solo/targets/efm32/emlib/em_cmu.c
2018-09-12 20:00:13 -04:00

5311 lines
161 KiB
C

/***************************************************************************//**
* @file em_cmu.c
* @brief Clock management unit (CMU) Peripheral API
* @version 5.2.2
*******************************************************************************
* # License
* <b>Copyright 2016 Silicon Laboratories, Inc. http://www.silabs.com</b>
*******************************************************************************
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Silicon Labs has no
* obligation to support this Software. Silicon Labs is providing the
* Software "AS IS", with no express or implied warranties of any kind,
* including, but not limited to, any implied warranties of merchantability
* or fitness for any particular purpose or warranties against infringement
* of any proprietary rights of a third party.
*
* Silicon Labs will not be liable for any consequential, incidental, or
* special damages, or any other relief, or for any claim by any third party,
* arising from your use of this Software.
*
******************************************************************************/
#include "em_cmu.h"
#if defined(CMU_PRESENT)
#include <stddef.h>
#include <limits.h>
#include "em_assert.h"
#include "em_bus.h"
#include "em_emu.h"
#include "em_cmu.h"
#include "em_system.h"
#include "em_common.h"
/***************************************************************************//**
* @addtogroup emlib
* @{
******************************************************************************/
/***************************************************************************//**
* @addtogroup CMU
* @brief Clock management unit (CMU) Peripheral API
* @details
* This module contains functions to control the CMU peripheral of Silicon
* Labs 32-bit MCUs and SoCs. The CMU controls oscillators and clocks.
* @{
******************************************************************************/
/*******************************************************************************
****************************** DEFINES ************************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
#if defined(_SILICON_LABS_32B_SERIES_1)
/** Maximum allowed core frequency when using 0 wait-states on flash access. */
#define CMU_MAX_FREQ_0WS 26000000
/** Maximum allowed core frequency when using 1 wait-states on flash access */
#define CMU_MAX_FREQ_1WS 40000000
/** Maximum allowed core frequency when using 2 wait-states on flash access */
#define CMU_MAX_FREQ_2WS 54000000
/** Maximum allowed core frequency when using 3 wait-states on flash access */
#define CMU_MAX_FREQ_3WS 72000000
#elif defined(_SILICON_LABS_32B_SERIES_0)
/** Maximum allowed core frequency when using 0 wait-states on flash access. */
#define CMU_MAX_FREQ_0WS 16000000
/** Maximum allowed core frequency when using 1 wait-states on flash access */
#define CMU_MAX_FREQ_1WS 32000000
#else
#error "Max Flash wait-state frequencies are not defined for this platform."
#endif
/** Maximum frequency for HFLE interface */
#if defined(CMU_CTRL_HFLE)
/** Maximum HFLE frequency for series 0 EFM32 and EZR32 Wonder Gecko. */
#if defined(_SILICON_LABS_32B_SERIES_0) \
&& (defined(_EFM32_WONDER_FAMILY) \
|| defined(_EZR32_WONDER_FAMILY))
#define CMU_MAX_FREQ_HFLE 24000000
/** Maximum HFLE frequency for other series 0 parts with maximum core clock
higher than 32MHz. */
#elif defined(_SILICON_LABS_32B_SERIES_0) \
&& (defined(_EFM32_GIANT_FAMILY) \
|| defined(_EZR32_LEOPARD_FAMILY))
#define CMU_MAX_FREQ_HFLE maxFreqHfle()
#endif
#elif defined(CMU_CTRL_WSHFLE)
/** Maximum HFLE frequency for series 1 parts */
#define CMU_MAX_FREQ_HFLE 32000000
#endif
#if defined(CMU_STATUS_HFXOSHUNTOPTRDY)
#define HFXO_TUNING_READY_FLAGS (CMU_STATUS_HFXOPEAKDETRDY | CMU_STATUS_HFXOSHUNTOPTRDY)
#define HFXO_TUNING_MODE_AUTO (_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_AUTOCMD)
#define HFXO_TUNING_MODE_CMD (_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_CMD)
#elif defined(CMU_STATUS_HFXOPEAKDETRDY)
#define HFXO_TUNING_READY_FLAGS (CMU_STATUS_HFXOPEAKDETRDY)
#define HFXO_TUNING_MODE_AUTO (_CMU_HFXOCTRL_PEAKDETMODE_AUTOCMD)
#define HFXO_TUNING_MODE_CMD (_CMU_HFXOCTRL_PEAKDETMODE_CMD)
#endif
#if defined(CMU_HFXOCTRL_MODE_EXTCLK)
/** HFXO external clock mode is renamed from EXTCLK to DIGEXTCLK. */
#define CMU_HFXOCTRL_MODE_DIGEXTCLK CMU_HFXOCTRL_MODE_EXTCLK
#endif
#if defined(_EMU_CMD_EM01VSCALE0_MASK)
#define VSCALE_DEFAULT (EMU_VScaleGet())
#else
#define VSCALE_DEFAULT 0
#endif
/*******************************************************************************
************************** LOCAL VARIABLES ********************************
******************************************************************************/
#if defined(_CMU_AUXHFRCOCTRL_FREQRANGE_MASK)
static CMU_AUXHFRCOFreq_TypeDef auxHfrcoFreq = cmuAUXHFRCOFreq_19M0Hz;
#endif
#if defined(_CMU_STATUS_HFXOSHUNTOPTRDY_MASK)
#define HFXO_INVALID_TRIM (~_CMU_HFXOTRIMSTATUS_MASK)
#endif
#if defined(CMU_OSCENCMD_DPLLEN)
/** Table of HFRCOCTRL values and their associated min/max frequencies and
optional band enumerator. */
static const struct hfrcoCtrlTableElement{
uint32_t minFreq;
uint32_t maxFreq;
uint32_t value;
CMU_HFRCOFreq_TypeDef band;
} hfrcoCtrlTable[] =
{
// minFreq maxFreq HFRCOCTRL value band
{ 860000, 1050000, 0xBC601F00, cmuHFRCOFreq_1M0Hz },
{ 1050000, 1280000, 0xBC611F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 1280000, 1480000, 0xBCA21F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 1480000, 1800000, 0xAD231F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 1800000, 2110000, 0xBA601F00, cmuHFRCOFreq_2M0Hz },
{ 2110000, 2560000, 0xBA611F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 2560000, 2970000, 0xBAA21F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 2970000, 3600000, 0xAB231F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 3600000, 4220000, 0xB8601F00, cmuHFRCOFreq_4M0Hz },
