2019-01-07 18:50:01 -05:00

189 lines
3.7 KiB
C

#include <string.h>
#include "stm32l4xx.h"
#include "stm32l4xx_ll_gpio.h"
#include "stm32l4xx_ll_spi.h"
#include "nfc.h"
#include "log.h"
#include "util.h"
static void flush_rx()
{
while(LL_SPI_IsActiveFlag_RXNE(SPI1) != 0)
{
LL_SPI_ReceiveData8(SPI1);
}
}
static void wait_for_tx()
{
// while (LL_SPI_IsActiveFlag_BSY(SPI1) == 1)
// ;
while(LL_SPI_GetTxFIFOLevel(SPI1) != LL_SPI_TX_FIFO_EMPTY)
;
}
static void wait_for_rx()
{
while(LL_SPI_IsActiveFlag_RXNE(SPI1) == 0)
;
}
#define SELECT() LL_GPIO_ResetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
#define UNSELECT() LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN)
uint8_t send_recv(uint8_t b)
{
wait_for_tx();
LL_SPI_TransmitData8(SPI1, b);
wait_for_rx();
b = LL_SPI_ReceiveData8(SPI1);
return b;
}
uint8_t send_recv2(uint8_t b1,uint8_t b2)
{
send_recv(b1);
return send_recv(b2);
}
void ams_write_reg(uint8_t addr, uint8_t tx)
{
SELECT();
delay(2);
send_recv(0x00| addr);
send_recv(tx);
UNSELECT();
}
uint8_t ams_read_reg(uint8_t addr)
{
SELECT();
delay(2);
uint8_t data = send_recv2(0x20| (addr & 0x1f), 0);
// send_recv(0x20| addr);
//
// uint8_t data = send_recv(0);
// delay(2);
UNSELECT();
return data;
}
// data must be 14 bytes long
void read_reg_block2(uint8_t * data)
{
int i;
for (i = 0; i < 0x20; i++)
{
if (i < 6 || (i >=8 && i < 0x0f) || (i >= 0x1e))
{
*data = ams_read_reg(i);
data++;
}
}
}
// data must be 14 bytes long
void read_reg_block(uint8_t * data)
{
int i;
uint8_t mode = 0x20 | (0 );
flush_rx();
SELECT();
send_recv(mode);
for (i = 0; i < 0x20; i++)
{
mode = send_recv(0);
// if (i < 6 || (i >=8 && i < 0x0f) || (i >= 0x1e))
// {
*data = mode;
data++;
// }
}
UNSELECT();
// delay(2);
// SELECT();
}
void ams_write_command(uint8_t cmd)
{
uint8_t mode = cmd;
// delay(10);
// delay(10);
SELECT();
delay(1);
send_recv(mode);
UNSELECT();
SELECT();
}
void nfc_init()
{
LL_GPIO_SetPinMode(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN,LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN);
LL_SPI_SetClockPolarity(SPI1,LL_SPI_POLARITY_LOW);
LL_SPI_SetClockPhase(SPI1,LL_SPI_PHASE_2EDGE);
LL_SPI_SetRxFIFOThreshold(SPI1,LL_SPI_RX_FIFO_TH_QUARTER);
LL_SPI_Enable(SPI1);
}
void nfc_loop()
{
static int run = 0;
if (!run)
{
uint8_t regs[0x20];
run = 1;
delay(10);
LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN);
delay(10);
// LL_GPIO_ResetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN);
delay(10);
// ams_write_command(0xC2); // Set to default state
// ams_write_command(0xC4); // Clear buffer
ams_write_reg(1,7);
int x;
for (x = 0 ; x < 10; x++)
{
memset(regs,0,sizeof(regs));
ams_write_reg(1,7);
read_reg_block(regs);
printf1(TAG_NFC,"regs: "); dump_hex1(TAG_NFC,regs,sizeof(regs));
}
printf1(TAG_NFC,"---\r\n");
for (x = 0 ; x < 10; x++)
{
memset(regs,0,sizeof(regs));
read_reg_block2(regs);
printf1(TAG_NFC,"regs: "); dump_hex1(TAG_NFC,regs,sizeof(regs));
}
//
// LL_GPIO_SetOutputPin(SOLO_AMS_CS_PORT,SOLO_AMS_CS_PIN);
//
// memset(regs,0,sizeof(regs));
// for (x = 0 ; x < sizeof(regs); x++)
// {
// regs[x] = ams_read_reg(x);
// }
// printf1(TAG_NFC,"regs2: "); dump_hex1(TAG_NFC,regs,sizeof(regs));
}
}