// Copyright 2019 SoloKeys Developers // // Licensed under the Apache License, Version 2.0, or the MIT license , at your option. This file may not be // copied, modified, or distributed except according to those terms. /* * Wrapper for crypto implementation on device * * */ #include #include #include #include "util.h" #include "crypto.h" #ifdef USE_SOFTWARE_IMPLEMENTATION #include "sha256.h" #include "uECC.h" #include "aes.h" #include "ctap.h" #include "device.h" #include "log.h" #include APP_CONFIG #ifdef USING_PC typedef enum { MBEDTLS_ECP_DP_NONE = 0, MBEDTLS_ECP_DP_SECP192R1, /*!< 192-bits NIST curve */ MBEDTLS_ECP_DP_SECP224R1, /*!< 224-bits NIST curve */ MBEDTLS_ECP_DP_SECP256R1, /*!< 256-bits NIST curve */ MBEDTLS_ECP_DP_SECP384R1, /*!< 384-bits NIST curve */ MBEDTLS_ECP_DP_SECP521R1, /*!< 521-bits NIST curve */ MBEDTLS_ECP_DP_BP256R1, /*!< 256-bits Brainpool curve */ MBEDTLS_ECP_DP_BP384R1, /*!< 384-bits Brainpool curve */ MBEDTLS_ECP_DP_BP512R1, /*!< 512-bits Brainpool curve */ MBEDTLS_ECP_DP_CURVE25519, /*!< Curve25519 */ MBEDTLS_ECP_DP_SECP192K1, /*!< 192-bits "Koblitz" curve */ MBEDTLS_ECP_DP_SECP224K1, /*!< 224-bits "Koblitz" curve */ MBEDTLS_ECP_DP_SECP256K1, /*!< 256-bits "Koblitz" curve */ } mbedtls_ecp_group_id; #endif const uint8_t attestation_cert_der[]; const uint16_t attestation_cert_der_size; const uint8_t attestation_key[]; const uint16_t attestation_key_size; static SHA256_CTX sha256_ctx; static const struct uECC_Curve_t * _es256_curve = NULL; static const uint8_t * _signing_key = NULL; static int _key_len = 0; // Secrets for testing only static uint8_t master_secret[32]; static uint8_t transport_secret[32]; void crypto_sha256_init() { sha256_init(&sha256_ctx); } void crypto_reset_master_secret() { ctap_generate_rng(master_secret, 32); } void crypto_load_master_secret(uint8_t * key) { memmove(master_secret, key, 32); memmove(transport_secret, key+32, 32); } void crypto_sha256_update(uint8_t * data, size_t len) { sha256_update(&sha256_ctx, data, len); } void crypto_sha256_update_secret() { sha256_update(&sha256_ctx, master_secret, 32); } void crypto_sha256_final(uint8_t * hash) { sha256_final(&sha256_ctx, hash); } void crypto_sha256_hmac_init(uint8_t * key, uint32_t klen, uint8_t * hmac) { uint8_t buf[64]; int i; memset(buf, 0, sizeof(buf)); if (key == CRYPTO_MASTER_KEY) { key = master_secret; klen = sizeof(master_secret); } if(klen > 64) { printf2(TAG_ERR,"Error, key size must be <= 64\n"); exit(1); } memmove(buf, key, klen); for (i = 0; i < sizeof(buf); i++) { buf[i] = buf[i] ^ 0x36; } crypto_sha256_init(); crypto_sha256_update(buf, 64); } void crypto_sha256_hmac_final(uint8_t * key, uint32_t klen, uint8_t * hmac) { uint8_t buf[64]; int i; crypto_sha256_final(hmac); memset(buf, 0, sizeof(buf)); if (key == CRYPTO_MASTER_KEY) { key = master_secret; klen = sizeof(master_secret); } if(klen > 64) { printf2(TAG_ERR,"Error, key size must be <= 64\n"); exit(1); } memmove(buf, key, klen); for (i = 0; i < sizeof(buf); i++) { buf[i] = buf[i] ^ 0x5c; } crypto_sha256_init(); crypto_sha256_update(buf, 64); crypto_sha256_update(hmac, 32); crypto_sha256_final(hmac); } void crypto_ecc256_init() { uECC_set_rng((uECC_RNG_Function)ctap_generate_rng); _es256_curve = uECC_secp256r1(); } void crypto_ecc256_load_attestation_key() { _signing_key = attestation_key; _key_len = 32; } void crypto_ecc256_sign(uint8_t * data, int len, uint8_t * sig) { if ( uECC_sign(_signing_key, data, len, sig, _es256_curve) == 0) { printf2(TAG_ERR,"error, uECC failed\n"); exit(1); } } void crypto_ecc256_load_key(uint8_t * data, int len, uint8_t * data2, int len2) { static uint8_t privkey[32]; generate_private_key(data,len,data2,len2,privkey); _signing_key = privkey; _key_len = 32; } void crypto_ecdsa_sign(uint8_t * data, int len, uint8_t * sig, int MBEDTLS_ECP_ID) { const struct uECC_Curve_t * curve = NULL; switch(MBEDTLS_ECP_ID) { case MBEDTLS_ECP_DP_SECP192R1: curve = uECC_secp192r1(); if (_key_len != 24) goto fail; break; case MBEDTLS_ECP_DP_SECP224R1: curve = uECC_secp224r1(); if (_key_len != 28) goto fail; break; case MBEDTLS_ECP_DP_SECP256R1: curve = uECC_secp256r1(); if (_key_len != 32) goto fail; break; case MBEDTLS_ECP_DP_SECP256K1: curve = uECC_secp256k1(); if (_key_len != 32) goto fail; break; default: printf2(TAG_ERR,"error, invalid ECDSA alg specifier\n"); exit(1); } if ( uECC_sign(_signing_key, data, len, sig, curve) == 0) { printf2(TAG_ERR,"error, uECC failed\n"); exit(1); } return; fail: printf2(TAG_ERR,"error, invalid key length\n"); exit(1); } void generate_private_key(uint8_t * data, int len, uint8_t * data2, int len2, uint8_t * privkey) { crypto_sha256_hmac_init(CRYPTO_MASTER_KEY, 0, privkey); crypto_sha256_update(data, len); crypto_sha256_update(data2, len2); crypto_sha256_update(master_secret, 32); crypto_sha256_hmac_final(CRYPTO_MASTER_KEY, 0, privkey); } /*int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve);*/ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8_t * y) { uint8_t privkey[32]; uint8_t pubkey[64]; generate_private_key(data,len,NULL,0,privkey); memset(pubkey,0,sizeof(pubkey)); uECC_compute_public_key(privkey, pubkey, _es256_curve); memmove(x,pubkey,32); memmove(y,pubkey+32,32); } void crypto_load_external_key(uint8_t * key, int len) { _signing_key = key; _key_len = len; } void crypto_ecc256_make_key_pair(uint8_t * pubkey, uint8_t * privkey) { if (uECC_make_key(pubkey, privkey, _es256_curve) != 1) { printf2(TAG_ERR,"Error, uECC_make_key failed\n"); exit(1); } } void crypto_ecc256_shared_secret(const uint8_t * pubkey, const uint8_t * privkey, uint8_t * shared_secret) { if (uECC_shared_secret(pubkey, privkey, shared_secret, _es256_curve) != 1) { printf2(TAG_ERR,"Error, uECC_shared_secret failed\n"); exit(1); } } struct AES_ctx aes_ctx; void crypto_aes256_init(uint8_t * key, uint8_t * nonce) { if (key == CRYPTO_TRANSPORT_KEY) { AES_init_ctx(&aes_ctx, transport_secret); } else { AES_init_ctx(&aes_ctx, key); } if (nonce == NULL) { memset(aes_ctx.Iv, 0, 16); } else { memmove(aes_ctx.Iv, nonce, 16); } } // prevent round key recomputation void crypto_aes256_reset_iv(uint8_t * nonce) { if (nonce == NULL) { memset(aes_ctx.Iv, 0, 16); } else { memmove(aes_ctx.Iv, nonce, 16); } } void crypto_aes256_decrypt(uint8_t * buf, int length) { AES_CBC_decrypt_buffer(&aes_ctx, buf, length); } void crypto_aes256_encrypt(uint8_t * buf, int length) { AES_CBC_encrypt_buffer(&aes_ctx, buf, length); } const uint8_t attestation_cert_der[] = "\x30\x82\x01\xfb\x30\x82\x01\xa1\xa0\x03\x02\x01\x02\x02\x01\x00\x30\x0a\x06\x08" "\x2a\x86\x48\xce\x3d\x04\x03\x02\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13" "\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e" "\x06\x03\x55\x04\x0a\x0c\x07\x54\x45\x53\x54\x20\x43\x41\x30\x20\x17\x0d\x31\x38" "\x30\x35\x31\x30\x30\x33\x30\x36\x32\x30\x5a\x18\x0f\x32\x30\x36\x38\x30\x34\x32" "\x37\x30\x33\x30\x36\x32\x30\x5a\x30\x7c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13" "\x02\x55\x53\x31\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x0f\x30\x0d" "\x06\x03\x55\x04\x07\x0c\x06\x4c\x61\x75\x72\x65\x6c\x31\x15\x30\x13\x06\x03\x55" "\x04\x0a\x0c\x0c\x54\x45\x53\x54\x20\x43\x4f\x4d\x50\x41\x4e\x59\x31\x22\x30\x20" "\x06\x03\x55\x04\x0b\x0c\x19\x41\x75\x74\x68\x65\x6e\x74\x69\x63\x61\x74\x6f\x72" "\x20\x41\x74\x74\x65\x73\x74\x61\x74\x69\x6f\x6e\x31\x14\x30\x12\x06\x03\x55\x04" "\x03\x0c\x0b\x63\x6f\x6e\x6f\x72\x70\x70\x2e\x63\x6f\x6d\x30\x59\x30\x13\x06\x07" "\x2a\x86\x48\xce\x3d\x02\x01\x06\x08\x2a\x86\x48\xce\x3d\x03\x01\x07\x03\x42\x00" "\x04\x45\xa9\x02\xc1\x2e\x9c\x0a\x33\xfa\x3e\x84\x50\x4a\xb8\x02\xdc\x4d\xb9\xaf" "\x15\xb1\xb6\x3a\xea\x8d\x3f\x03\x03\x55\x65\x7d\x70\x3f\xb4\x02\xa4\x97\xf4\x83" "\xb8\xa6\xf9\x3c\xd0\x18\xad\x92\x0c\xb7\x8a\x5a\x3e\x14\x48\x92\xef\x08\xf8\xca" "\xea\xfb\x32\xab\x20\xa3\x62\x30\x60\x30\x46\x06\x03\x55\x1d\x23\x04\x3f\x30\x3d" "\xa1\x30\xa4\x2e\x30\x2c\x31\x0b\x30\x09\x06\x03\x55\x04\x06\x13\x02\x55\x53\x31" "\x0b\x30\x09\x06\x03\x55\x04\x08\x0c\x02\x4d\x44\x31\x10\x30\x0e\x06\x03\x55\x04" "\x0a\x0c\x07\x54\x45\x53\x54\x20\x43\x41\x82\x09\x00\xf7\xc9\xec\x89\xf2\x63\x94" "\xd9\x30\x09\x06\x03\x55\x1d\x13\x04\x02\x30\x00\x30\x0b\x06\x03\x55\x1d\x0f\x04" "\x04\x03\x02\x04\xf0\x30\x0a\x06\x08\x2a\x86\x48\xce\x3d\x04\x03\x02\x03\x48\x00" "\x30\x45\x02\x20\x18\x38\xb0\x45\x03\x69\xaa\xa7\xb7\x38\x62\x01\xaf\x24\x97\x5e" "\x7e\x74\x64\x1b\xa3\x7b\xf7\xe6\xd3\xaf\x79\x28\xdb\xdc\xa5\x88\x02\x21\x00\xcd" "\x06\xf1\xe3\xab\x16\x21\x8e\xd8\xc0\x14\xaf\x09\x4f\x5b\x73\xef\x5e\x9e\x4b\xe7" "\x35\xeb\xdd\x9b\x6d\x8f\x7d\xf3\xc4\x3a\xd7"; const uint16_t attestation_cert_der_size = sizeof(attestation_cert_der)-1; const uint8_t attestation_key[] = "\xcd\x67\xaa\x31\x0d\x09\x1e\xd1\x6e\x7e\x98\x92\xaa\x07\x0e\x19\x94\xfc\xd7\x14\xae\x7c\x40\x8f\xb9\x46\xb7\x2e\x5f\xe7\x5d\x30"; const uint16_t attestation_key_size = sizeof(attestation_key)-1; #else #error "No crypto implementation defined" #endif