{ 4220000, 5120000, 0xB8611F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 5120000, 5930000, 0xB8A21F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 5930000, 7520000, 0xA9231F00, cmuHFRCOFreq_7M0Hz },
{ 7520000, 9520000, 0x99241F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 9520000, 11800000, 0x99251F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 11800000, 14400000, 0x99261F00, cmuHFRCOFreq_13M0Hz },
{ 14400000, 17200000, 0x99271F00, cmuHFRCOFreq_16M0Hz },
{ 17200000, 19700000, 0x99481F00, cmuHFRCOFreq_19M0Hz },
{ 19700000, 23800000, 0x99491F35, (CMU_HFRCOFreq_TypeDef)0 },
{ 23800000, 28700000, 0x994A1F00, cmuHFRCOFreq_26M0Hz },
{ 28700000, 34800000, 0x996B1F00, cmuHFRCOFreq_32M0Hz },
#if defined(_DEVINFO_HFRCOCAL16_MASK)
{ 34800000, 42800000, 0x996C1F00, cmuHFRCOFreq_38M0Hz },
{ 42800000, 51600000, 0x996D1F00, cmuHFRCOFreq_48M0Hz },
{ 51600000, 60500000, 0x998E1F00, cmuHFRCOFreq_56M0Hz },
{ 60500000, 72000000, 0xA98F1F00, cmuHFRCOFreq_64M0Hz }
#else
{ 34800000, 40000000, 0x996C1F00, cmuHFRCOFreq_38M0Hz }
#endif
};
#define HFRCOCTRLTABLE_ENTRIES (sizeof(hfrcoCtrlTable) \
/ sizeof(struct hfrcoCtrlTableElement))
#endif // CMU_OSCENCMD_DPLLEN
#if defined(_SILICON_LABS_32B_SERIES_1) && defined(_EMU_STATUS_VSCALE_MASK)
/* Devices with Voltage Scaling needs extra handling of wait states. */
static const struct flashWsTableElement{
uint32_t maxFreq;
uint8_t vscale;
uint8_t ws;
} flashWsTable[] =
{
#if (_SILICON_LABS_GECKO_INTERNAL_SDID == 100)
{ 18000000, 0, 0 }, /* 0 wait states at max frequency 18 MHz and 1.2V */
{ 36000000, 0, 1 }, /* 1 wait states at max frequency 36 MHz and 1.2V */
{ 54000000, 0, 2 }, /* 2 wait states at max frequency 54 MHz and 1.2V */
{ 72000000, 0, 3 }, /* 3 wait states at max frequency 72 MHz and 1.2V */
{ 7000000, 2, 0 }, /* 0 wait states at max frequency 7 MHz and 1.0V */
{ 14000000, 2, 1 }, /* 1 wait states at max frequency 14 MHz and 1.0V */
{ 21000000, 2, 2 }, /* 2 wait states at max frequency 21 MHz and 1.0V */
#else
{ 25000000, 0, 0 }, /* 0 wait states at max frequency 25 MHz and 1.2V */
{ 40000000, 0, 1 }, /* 1 wait states at max frequency 40 MHz and 1.2V */
{ 7000000, 2, 0 }, /* 0 wait states at max frequency 7 MHz and 1.0V */
{ 14000000, 2, 1 }, /* 1 wait states at max frequency 14 MHz and 1.0V */
{ 21000000, 2, 2 }, /* 2 wait states at max frequency 21 MHz and 1.0V */
#endif
};
#define FLASH_WS_TABLE_ENTRIES (sizeof(flashWsTable) / sizeof(flashWsTable[0]))
#endif
#if defined(_CMU_USHFRCOCTRL_FREQRANGE_MASK) \
|| defined(_CMU_USHFRCOTUNE_MASK)
#ifndef EFM32_USHFRCO_STARTUP_FREQ
#define EFM32_USHFRCO_STARTUP_FREQ (48000000UL)
#endif
static uint32_t ushfrcoFreq = EFM32_USHFRCO_STARTUP_FREQ;
#endif
/*******************************************************************************
************************** LOCAL PROTOTYPES *******************************
******************************************************************************/
#if defined(_CMU_HFRCOCTRL_FREQRANGE_MASK)
static uint32_t CMU_HFRCODevinfoGet(CMU_HFRCOFreq_TypeDef freq);
#endif
#if defined(_CMU_USHFRCOCTRL_FREQRANGE_MASK)
static uint32_t CMU_USHFRCODevinfoGet(CMU_USHFRCOFreq_TypeDef freq);
#endif
/** @endcond */
/*******************************************************************************
************************** LOCAL FUNCTIONS ********************************
******************************************************************************/
/** @cond DO_NOT_INCLUDE_WITH_DOXYGEN */
#if defined(_SILICON_LABS_32B_SERIES_0) \
&& (defined(_EFM32_GIANT_FAMILY) \
|| defined(_EZR32_LEOPARD_FAMILY))
/***************************************************************************//**
* @brief
* Return max allowed frequency for low energy peripherals.
******************************************************************************/
static uint32_t maxFreqHfle(void)
{
uint16_t majorMinorRev;
switch (SYSTEM_GetFamily()) {
case systemPartFamilyEfm32Leopard:
case systemPartFamilyEzr32Leopard:
/* CHIP MAJOR bit [5:0] */
majorMinorRev = (((ROMTABLE->PID0 & _ROMTABLE_PID0_REVMAJOR_MASK)
>> _ROMTABLE_PID0_REVMAJOR_SHIFT) << 8);
/* CHIP MINOR bit [7:4] */
majorMinorRev |= (((ROMTABLE->PID2 & _ROMTABLE_PID2_REVMINORMSB_MASK)
>> _ROMTABLE_PID2_REVMINORMSB_SHIFT) << 4);
/* CHIP MINOR bit [3:0] */
majorMinorRev |= ((ROMTABLE->PID3 & _ROMTABLE_PID3_REVMINORLSB_MASK)
>> _ROMTABLE_PID3_REVMINORLSB_SHIFT);
if (majorMinorRev >= 0x0204) {
return 24000000;
} else {
return 32000000;
}
case systemPartFamilyEfm32Giant:
return 32000000;
default:
/* Invalid device family. */
EFM_ASSERT(false);
return 0;
}
}
#endif
#if defined(CMU_MAX_FREQ_HFLE)
/* Unified definitions for HFLE wait-state and prescaler fields. */
#if defined(CMU_CTRL_HFLE)
#define _GENERIC_HFLE_WS_MASK _CMU_CTRL_HFLE_MASK
#define _GENERIC_HFLE_WS_SHIFT _CMU_CTRL_HFLE_SHIFT
#define GENERIC_HFLE_PRESC_REG CMU->HFCORECLKDIV
#define _GENERIC_HFLE_PRESC_MASK _CMU_HFCORECLKDIV_HFCORECLKLEDIV_MASK
#define _GENERIC_HFLE_PRESC_SHIFT _CMU_HFCORECLKDIV_HFCORECLKLEDIV_SHIFT
#elif defined(CMU_CTRL_WSHFLE)
#define _GENERIC_HFLE_WS_MASK _CMU_CTRL_WSHFLE_MASK
#define _GENERIC_HFLE_WS_SHIFT _CMU_CTRL_WSHFLE_SHIFT
#define GENERIC_HFLE_PRESC_REG CMU->HFPRESC
#define _GENERIC_HFLE_PRESC_MASK _CMU_HFPRESC_HFCLKLEPRESC_MASK
#define _GENERIC_HFLE_PRESC_SHIFT _CMU_HFPRESC_HFCLKLEPRESC_SHIFT
#endif
/***************************************************************************//**
* @brief
* Set HFLE wait-states and HFCLKLE prescaler.
*
* @param[in] maxLeFreq
* Max LE frequency
******************************************************************************/
static void setHfLeConfig(uint32_t hfFreq)
{
unsigned int hfleWs;
uint32_t hflePresc;
/* Check for 1 bit fields. BUS_RegBitWrite() below are going to fail if the
fields are changed to more than 1 bit. */
EFM_ASSERT((_GENERIC_HFLE_WS_MASK >> _GENERIC_HFLE_WS_SHIFT) == 0x1);
/* - Enable HFLE wait-state if to allow access to LE peripherals when HFBUSCLK is
above maxLeFreq.
