selected_applet = APP_FIDO;
return APP_FIDO;
}
else if (applet_cmp(aid, len, (uint8_t *)AID_NDEF_TYPE_4, sizeof(AID_NDEF_TYPE_4) - 1) == 0)
else if (memcmp(aid,AID_NDEF_TYPE_4,sizeof(AID_NDEF_TYPE_4)) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TYPE_4;
return APP_NDEF_TYPE_4;
}
else if (applet_cmp(aid, len, (uint8_t *)AID_CAPABILITY_CONTAINER, sizeof(AID_CAPABILITY_CONTAINER) - 1) == 0)
else if (memcmp(aid,AID_CAPABILITY_CONTAINER,sizeof(AID_CAPABILITY_CONTAINER)) == 0)
{
NFC_STATE.selected_applet = APP_CAPABILITY_CONTAINER;
return APP_CAPABILITY_CONTAINER;
}
else if (applet_cmp(aid, len, (uint8_t *)AID_NDEF_TAG, sizeof(AID_NDEF_TAG) - 1) == 0)
else if (memcmp(aid,AID_NDEF_TAG,sizeof(AID_NDEF_TAG)) == 0)
{
NFC_STATE.selected_applet = APP_NDEF_TAG;
return APP_NDEF_TAG;
@ -465,36 +413,25 @@ int select_applet(uint8_t * aid, int len)
void nfc_process_iblock(uint8_t * buf, int len)
{
APDU_HEADER * apdu = (APDU_HEADER *)(buf + 1);
uint8_t * payload = buf + 1 + 5;
uint8_t plen = apdu->lc;
int selected;
CTAP_RESPONSE ctap_resp;
int status;
uint16_t reslen;
printf1(TAG_NFC,"Iblock: ");
dump_hex1(TAG_NFC, buf, len);
uint8_t block_offset = p14443_block_offset(buf[0]);
APDU_STRUCT apdu;
if (apdu_decode(buf + block_offset, len - block_offset, &apdu)) {
printf1(TAG_NFC,"apdu decode error\r\n");
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
return;
}
printf1(TAG_NFC,"apdu ok. %scase=%02x cla=%02x ins=%02x p1=%02x p2=%02x lc=%d le=%d\r\n",
apdu.extended_apdu ? "[e]":"", apdu.case_type, apdu.cla, apdu.ins, apdu.p1, apdu.p2, apdu.lc, apdu.le);
// check CLA
if (apdu.cla != 0x00 && apdu.cla != 0x80) {
printf1(TAG_NFC, "Unknown CLA %02x\r\n", apdu.cla);
nfc_write_response(buf[0], SW_CLA_INVALID);
return;
}
// TODO this needs to be organized better
switch(apdu.ins)
switch(apdu->ins)
{
case APDU_INS_SELECT:
if (plen > len - 6)
{
printf1(TAG_ERR, "Truncating APDU length %d\r\n", apdu->lc);
plen = len-6;
}
// if (apdu->p1 == 0 && apdu->p2 == 0x0c)
// {
// printf1(TAG_NFC,"Select NDEF\r\n");
@ -509,9 +446,14 @@ void nfc_process_iblock(uint8_t * buf, int len)
// }
// else
{
selected = select_applet(apdu.data, apdu.lc);
selected = select_applet(payload, plen);
if (selected == APP_FIDO)
{
// block = buf[0] & 1;
// block = NFC_STATE.block_num;
// block = !block;
// NFC_STATE.block_num = block;
// NFC_STATE.block_num = block;
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
printf1(TAG_NFC, "FIDO applet selected.\r\n");
}
@ -523,7 +465,7 @@ void nfc_process_iblock(uint8_t * buf, int len)
else
{
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected "); dump_hex1(TAG_NFC, apdu.data, apdu.lc);
printf1(TAG_NFC, "NOT selected\r\n"); dump_hex1(TAG_NFC,payload, plen);
}
}
break;
@ -536,8 +478,7 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F GetVersion command.\r\n");
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
break;
case APDU_FIDO_U2F_REGISTER:
@ -548,9 +489,9 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F Register command.\r\n");
if (apdu.lc != 64)
if (plen != 64)
{
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", apdu.lc);
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", plen);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
@ -561,16 +502,20 @@ void nfc_process_iblock(uint8_t * buf, int len)
// WTX_on(WTX_TIME_DEFAULT);
// SystemClock_Config_LF32();
// delay(300);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
if (device_is_nfc()) device_set_clock_rate(DEVICE_LOW_POWER_FAST);;
u2f_request_nfc(&buf[1], len, &ctap_resp);
if (device_is_nfc()) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);;
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register P2 took %d\r\n", timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
// printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register answered %d (took %d)\r\n", millis(), timestamp());
break;
@ -582,17 +527,17 @@ void nfc_process_iblock(uint8_t * buf, int len)
printf1(TAG_NFC, "U2F Authenticate command.\r\n");
if (apdu.lc != 64 + 1 + apdu.data[64])
if (plen != 64 + 1 + buf[6 + 64])
{