- Set HFLE prescaler. Allowed HFLE clock frequency is maxLeFreq. */
hfleWs = 1;
if (hfFreq <= CMU_MAX_FREQ_HFLE) {
hfleWs = 0;
hflePresc = 0;
} else if (hfFreq <= (2 * CMU_MAX_FREQ_HFLE)) {
hflePresc = 1;
} else {
hflePresc = 2;
}
BUS_RegBitWrite(&CMU->CTRL, _GENERIC_HFLE_WS_SHIFT, hfleWs);
GENERIC_HFLE_PRESC_REG = (GENERIC_HFLE_PRESC_REG & ~_GENERIC_HFLE_PRESC_MASK)
| (hflePresc << _GENERIC_HFLE_PRESC_SHIFT);
}
#if defined(_CMU_CTRL_HFLE_MASK)
/***************************************************************************//**
* @brief
* Get HFLE wait-state configuration.
*
* @return
* Current wait-state configuration.
******************************************************************************/
static uint32_t getHfLeConfig(void)
{
uint32_t ws = BUS_RegBitRead(&CMU->CTRL, _GENERIC_HFLE_WS_SHIFT);
return ws;
}
#endif
#endif
/***************************************************************************//**
* @brief
* Get the AUX clock frequency. Used by MSC flash programming and LESENSE,
* by default also as debug clock.
*
* @return
* AUX Frequency in Hz
******************************************************************************/
static uint32_t auxClkGet(void)
{
uint32_t ret;
#if defined(_CMU_AUXHFRCOCTRL_FREQRANGE_MASK)
ret = auxHfrcoFreq;
#elif defined(_CMU_AUXHFRCOCTRL_BAND_MASK)
/* All series 0 families except EFM32G */
switch (CMU->AUXHFRCOCTRL & _CMU_AUXHFRCOCTRL_BAND_MASK) {
case CMU_AUXHFRCOCTRL_BAND_1MHZ:
if ( SYSTEM_GetProdRev() >= 19 ) {
ret = 1200000;
} else {
ret = 1000000;
}
break;
case CMU_AUXHFRCOCTRL_BAND_7MHZ:
if ( SYSTEM_GetProdRev() >= 19 ) {
ret = 6600000;
} else {
ret = 7000000;
}
break;
case CMU_AUXHFRCOCTRL_BAND_11MHZ:
ret = 11000000;
break;
case CMU_AUXHFRCOCTRL_BAND_14MHZ:
ret = 14000000;
break;
case CMU_AUXHFRCOCTRL_BAND_21MHZ:
ret = 21000000;
break;
#if defined(_CMU_AUXHFRCOCTRL_BAND_28MHZ)
case CMU_AUXHFRCOCTRL_BAND_28MHZ:
ret = 28000000;
break;
#endif
default:
EFM_ASSERT(0);
ret = 0;
break;
}
#else
/* Gecko has a fixed 14Mhz AUXHFRCO clock */
ret = 14000000;
#endif
return ret;
}
#if defined (_CMU_ADCCTRL_ADC0CLKSEL_HFSRCCLK) \
|| defined (_CMU_ADCCTRL_ADC1CLKSEL_HFSRCCLK)
/***************************************************************************//**
* @brief
* Get the HFSRCCLK frequency.
*
* @return
* HFSRCCLK Frequency in Hz
******************************************************************************/
static uint32_t hfSrcClkGet(void)
{
uint32_t ret;
ret = SystemHFClockGet();
return ret * (1U + ((CMU->HFPRESC & _CMU_HFPRESC_PRESC_MASK)
>> _CMU_HFPRESC_PRESC_SHIFT));
}
#endif
/***************************************************************************//**
* @brief
* Get the Debug Trace clock frequency
*
* @return
* Debug Trace frequency in Hz
******************************************************************************/
static uint32_t dbgClkGet(void)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
clk = CMU_ClockSelectGet(cmuClock_DBG);
switch (clk) {
case cmuSelect_HFCLK:
ret = SystemHFClockGet();
break;
case cmuSelect_AUXHFRCO:
ret = auxClkGet();
break;
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
#if defined(_CMU_ADCCTRL_MASK)
/***************************************************************************//**
* @brief
* Get the ADC n asynchronous clock frequency
*
* @return
* ADC n asynchronous frequency in Hz
******************************************************************************/
static uint32_t adcAsyncClkGet(uint32_t adc)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
switch (adc) {
case 0:
clk = CMU_ClockSelectGet(cmuClock_ADC0ASYNC);
break;
#if defined(_CMU_ADCCTRL_ADC1CLKSEL_MASK)
case 1:
clk = CMU_ClockSelectGet(cmuClock_ADC1ASYNC);
break;
#endif
default:
EFM_ASSERT(0);
return 0;
}
switch (clk) {
case cmuSelect_Disabled:
ret = 0;
break;
case cmuSelect_AUXHFRCO:
ret = auxClkGet();
break;
case cmuSelect_HFXO:
ret = SystemHFXOClockGet();
break;
case cmuSelect_HFSRCCLK:
ret = hfSrcClkGet();
break;
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
#endif
#if defined(_CMU_SDIOCTRL_MASK)
/***************************************************************************//**
* @brief
* Get the SDIO reference clock frequency
*
* @return
* SDIO reference clock frequency in Hz
******************************************************************************/
static uint32_t sdioRefClkGet(void)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
clk = CMU_ClockSelectGet(cmuClock_SDIOREF);
switch (clk) {
case cmuSelect_HFRCO:
ret = SystemHfrcoFreq;
break;
case cmuSelect_HFXO:
ret = SystemHFXOClockGet();
break;
case cmuSelect_AUXHFRCO:
ret = auxClkGet();
break;
case cmuSelect_USHFRCO:
ret = ushfrcoFreq;
break;
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
#endif
#if defined(_CMU_QSPICTRL_MASK)
/***************************************************************************//**
* @brief
* Get the QSPI n reference clock frequency
*
* @return
* QSPI n reference clock frequency in Hz
******************************************************************************/
static uint32_t qspiRefClkGet(uint32_t qspi)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
switch (qspi) {
case 0:
clk = CMU_ClockSelectGet(cmuClock_QSPI0REF);
break;
default:
EFM_ASSERT(0);
return 0;
}
switch (clk) {
case cmuSelect_HFRCO:
ret = SystemHfrcoFreq;
break;
case cmuSelect_HFXO:
ret = SystemHFXOClockGet();
break;
case cmuSelect_AUXHFRCO:
ret = auxClkGet();
break;
case cmuSelect_USHFRCO:
ret = ushfrcoFreq;
break;
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
#endif
#if defined(USBR_CLOCK_PRESENT)
/***************************************************************************//**
* @brief
* Get the USB rate clock frequency
*
* @return
* USB rate clock frequency in Hz
******************************************************************************/
static uint32_t usbRateClkGet(void)
{
uint32_t ret;
CMU_Select_TypeDef clk;
clk = CMU_ClockSelectGet(cmuClock_USBR);
switch (clk) {
case cmuSelect_USHFRCO:
ret = ushfrcoFreq;
break;
case cmuSelect_HFXO:
ret = SystemHFXOClockGet();
break;
case cmuSelect_HFXOX2:
ret = 2u * SystemHFXOClockGet();
break;
case cmuSelect_HFRCO:
ret = SystemHfrcoFreq;
break;
case cmuSelect_LFXO:
ret = SystemLFXOClockGet();
break;
case cmuSelect_LFRCO:
ret = SystemLFRCOClockGet();
break;
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
#endif
/***************************************************************************//**
* @brief
* Configure flash access wait states in order to support given core clock
* frequency.
*
* @param[in] coreFreq
* Core clock frequency to configure flash wait-states for
*
* @param[in] vscale
* Voltage Scale level. Supported levels are 0 and 2 where 0 is the default.
******************************************************************************/
static void flashWaitStateControl(uint32_t coreFreq, int vscale)
{
uint32_t mode;
bool mscLocked;
#if defined(MSC_READCTRL_MODE_WS0SCBTP)
bool scbtpEn; /* Suppressed Conditional Branch Target Prefetch setting. */
#endif
(void) vscale; /* vscale parameter is only used on some devices */
/* Make sure the MSC is unlocked */
mscLocked = MSC->LOCK;
MSC->LOCK = MSC_UNLOCK_CODE;
/* Get mode and SCBTP enable */
mode = MSC->READCTRL & _MSC_READCTRL_MODE_MASK;
#if defined(MSC_READCTRL_MODE_WS0SCBTP)
/* Devices with MODE and SCBTP in same register field */
switch (mode) {
case MSC_READCTRL_MODE_WS0:
case MSC_READCTRL_MODE_WS1:
#if defined(MSC_READCTRL_MODE_WS2)
case MSC_READCTRL_MODE_WS2:
#endif
scbtpEn = false;
break;
default: /* WSxSCBTP */
scbtpEn = true;
break;
}
/* Set mode based on the core clock frequency and SCBTP enable */
if (false) {
}
#if defined(MSC_READCTRL_MODE_WS2)
else if (coreFreq > CMU_MAX_FREQ_1WS) {
mode = (scbtpEn ? MSC_READCTRL_MODE_WS2SCBTP : MSC_READCTRL_MODE_WS2);
}
#endif
else if ((coreFreq <= CMU_MAX_FREQ_1WS) && (coreFreq > CMU_MAX_FREQ_0WS)) {
mode = (scbtpEn ? MSC_READCTRL_MODE_WS1SCBTP : MSC_READCTRL_MODE_WS1);
} else {
mode = (scbtpEn ? MSC_READCTRL_MODE_WS0SCBTP : MSC_READCTRL_MODE_WS0);
}
#elif defined(_SILICON_LABS_32B_SERIES_1) && defined(_EMU_STATUS_VSCALE_MASK)
/* These devices have specific requirements on the supported flash wait state
* depending on frequency and voltage scale level. */
uint32_t i;
for (i = 0; i < FLASH_WS_TABLE_ENTRIES; i++) {
if ((flashWsTable[i].vscale == vscale)
&& (coreFreq <= flashWsTable[i].maxFreq)) {
break; // found matching entry
}
}
if (i == FLASH_WS_TABLE_ENTRIES) {
EFM_ASSERT(false);
mode = 3; // worst case flash wait state for unsupported cases
} else {
mode = flashWsTable[i].ws;
}
mode = mode << _MSC_READCTRL_MODE_SHIFT;
#else
/* Devices where MODE and SCBTP are in separate fields and where the device
* either does not support voltage scale or where the voltage scale does
* not impact flash wait state configuration. */
if (coreFreq <= CMU_MAX_FREQ_0WS) {
mode = 0;
} else if (coreFreq <= CMU_MAX_FREQ_1WS) {
mode = 1;
}
#if defined(MSC_READCTRL_MODE_WS2)
else if (coreFreq <= CMU_MAX_FREQ_2WS) {
mode = 2;
}
#endif
#if defined(MSC_READCTRL_MODE_WS3)
else if (coreFreq <= CMU_MAX_FREQ_3WS) {
mode = 3;
}
#endif
mode = mode << _MSC_READCTRL_MODE_SHIFT;
#endif
/* BUS_RegMaskedWrite cannot be used here as it would temporarily set the
mode field to WS0 */
MSC->READCTRL = (MSC->READCTRL & ~_MSC_READCTRL_MODE_MASK) | mode;
if (mscLocked) {
MSC->LOCK = 0;
}
}
/***************************************************************************//**
* @brief
* Configure flash access wait states to most conservative setting for
* this target. Retain SCBTP (Suppressed Conditional Branch Target Prefetch)
* setting.
******************************************************************************/
static void flashWaitStateMax(void)
{
flashWaitStateControl(SystemMaxCoreClockGet(), 0);
}
#if defined(_MSC_RAMCTRL_RAMWSEN_MASK)
/***************************************************************************//**
* @brief
* Configure RAM access wait states in order to support given core clock
* frequency.
*
* @param[in] coreFreq
* Core clock frequency to configure RAM wait-states for
*
* @param[in] vscale
* Voltage Scale level. Supported levels are 0 and 2 where 0 is the default.
******************************************************************************/
static void setRamWaitState(uint32_t coreFreq, int vscale)
{
uint32_t limit = 38000000;
if (vscale == 2) {
limit = 16000000;
}
if (coreFreq > limit) {
BUS_RegMaskedSet(&MSC->RAMCTRL, (MSC_RAMCTRL_RAMWSEN
| MSC_RAMCTRL_RAM1WSEN
| MSC_RAMCTRL_RAM2WSEN));
} else {
BUS_RegMaskedClear(&MSC->RAMCTRL, (MSC_RAMCTRL_RAMWSEN
| MSC_RAMCTRL_RAM1WSEN
| MSC_RAMCTRL_RAM2WSEN));
}
}
#endif
#if defined(_MSC_CTRL_WAITMODE_MASK)
/***************************************************************************//**
* @brief
* Configure wait state for peripheral accesses over the bus to support
* given bus clock frequency.
*
* @param[in] busFreq
* peripheral bus clock frequency to configure wait-states for
*
* @param[in] vscale
* The voltage scale to configure wait-states for. Expected values are
* 0 or 2.
*
* @li 0 = 1.2 V (VSCALE2)
* @li 2 = 1.0 V (VSCALE0)
* ******************************************************************************/
static void setBusWaitState(uint32_t busFreq, int vscale)
{
if ((busFreq > 50000000) && (vscale == 0)) {
BUS_RegMaskedSet(&MSC->CTRL, MSC_CTRL_WAITMODE_WS1);
} else {
BUS_RegMaskedClear(&MSC->CTRL, MSC_CTRL_WAITMODE_WS1);
}
}
#endif
/***************************************************************************//**
* @brief
* Configure various wait states necessary to switch to a certain frequency
* and a certain voltage scale.
*
* @details
* This function will setup the necessary flash, bus and RAM wait states.
* Updating the wait state configuration must be done before
* increasing the clock frequency, and it must be done after decreasing the
* clock frequency. Updating the wait state configuration must be done before
* core voltage is decreased, and it must be done after a core voltage is
* increased.
*
* @param[in] coreFreq
* Core clock frequency to configure wait-states for.
*
* @param[in] vscale
* The voltage scale to configure wait-states for. Expected values are
* 0 or 2, higher number is lower voltage.
*
* @li 0 = 1.2 V (VSCALE2)
* @li 2 = 1.0 V (VSCALE0)
*
******************************************************************************/
void CMU_UpdateWaitStates(uint32_t freq, int vscale)
{
flashWaitStateControl(freq, vscale);
#if defined(_MSC_RAMCTRL_RAMWSEN_MASK)
setRamWaitState(freq, vscale);
#endif
#if defined(_MSC_CTRL_WAITMODE_MASK)
setBusWaitState(freq, vscale);
#endif
}
#if defined(_CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_MASK)
/***************************************************************************//**
* @brief
* Return upper value for CMU_HFXOSTEADYSTATECTRL_REGISH
******************************************************************************/
static uint32_t getRegIshUpperVal(uint32_t steadyStateRegIsh)
{
uint32_t regIshUpper;
const uint32_t upperMax = _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_MASK
>> _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_SHIFT;
/* Add 3 as specified in register description for CMU_HFXOSTEADYSTATECTRL_REGISHUPPER. */
regIshUpper = SL_MIN(steadyStateRegIsh + 3, upperMax);
regIshUpper <<= _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_SHIFT;
return regIshUpper;
}
#endif
#if defined(_CMU_HFXOCTRL_MASK)
/***************************************************************************//**
* @brief
* Get the HFXO tuning mode
*
* @return
* The current HFXO tuning mode from the HFXOCTRL register.