delay(5);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", apdu.lc, apdu.data[64]);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", plen, buf[6 + 64]);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
timestamp();
// WTX_on(WTX_TIME_DEFAULT);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
u2f_request_nfc(&buf[1], len, &ctap_resp);
// if (!WTX_off())
// return;
@ -605,16 +550,14 @@ void nfc_process_iblock(uint8_t * buf, int len)
case APDU_FIDO_NFCCTAP_MSG:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
return;
break;
}
printf1(TAG_NFC, "FIDO2 CTAP message. %d\r\n", timestamp());
WTX_on(WTX_TIME_DEFAULT);
request_from_nfc(true);
ctap_response_init(&ctap_resp);
status = ctap_request(apdu.data, apdu.lc, &ctap_resp);
request_from_nfc(false);
status = ctap_request(payload, plen, &ctap_resp);
if (!WTX_off())
return;
@ -637,37 +580,44 @@ void nfc_process_iblock(uint8_t * buf, int len)
break;
case APDU_INS_READ_BINARY:
// response length
reslen = apdu.le & 0xffff;
switch(NFC_STATE.selected_applet)
{
case APP_CAPABILITY_CONTAINER:
printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n");
if (reslen == 0 || reslen > sizeof(NFC_CC))
reslen = sizeof(NFC_CC);
nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, reslen, SW_SUCCESS);
if (plen > 15)
{
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc);
plen = 15;
}
nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, plen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
case APP_NDEF_TAG:
printf1(TAG_NFC,"APP_NDEF_TAG\r\n");
if (reslen == 0 || reslen > sizeof(NDEF_SAMPLE) - 1)
reslen = sizeof(NDEF_SAMPLE) - 1;
nfc_write_response_ex(buf[0], NDEF_SAMPLE, reslen, SW_SUCCESS);
if (plen > (sizeof(NDEF_SAMPLE) - 1))
{
printf1(TAG_ERR, "Truncating requested CC length %d\r\n", apdu->lc);
plen = sizeof(NDEF_SAMPLE) - 1;
}
nfc_write_response_ex(buf[0], NDEF_SAMPLE, plen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
default:
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_ERR, "No binary applet selected!\r\n");
return;
break;
}
break;
break;
default:
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu.ins);
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu->ins);
nfc_write_response(buf[0], SW_INS_INVALID);
break;
}
}
static uint8_t ibuf[1024];
@ -681,7 +631,7 @@ void clear_ibuf()
void nfc_process_block(uint8_t * buf, unsigned int len)
{
printf1(TAG_NFC, "-----\r\n");
if (!len)
return;
@ -691,7 +641,6 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
}
else if (IS_IBLOCK(buf[0]))
{
uint8_t block_offset = p14443_block_offset(buf[0]);
if (buf[0] & 0x10)
{
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d\r\n", ibuflen, len);
@ -705,27 +654,27 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len);
if (len > block_offset)
if (len)
{
memcpy(&ibuf[ibuflen], &buf[block_offset], len - block_offset);
ibuflen += len - block_offset;
memcpy(&ibuf[ibuflen], &buf[1], len - 1);
ibuflen += len - 1;
}
// send R block
rblock_acknowledge(buf[0], true);
uint8_t rb = NFC_CMD_RBLOCK | NFC_CMD_RBLOCK_ACK | (buf[0] & 3);
nfc_write_frame(&rb, 1);
} else {
if (ibuflen)
{
if (len > block_offset)
if (len)
{
memcpy(&ibuf[ibuflen], &buf[block_offset], len - block_offset);
ibuflen += len - block_offset;
memcpy(&ibuf[ibuflen], &buf[1], len - 1);
ibuflen += len - 1;
}
// add last chaining to top of the block
memmove(&ibuf[block_offset], ibuf, ibuflen);
memmove(ibuf, buf, block_offset);
ibuflen += block_offset;
memmove(&ibuf[1], ibuf, ibuflen);
ibuf[0] = buf[0];
ibuflen++;
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d\r\n", ibuflen, len);
@ -734,6 +683,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
nfc_process_iblock(ibuf, ibuflen);
} else {
// printf1(TAG_NFC, "NFC_CMD_IBLOCK\r\n");
nfc_process_iblock(buf, len);
}
clear_ibuf();
@ -741,7 +691,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
}
else if (IS_RBLOCK(buf[0]))
{
rblock_acknowledge(buf[0], false);
rblock_acknowledge();
printf1(TAG_NFC, "NFC_CMD_RBLOCK\r\n");
}
else if (IS_SBLOCK(buf[0]))
@ -760,7 +710,6 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
else
{
printf1(TAG_NFC, "NFC_CMD_SBLOCK, Unknown. len[%d]\r\n", len);
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
}
dump_hex1(TAG_NFC, buf, len);
}