******************************************************************************/
__STATIC_INLINE uint32_t getHfxoTuningMode(void)
{
#if defined(_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK)
return (CMU->HFXOCTRL & _CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK);
#else
return (CMU->HFXOCTRL & _CMU_HFXOCTRL_PEAKDETMODE_MASK);
#endif
}
/***************************************************************************//**
* @brief
* Set the HFXO tuning mode
*
* @param[in] mode
* the new HFXO tuning mode, this can be HFXO_TUNING_MODE_AUTO or
* HFXO_TUNING_MODE_CMD.
******************************************************************************/
__STATIC_INLINE void setHfxoTuningMode(uint32_t mode)
{
#if defined(_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK)
CMU->HFXOCTRL = (CMU->HFXOCTRL & ~_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK) | mode;
#else
CMU->HFXOCTRL = (CMU->HFXOCTRL & ~_CMU_HFXOCTRL_PEAKDETMODE_MASK) | mode;
#endif
}
#endif
/***************************************************************************//**
* @brief
* Get the LFnCLK frequency based on current configuration.
*
* @param[in] lfClkBranch
* Selected LF branch
*
* @return
* The LFnCLK frequency in Hz. If no LFnCLK is selected (disabled), 0 is
* returned.
******************************************************************************/
static uint32_t lfClkGet(CMU_Clock_TypeDef lfClkBranch)
{
uint32_t sel;
uint32_t ret = 0;
switch (lfClkBranch) {
case cmuClock_LFA:
case cmuClock_LFB:
#if defined(_CMU_LFCCLKEN0_MASK)
case cmuClock_LFC:
#endif
#if defined(_CMU_LFECLKSEL_MASK)
case cmuClock_LFE:
#endif
break;
default:
EFM_ASSERT(0);
break;
}
sel = CMU_ClockSelectGet(lfClkBranch);
/* Get clock select field */
switch (lfClkBranch) {
case cmuClock_LFA:
#if defined(_CMU_LFCLKSEL_MASK)
sel = (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFA_MASK) >> _CMU_LFCLKSEL_LFA_SHIFT;
#elif defined(_CMU_LFACLKSEL_MASK)
sel = (CMU->LFACLKSEL & _CMU_LFACLKSEL_LFA_MASK) >> _CMU_LFACLKSEL_LFA_SHIFT;
#else
EFM_ASSERT(0);
#endif
break;
case cmuClock_LFB:
#if defined(_CMU_LFCLKSEL_MASK)
sel = (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFB_MASK) >> _CMU_LFCLKSEL_LFB_SHIFT;
#elif defined(_CMU_LFBCLKSEL_MASK)
sel = (CMU->LFBCLKSEL & _CMU_LFBCLKSEL_LFB_MASK) >> _CMU_LFBCLKSEL_LFB_SHIFT;
#else
EFM_ASSERT(0);
#endif
break;
#if defined(_CMU_LFCCLKEN0_MASK)
case cmuClock_LFC:
#if defined(_CMU_LFCLKSEL_LFC_MASK)
sel = (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFC_MASK) >> _CMU_LFCLKSEL_LFC_SHIFT;
#elif defined(_CMU_LFCCLKSEL_LFC_MASK)
sel = (CMU->LFCCLKSEL & _CMU_LFCCLKSEL_LFC_MASK) >> _CMU_LFCCLKSEL_LFC_SHIFT;
#else
EFM_ASSERT(0);
#endif
break;
#endif
#if defined(_CMU_LFECLKSEL_MASK)
case cmuClock_LFE:
sel = (CMU->LFECLKSEL & _CMU_LFECLKSEL_LFE_MASK) >> _CMU_LFECLKSEL_LFE_SHIFT;
break;
#endif
default:
EFM_ASSERT(0);
break;
}
/* Get clock frequency */
#if defined(_CMU_LFCLKSEL_MASK)
switch (sel) {
case _CMU_LFCLKSEL_LFA_LFRCO:
ret = SystemLFRCOClockGet();
break;
case _CMU_LFCLKSEL_LFA_LFXO:
ret = SystemLFXOClockGet();
break;
#if defined(_CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2)
case _CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2:
#if defined(CMU_MAX_FREQ_HFLE)
/* HFLE bit is or'ed by hardware with HFCORECLKLEDIV to reduce the
* frequency of CMU_HFCORECLKLEDIV2. */
ret = SystemCoreClockGet() / (1U << (getHfLeConfig() + 1));
#else
ret = SystemCoreClockGet() / 2U;
#endif
break;
#endif
case _CMU_LFCLKSEL_LFA_DISABLED:
ret = 0;
#if defined(CMU_LFCLKSEL_LFAE)
/* Check LF Extended bit setting for LFA or LFB ULFRCO clock */
if ((lfClkBranch == cmuClock_LFA) || (lfClkBranch == cmuClock_LFB)) {
if (CMU->LFCLKSEL >> (lfClkBranch == cmuClock_LFA
? _CMU_LFCLKSEL_LFAE_SHIFT
: _CMU_LFCLKSEL_LFBE_SHIFT)) {
ret = SystemULFRCOClockGet();
}
}
#endif
break;
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
#endif /* _CMU_LFCLKSEL_MASK */
#if defined(_CMU_LFACLKSEL_MASK)
switch (sel) {
case _CMU_LFACLKSEL_LFA_LFRCO:
ret = SystemLFRCOClockGet();
break;
case _CMU_LFACLKSEL_LFA_LFXO:
ret = SystemLFXOClockGet();
break;
case _CMU_LFACLKSEL_LFA_ULFRCO:
ret = SystemULFRCOClockGet();
break;
#if defined(CMU_LFACLKSEL_LFA_PLFRCO)
case _CMU_LFACLKSEL_LFA_PLFRCO:
ret = SystemLFRCOClockGet();
break;
#endif
#if defined(_CMU_LFACLKSEL_LFA_HFCLKLE)
case _CMU_LFACLKSEL_LFA_HFCLKLE:
ret = SystemCoreClockGet()
/ CMU_Log2ToDiv(((CMU->HFPRESC & _CMU_HFPRESC_HFCLKLEPRESC_MASK)
>> _CMU_HFPRESC_HFCLKLEPRESC_SHIFT) + 1);
break;
#elif defined(_CMU_LFBCLKSEL_LFB_HFCLKLE)
case _CMU_LFBCLKSEL_LFB_HFCLKLE:
ret = SystemCoreClockGet()
/ CMU_Log2ToDiv(((CMU->HFPRESC & _CMU_HFPRESC_HFCLKLEPRESC_MASK)
>> _CMU_HFPRESC_HFCLKLEPRESC_SHIFT) + 1);
break;
#endif
case _CMU_LFACLKSEL_LFA_DISABLED:
ret = 0;
break;
}
#endif
return ret;
}
/***************************************************************************//**
* @brief
* Wait for ongoing sync of register(s) to low frequency domain to complete.
*
* @param[in] mask
* Bitmask corresponding to SYNCBUSY register defined bits, indicating
* registers that must complete any ongoing synchronization.
******************************************************************************/
__STATIC_INLINE void syncReg(uint32_t mask)
{
/* Avoid deadlock if modifying the same register twice when freeze mode is */
/* activated. */
if (CMU->FREEZE & CMU_FREEZE_REGFREEZE) {
return;
}
/* Wait for any pending previous write operation to have been completed */
/* in low frequency domain */
while (CMU->SYNCBUSY & mask) {
}
}
#if defined(USBC_CLOCK_PRESENT)
/***************************************************************************//**
* @brief
* Get the USBC frequency
*
* @return
* USBC frequency in Hz
******************************************************************************/
static uint32_t usbCClkGet(void)
{
uint32_t ret;
CMU_Select_TypeDef clk;
/* Get selected clock source */
clk = CMU_ClockSelectGet(cmuClock_USBC);
switch (clk) {
case cmuSelect_LFXO:
ret = SystemLFXOClockGet();
break;
case cmuSelect_LFRCO:
ret = SystemLFRCOClockGet();
break;
#if defined (_CMU_USHFRCOCTRL_MASK)
case cmuSelect_USHFRCO:
ret = ushfrcoFreq;
break;
#endif
case cmuSelect_HFCLK:
ret = SystemHFClockGet();
break;
default:
/* Clock is not enabled */
ret = 0;
break;
}
return ret;
}
#endif
/** @endcond */
/*******************************************************************************
************************** GLOBAL FUNCTIONS *******************************
******************************************************************************/
#if defined(_CMU_AUXHFRCOCTRL_BAND_MASK)
/***************************************************************************//**
* @brief
* Get AUXHFRCO band in use.
*
* @return
* AUXHFRCO band in use.
******************************************************************************/
CMU_AUXHFRCOBand_TypeDef CMU_AUXHFRCOBandGet(void)
{
return (CMU_AUXHFRCOBand_TypeDef)((CMU->AUXHFRCOCTRL
& _CMU_AUXHFRCOCTRL_BAND_MASK)
>> _CMU_AUXHFRCOCTRL_BAND_SHIFT);
}
#endif /* _CMU_AUXHFRCOCTRL_BAND_MASK */
#if defined(_CMU_AUXHFRCOCTRL_BAND_MASK)
/***************************************************************************//**
* @brief
* Set AUXHFRCO band and the tuning value based on the value in the
* calibration table made during production.
*
* @param[in] band
* AUXHFRCO band to activate.
******************************************************************************/
void CMU_AUXHFRCOBandSet(CMU_AUXHFRCOBand_TypeDef band)
{
uint32_t tuning;
/* Read tuning value from calibration table */
switch (band) {
case cmuAUXHFRCOBand_1MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND1_MASK)
>> _DEVINFO_AUXHFRCOCAL0_BAND1_SHIFT;
break;
case cmuAUXHFRCOBand_7MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND7_MASK)
>> _DEVINFO_AUXHFRCOCAL0_BAND7_SHIFT;
break;
case cmuAUXHFRCOBand_11MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND11_MASK)
>> _DEVINFO_AUXHFRCOCAL0_BAND11_SHIFT;
break;
case cmuAUXHFRCOBand_14MHz:
tuning = (DEVINFO->AUXHFRCOCAL0 & _DEVINFO_AUXHFRCOCAL0_BAND14_MASK)
>> _DEVINFO_AUXHFRCOCAL0_BAND14_SHIFT;
break;
case cmuAUXHFRCOBand_21MHz:
tuning = (DEVINFO->AUXHFRCOCAL1 & _DEVINFO_AUXHFRCOCAL1_BAND21_MASK)
>> _DEVINFO_AUXHFRCOCAL1_BAND21_SHIFT;
break;
#if defined(_CMU_AUXHFRCOCTRL_BAND_28MHZ)
case cmuAUXHFRCOBand_28MHz:
tuning = (DEVINFO->AUXHFRCOCAL1 & _DEVINFO_AUXHFRCOCAL1_BAND28_MASK)
>> _DEVINFO_AUXHFRCOCAL1_BAND28_SHIFT;
break;
#endif
default:
EFM_ASSERT(0);
return;
}
/* Set band/tuning */
CMU->AUXHFRCOCTRL = (CMU->AUXHFRCOCTRL
& ~(_CMU_AUXHFRCOCTRL_BAND_MASK
| _CMU_AUXHFRCOCTRL_TUNING_MASK))
| (band << _CMU_AUXHFRCOCTRL_BAND_SHIFT)
| (tuning << _CMU_AUXHFRCOCTRL_TUNING_SHIFT);
}
#endif /* _CMU_AUXHFRCOCTRL_BAND_MASK */
#if defined(_CMU_AUXHFRCOCTRL_FREQRANGE_MASK)
/**************************************************************************//**
* @brief
* Get the AUXHFRCO frequency calibration word in DEVINFO
*
* @param[in] freq
* Frequency in Hz
*
* @return
* AUXHFRCO calibration word for a given frequency
*****************************************************************************/
static uint32_t CMU_AUXHFRCODevinfoGet(CMU_AUXHFRCOFreq_TypeDef freq)
{
switch (freq) {
/* 1, 2 and 4MHz share the same calibration word */
case cmuAUXHFRCOFreq_1M0Hz:
case cmuAUXHFRCOFreq_2M0Hz:
case cmuAUXHFRCOFreq_4M0Hz:
return DEVINFO->AUXHFRCOCAL0;
case cmuAUXHFRCOFreq_7M0Hz:
return DEVINFO->AUXHFRCOCAL3;
case cmuAUXHFRCOFreq_13M0Hz:
return DEVINFO->AUXHFRCOCAL6;
case cmuAUXHFRCOFreq_16M0Hz:
return DEVINFO->AUXHFRCOCAL7;
case cmuAUXHFRCOFreq_19M0Hz:
return DEVINFO->AUXHFRCOCAL8;
case cmuAUXHFRCOFreq_26M0Hz:
return DEVINFO->AUXHFRCOCAL10;
case cmuAUXHFRCOFreq_32M0Hz:
return DEVINFO->AUXHFRCOCAL11;
case cmuAUXHFRCOFreq_38M0Hz:
return DEVINFO->AUXHFRCOCAL12;
#if defined(DEVINFO_AUXHFRCOCAL14)
case cmuAUXHFRCOFreq_48M0Hz:
return DEVINFO->AUXHFRCOCAL13;
case cmuAUXHFRCOFreq_50M0Hz:
return DEVINFO->AUXHFRCOCAL14;
#endif
default: /* cmuAUXHFRCOFreq_UserDefined */
return 0;
}
}
#endif /* _CMU_AUXHFRCOCTRL_FREQRANGE_MASK */
#if defined(_CMU_AUXHFRCOCTRL_FREQRANGE_MASK)
/***************************************************************************//**
* @brief
* Get current AUXHFRCO frequency.
*
* @return
* AUXHFRCO frequency
******************************************************************************/
CMU_AUXHFRCOFreq_TypeDef CMU_AUXHFRCOBandGet(void)
{
return auxHfrcoFreq;
}
#endif /* _CMU_AUXHFRCOCTRL_FREQRANGE_MASK */
#if defined(_CMU_AUXHFRCOCTRL_FREQRANGE_MASK)
/***************************************************************************//**
* @brief
* Set AUXHFRCO calibration for the selected target frequency.