View File

@ -40,8 +40,6 @@ typedef struct
#define NFC_CMD_SBLOCK 0xc0
#define IS_SBLOCK(x) ( (((x) & 0xc0) == NFC_CMD_SBLOCK) && (((x) & 0x02) == 0x02) )
extern uint8_t p14443_block_offset(uint8_t pcb);
#define NFC_SBLOCK_DESELECT 0x30
#define NFC_SBLOCK_WTX 0x30

View File

@ -19,9 +19,7 @@ from tests import Tester, FIDO2Tests, U2FTests, HIDTests, SoloTests
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: %s [sim] [nfc] <[u2f]|[fido2]|[rk]|[hid]|[ping]>")
print(" sim - test via UDP simulation backend only")
print(" nfc - test via NFC interface only")
print("Usage: %s [sim] <[u2f]|[fido2]|[rk]|[hid]|[ping]>")
sys.exit(0)
t = Tester()
@ -33,11 +31,7 @@ if __name__ == "__main__":
t.set_sim(True)
t.set_user_count(10)
nfcOnly = False
if "nfc" in sys.argv:
nfcOnly = True
t.find_device(nfcOnly)
t.find_device()
if "solo" in sys.argv:
SoloTests(t).run()

View File

@ -78,7 +78,7 @@ def TestCborKeysSorted(cbor_obj):
# https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html#ctap2-canonical-cbor-encoding-form
if isinstance(cbor_obj, bytes):
cbor_obj = cbor.decode_from(cbor_obj)[0]
cbor_obj = cbor.loads(cbor_obj)[0]
if isinstance(cbor_obj, dict):
l = [x for x in cbor_obj]
@ -211,7 +211,7 @@ class FIDO2Tests(Tester):
assert "hmac-secret" in reg.auth_data.extensions
assert reg.auth_data.extensions["hmac-secret"] == True
self.testMC(
reg = self.testMC(
"Send MC with fake extension set to true, expect SUCCESS",
cdh,
rp,
@ -222,7 +222,9 @@ class FIDO2Tests(Tester):
)
with Test("Get shared secret"):
key_agreement, shared_secret = self.client.pin_protocol.get_shared_secret()
key_agreement, shared_secret = (
self.client.pin_protocol._init_shared_secret()
)
cipher = Cipher(
algorithms.AES(shared_secret),
modes.CBC(b"\x00" * 16),
@ -278,10 +280,6 @@ class FIDO2Tests(Tester):
assert shannon_entropy(ext["hmac-secret"]) > 5.4
assert shannon_entropy(key) > 5.4
with Test("Check that the assertion is valid"):
credential_data = AttestedCredentialData(reg.auth_data.credential_data)
auth.verify(cdh, credential_data.public_key)
salt_enc, salt_auth = get_salt_params((salt3,))
auth = self.testGA(
@ -343,8 +341,8 @@ class FIDO2Tests(Tester):
def test_get_info(self,):
with Test("Get info"):
info = self.ctap.get_info()
print("data:", bytes(info))
print("decoded:", cbor.decode_from(bytes(info)))
print(bytes(info))
print(cbor.loads(bytes(info)))
with Test("Check FIDO2 string is in VERSIONS field"):
assert "FIDO_2_0" in info.versions