*
* @param[in] setFreq
* AUXHFRCO frequency to set
******************************************************************************/
void CMU_AUXHFRCOBandSet(CMU_AUXHFRCOFreq_TypeDef setFreq)
{
uint32_t freqCal;
/* Get DEVINFO index, set global auxHfrcoFreq */
freqCal = CMU_AUXHFRCODevinfoGet(setFreq);
EFM_ASSERT((freqCal != 0) && (freqCal != UINT_MAX));
auxHfrcoFreq = setFreq;
/* Wait for any previous sync to complete, and then set calibration data
for the selected frequency. */
while (BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_AUXHFRCOBSY_SHIFT)) ;
/* Set divider in AUXHFRCOCTRL for 1, 2 and 4MHz */
switch (setFreq) {
case cmuAUXHFRCOFreq_1M0Hz:
freqCal = (freqCal & ~_CMU_AUXHFRCOCTRL_CLKDIV_MASK)
| CMU_AUXHFRCOCTRL_CLKDIV_DIV4;
break;
case cmuAUXHFRCOFreq_2M0Hz:
freqCal = (freqCal & ~_CMU_AUXHFRCOCTRL_CLKDIV_MASK)
| CMU_AUXHFRCOCTRL_CLKDIV_DIV2;
break;
case cmuAUXHFRCOFreq_4M0Hz:
freqCal = (freqCal & ~_CMU_AUXHFRCOCTRL_CLKDIV_MASK)
| CMU_AUXHFRCOCTRL_CLKDIV_DIV1;
break;
default:
break;
}
CMU->AUXHFRCOCTRL = freqCal;
}
#endif /* _CMU_AUXHFRCOCTRL_FREQRANGE_MASK */
/***************************************************************************//**
* @brief
* Calibrate clock.
*
* @details
* Run a calibration for HFCLK against a selectable reference clock. Please
* refer to the reference manual, CMU chapter, for further details.
*
* @note
* This function will not return until calibration measurement is completed.
*
* @param[in] HFCycles
* The number of HFCLK cycles to run calibration. Increasing this number
* increases precision, but the calibration will take more time.
*
* @param[in] ref
* The reference clock used to compare HFCLK with.
*
* @return
* The number of ticks the reference clock after HFCycles ticks on the HF
* clock.
******************************************************************************/
uint32_t CMU_Calibrate(uint32_t HFCycles, CMU_Osc_TypeDef ref)
{
EFM_ASSERT(HFCycles <= (_CMU_CALCNT_CALCNT_MASK >> _CMU_CALCNT_CALCNT_SHIFT));
/* Set reference clock source */
switch (ref) {
case cmuOsc_LFXO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_LFXO;
break;
case cmuOsc_LFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_LFRCO;
break;
case cmuOsc_HFXO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_HFXO;
break;
case cmuOsc_HFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_AUXHFRCO;
break;
#if defined (_CMU_USHFRCOCTRL_MASK)
case cmuOsc_USHFRCO:
CMU->CALCTRL = CMU_CALCTRL_UPSEL_USHFRCO;
break;
#endif
default:
EFM_ASSERT(0);
return 0;
}
/* Set top value */
CMU->CALCNT = HFCycles;
/* Start calibration */
CMU->CMD = CMU_CMD_CALSTART;
#if defined(CMU_STATUS_CALRDY)
/* Wait until calibration completes */
while (!BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALRDY_SHIFT)) {
}
#else
/* Wait until calibration completes */
while (BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALBSY_SHIFT)) {
}
#endif
return CMU->CALCNT;
}
#if defined(_CMU_CALCTRL_UPSEL_MASK) && defined(_CMU_CALCTRL_DOWNSEL_MASK)
/***************************************************************************//**
* @brief
* Configure clock calibration
*
* @details
* Configure a calibration for a selectable clock source against another
* selectable reference clock.
* Refer to the reference manual, CMU chapter, for further details.
*
* @note
* After configuration, a call to CMU_CalibrateStart() is required, and
* the resulting calibration value can be read out with the
* CMU_CalibrateCountGet() function call.
*
* @param[in] downCycles
* The number of downSel clock cycles to run calibration. Increasing this
* number increases precision, but the calibration will take more time.
*
* @param[in] downSel
* The clock which will be counted down downCycles
*
* @param[in] upSel
* The reference clock, the number of cycles generated by this clock will
* be counted and added up, the result can be given with the
* CMU_CalibrateCountGet() function call.
******************************************************************************/
void CMU_CalibrateConfig(uint32_t downCycles, CMU_Osc_TypeDef downSel,
CMU_Osc_TypeDef upSel)
{
/* Keep untouched configuration settings */
uint32_t calCtrl = CMU->CALCTRL
& ~(_CMU_CALCTRL_UPSEL_MASK | _CMU_CALCTRL_DOWNSEL_MASK);
/* 20 bits of precision to calibration count register */
EFM_ASSERT(downCycles <= (_CMU_CALCNT_CALCNT_MASK >> _CMU_CALCNT_CALCNT_SHIFT));
/* Set down counting clock source - down counter */
switch (downSel) {
case cmuOsc_LFXO:
calCtrl |= CMU_CALCTRL_DOWNSEL_LFXO;
break;
case cmuOsc_LFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_LFRCO;
break;
case cmuOsc_HFXO:
calCtrl |= CMU_CALCTRL_DOWNSEL_HFXO;
break;
case cmuOsc_HFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_AUXHFRCO;
break;
#if defined (_CMU_USHFRCOCTRL_MASK)
case cmuOsc_USHFRCO:
calCtrl |= CMU_CALCTRL_DOWNSEL_USHFRCO;
break;
#endif
default:
EFM_ASSERT(0);
break;
}
/* Set top value to be counted down by the downSel clock */
CMU->CALCNT = downCycles;
/* Set reference clock source - up counter */
switch (upSel) {
case cmuOsc_LFXO:
calCtrl |= CMU_CALCTRL_UPSEL_LFXO;
break;
case cmuOsc_LFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_LFRCO;
break;
case cmuOsc_HFXO:
calCtrl |= CMU_CALCTRL_UPSEL_HFXO;
break;
case cmuOsc_HFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_HFRCO;
break;
case cmuOsc_AUXHFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_AUXHFRCO;
break;
#if defined (_CMU_USHFRCOCTRL_MASK)
case cmuOsc_USHFRCO:
calCtrl |= CMU_CALCTRL_UPSEL_USHFRCO;
break;
#endif
default:
EFM_ASSERT(0);
break;
}
CMU->CALCTRL = calCtrl;
}
#endif
/***************************************************************************//**
* @brief
* Get calibration count register
* @note
* If continuous calibrartion mode is active, calibration busy will almost
* always be off, and we just need to read the value, where the normal case
* would be that this function call has been triggered by the CALRDY
* interrupt flag.
* @return
* Calibration count, the number of UPSEL clocks (see CMU_CalibrateConfig)
* in the period of DOWNSEL oscillator clock cycles configured by a previous
* write operation to CMU->CALCNT
******************************************************************************/
uint32_t CMU_CalibrateCountGet(void)
{
/* Wait until calibration completes, UNLESS continuous calibration mode is */
/* active */
#if defined(CMU_CALCTRL_CONT)
if (!BUS_RegBitRead(&CMU->CALCTRL, _CMU_CALCTRL_CONT_SHIFT)) {
#if defined(CMU_STATUS_CALRDY)
/* Wait until calibration completes */
while (!BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALRDY_SHIFT)) {
}
#else
/* Wait until calibration completes */
while (BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALBSY_SHIFT)) {
}
#endif
}
#else
while (BUS_RegBitRead(&CMU->STATUS, _CMU_STATUS_CALBSY_SHIFT)) {
}
#endif
return CMU->CALCNT;
}
/***************************************************************************//**
* @brief
* Get clock divisor/prescaler.
*
* @param[in] clock
* Clock point to get divisor/prescaler for. Notice that not all clock points
* have a divisor/prescaler. Please refer to CMU overview in reference manual.
*
* @return
* The current clock point divisor/prescaler. 1 is returned
* if @p clock specifies a clock point without a divisor/prescaler.