@ -623,20 +621,6 @@ class FIDO2Tests(Tester):
other={"exclude_list": [{"id": b"1234", "type": "rot13"}]},
)
self.testMC(
"Send MC request with excludeList item with bogus type, expect SUCCESS",
cdh,
rp,
user,
key_params,
expectedError=CtapError.ERR.SUCCESS,
other={
"exclude_list": [
{"id": b"1234", "type": "mangoPapayaCoconutNotAPublicKey"}
]
},
)
self.testMC(
"Send MC request with excludeList with bad item, expect error",
cdh,
@ -747,40 +731,6 @@ class FIDO2Tests(Tester):
expectedError=CtapError.ERR.SUCCESS,
)
with Test("Check assertion is correct"):
credential_data = AttestedCredentialData(prev_reg.auth_data.credential_data)
prev_auth.verify(cdh, credential_data.public_key)
assert (
prev_auth.credential["id"]
== prev_reg.auth_data.credential_data.credential_id
)
self.reboot()
prev_auth = self.testGA(
"Send GA request after reboot, expect success",
rp["id"],
cdh,
allow_list,
expectedError=CtapError.ERR.SUCCESS,
)
with Test("Check assertion is correct"):
credential_data = AttestedCredentialData(prev_reg.auth_data.credential_data)
prev_auth.verify(cdh, credential_data.public_key)
assert (
prev_auth.credential["id"]
== prev_reg.auth_data.credential_data.credential_id
)
prev_auth = self.testGA(
"Send GA request, expect success",
rp["id"],
cdh,
allow_list,
expectedError=CtapError.ERR.SUCCESS,
)
with Test("Test auth_data is 37 bytes"):
assert len(prev_auth.auth_data) == 37
@ -1134,10 +1084,7 @@ class FIDO2Tests(Tester):
rp["id"],
cdh,
other={"pin_auth": b"", "pin_protocol": pin_protocol},
expectedError=[
CtapError.ERR.PIN_AUTH_INVALID,
CtapError.ERR.NO_CREDENTIALS,
],
expectedError=CtapError.ERR.PIN_NOT_SET,
)
with Test("Setting pin code, expect SUCCESS"):
@ -1151,17 +1098,14 @@ class FIDO2Tests(Tester):
user,
key_params,
other={"pin_auth": b"", "pin_protocol": pin_protocol},
expectedError=CtapError.ERR.PIN_AUTH_INVALID,
expectedError=CtapError.ERR.PIN_INVALID,
)
self.testGA(
"Send MC request with new pin auth",
rp["id"],
cdh,
other={"pin_auth": b"", "pin_protocol": pin_protocol},
expectedError=[
CtapError.ERR.PIN_AUTH_INVALID,
CtapError.ERR.NO_CREDENTIALS,
],
expectedError=CtapError.ERR.PIN_INVALID,
)
self.testReset()
@ -1317,13 +1261,13 @@ class FIDO2Tests(Tester):
self.testReset()
# self.test_get_info()
#
# self.test_get_assertion()
#
# self.test_make_credential()
#
# self.test_rk(None)
self.test_get_info()
self.test_get_assertion()
self.test_make_credential()
self.test_rk(None)
self.test_client_pin()

View File

@ -2,7 +2,6 @@ import time, struct
from fido2.hid import CtapHidDevice
from fido2.client import Fido2Client
from fido2.attestation import Attestation
from fido2.ctap1 import CTAP1
from fido2.utils import Timeout
@ -52,7 +51,6 @@ class Tester:
self.host = "examplo.org"
self.user_count = 10
self.is_sim = False
self.nfc_interface_only = False
if tester:
self.initFromTester(tester)
@ -63,23 +61,10 @@ class Tester:
self.ctap = tester.ctap
self.ctap1 = tester.ctap1
self.client = tester.client
self.nfc_interface_only = tester.nfc_interface_only
def find_device(self, nfcInterfaceOnly=False):
dev = None
self.nfc_interface_only = nfcInterfaceOnly
if not nfcInterfaceOnly:
print("--- HID ---")
def find_device(self,):
print(list(CtapHidDevice.list_devices()))
dev = next(CtapHidDevice.list_devices(), None)
if not dev:
from fido2.pcsc import CtapPcscDevice
print("--- NFC ---")
print(list(CtapPcscDevice.list_devices()))
dev = next(CtapPcscDevice.list_devices(), None)
if not dev:
raise RuntimeError("No FIDO device found")
self.dev = dev
@ -104,7 +89,7 @@ class Tester:
else:
print("Please reboot authentictor and hit enter")
input()
self.find_device(self.nfc_interface_only)
self.find_device()
def send_data(self, cmd, data):
if not isinstance(data, bytes):
@ -198,22 +183,11 @@ class Tester:
print("You must power cycle authentictor. Hit enter when done.")
input()
time.sleep(0.2)
self.find_device(self.nfc_interface_only)
self.find_device()
self.ctap.reset()
def testMC(self, test, *args, **kwargs):
attestation_object = self.testFunc(
self.ctap.make_credential, test, *args, **kwargs
)
if attestation_object:
verifier = Attestation.for_type(attestation_object.fmt)
client_data = args[0]
verifier().verify(
attestation_object.att_statement,
attestation_object.auth_data,
client_data,
)
return attestation_object
return self.testFunc(self.ctap.make_credential, test, *args, **kwargs)
def testGA(self, test, *args, **kwargs):
return self.testFunc(self.ctap.get_assertion, test, *args, **kwargs)

View File

@ -42,14 +42,12 @@ class U2FTests(Tester):
with Test("Check bad INS"):
try:
self.ctap1.send_apdu(0, 0, 0, 0, b"")
assert False
except ApduError as e:
assert e.code == 0x6D00
with Test("Check bad CLA"):
try:
self.ctap1.send_apdu(1, CTAP1.INS.VERSION, 0, 0, b"abc")
assert False
except ApduError as e:
assert e.code == 0x6E00
@ -78,16 +76,6 @@ class U2FTests(Tester):
auth = self.authenticate(chal, appid, regs[i].key_handle)
auth.verify(appid, chal, regs[i].public_key)
self.reboot()
for i in range(0, self.user_count):
with Test(
"Post reboot, Checking previous registration %d/%d"
% (i + 1, self.user_count)
):
auth = self.authenticate(chal, appid, regs[i].key_handle)
auth.verify(appid, chal, regs[i].public_key)
print("Check that all previous credentials are registered...")
for i in range(0, self.user_count):
with Test("Check that previous credential %d is registered" % i):