******************************************************************************/
CMU_ClkDiv_TypeDef CMU_ClockDivGet(CMU_Clock_TypeDef clock)
{
#if defined(_SILICON_LABS_32B_SERIES_1)
return 1 + (uint32_t)CMU_ClockPrescGet(clock);
#elif defined(_SILICON_LABS_32B_SERIES_0)
uint32_t divReg;
CMU_ClkDiv_TypeDef ret;
/* Get divisor reg id */
divReg = (clock >> CMU_DIV_REG_POS) & CMU_DIV_REG_MASK;
switch (divReg) {
#if defined(_CMU_CTRL_HFCLKDIV_MASK)
case CMU_HFCLKDIV_REG:
ret = 1 + ((CMU->CTRL & _CMU_CTRL_HFCLKDIV_MASK)
>> _CMU_CTRL_HFCLKDIV_SHIFT);
break;
#endif
case CMU_HFPERCLKDIV_REG:
ret = (CMU_ClkDiv_TypeDef)((CMU->HFPERCLKDIV
& _CMU_HFPERCLKDIV_HFPERCLKDIV_MASK)
>> _CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
case CMU_HFCORECLKDIV_REG:
ret = (CMU_ClkDiv_TypeDef)((CMU->HFCORECLKDIV
& _CMU_HFCORECLKDIV_HFCORECLKDIV_MASK)
>> _CMU_HFCORECLKDIV_HFCORECLKDIV_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
case CMU_LFAPRESC0_REG:
switch (clock) {
case cmuClock_RTC:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFAPRESC0 & _CMU_LFAPRESC0_RTC_MASK)
>> _CMU_LFAPRESC0_RTC_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#if defined(_CMU_LFAPRESC0_LETIMER0_MASK)
case cmuClock_LETIMER0:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK)
>> _CMU_LFAPRESC0_LETIMER0_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFAPRESC0_LCD_MASK)
case cmuClock_LCDpre:
ret = (CMU_ClkDiv_TypeDef)(((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK)
>> _CMU_LFAPRESC0_LCD_SHIFT)
+ CMU_DivToLog2(cmuClkDiv_16));
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFAPRESC0_LESENSE_MASK)
case cmuClock_LESENSE:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LESENSE_MASK)
>> _CMU_LFAPRESC0_LESENSE_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock) {
#if defined(_CMU_LFBPRESC0_LEUART0_MASK)
case cmuClock_LEUART0:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK)
>> _CMU_LFBPRESC0_LEUART0_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#endif
#if defined(_CMU_LFBPRESC0_LEUART1_MASK)
case cmuClock_LEUART1:
ret = (CMU_ClkDiv_TypeDef)((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK)
>> _CMU_LFBPRESC0_LEUART1_SHIFT);
ret = CMU_Log2ToDiv(ret);
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
break;
default:
EFM_ASSERT(0);
ret = cmuClkDiv_1;
break;
}
return ret;
#endif
}
/***************************************************************************//**
* @brief
* Set clock divisor/prescaler.
*
* @note
* If setting a LF clock prescaler, synchronization into the low frequency
* domain is required. If the same register is modified before a previous
* update has completed, this function will stall until the previous
* synchronization has completed. Please refer to CMU_FreezeEnable() for
* a suggestion on how to reduce stalling time in some use cases.
*
* @param[in] clock
* Clock point to set divisor/prescaler for. Notice that not all clock points
* have a divisor/prescaler, please refer to CMU overview in the reference
* manual.
*
* @param[in] div
* The clock divisor to use (<= cmuClkDiv_512).
******************************************************************************/
void CMU_ClockDivSet(CMU_Clock_TypeDef clock, CMU_ClkDiv_TypeDef div)
{
#if defined(_SILICON_LABS_32B_SERIES_1)
CMU_ClockPrescSet(clock, (CMU_ClkPresc_TypeDef)(div - 1));
#elif defined(_SILICON_LABS_32B_SERIES_0)
uint32_t freq;
uint32_t divReg;
/* Get divisor reg id */
divReg = (clock >> CMU_DIV_REG_POS) & CMU_DIV_REG_MASK;
switch (divReg) {
#if defined(_CMU_CTRL_HFCLKDIV_MASK)
case CMU_HFCLKDIV_REG:
EFM_ASSERT((div >= cmuClkDiv_1) && (div <= cmuClkDiv_8));
/* Configure worst case wait states for flash access before setting divisor */
flashWaitStateMax();
/* Set divider */
CMU->CTRL = (CMU->CTRL & ~_CMU_CTRL_HFCLKDIV_MASK)
| ((div - 1) << _CMU_CTRL_HFCLKDIV_SHIFT);
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for current core clk */
CMU_UpdateWaitStates(freq, VSCALE_DEFAULT);
break;
#endif
case CMU_HFPERCLKDIV_REG:
EFM_ASSERT((div >= cmuClkDiv_1) && (div <= cmuClkDiv_512));
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->HFPERCLKDIV = (CMU->HFPERCLKDIV & ~_CMU_HFPERCLKDIV_HFPERCLKDIV_MASK)
| (div << _CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT);
break;
case CMU_HFCORECLKDIV_REG:
EFM_ASSERT((div >= cmuClkDiv_1) && (div <= cmuClkDiv_512));
/* Configure worst case wait states for flash access before setting divisor */
flashWaitStateMax();
#if defined(CMU_MAX_FREQ_HFLE)
setHfLeConfig(SystemHFClockGet() / div);
#endif
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->HFCORECLKDIV = (CMU->HFCORECLKDIV
& ~_CMU_HFCORECLKDIV_HFCORECLKDIV_MASK)
| (div << _CMU_HFCORECLKDIV_HFCORECLKDIV_SHIFT);
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize wait state setting for current core clk */
CMU_UpdateWaitStates(freq, VSCALE_DEFAULT);
break;
case CMU_LFAPRESC0_REG:
switch (clock) {
case cmuClock_RTC:
EFM_ASSERT(div <= cmuClkDiv_32768);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_RTC_MASK)
| (div << _CMU_LFAPRESC0_RTC_SHIFT);
break;
#if defined(_CMU_LFAPRESC0_LETIMER0_MASK)
case cmuClock_LETIMER0:
EFM_ASSERT(div <= cmuClkDiv_32768);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LETIMER0_MASK)
| (div << _CMU_LFAPRESC0_LETIMER0_SHIFT);
break;
#endif
#if defined(LCD_PRESENT)
case cmuClock_LCDpre:
EFM_ASSERT((div >= cmuClkDiv_16) && (div <= cmuClkDiv_128));
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LCD_MASK)
| ((div - CMU_DivToLog2(cmuClkDiv_16))
<< _CMU_LFAPRESC0_LCD_SHIFT);
break;
#endif /* defined(LCD_PRESENT) */
#if defined(LESENSE_PRESENT)
case cmuClock_LESENSE:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LESENSE_MASK)
| (div << _CMU_LFAPRESC0_LESENSE_SHIFT);
break;
#endif /* defined(LESENSE_PRESENT) */
default:
EFM_ASSERT(0);
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock) {
#if defined(_CMU_LFBPRESC0_LEUART0_MASK)
case cmuClock_LEUART0:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART0_MASK)
| (((uint32_t)div) << _CMU_LFBPRESC0_LEUART0_SHIFT);
break;
#endif
#if defined(_CMU_LFBPRESC0_LEUART1_MASK)
case cmuClock_LEUART1:
EFM_ASSERT(div <= cmuClkDiv_8);
/* LF register about to be modified require sync. busy check */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
/* Convert to correct scale */
div = CMU_DivToLog2(div);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART1_MASK)
| (((uint32_t)div) << _CMU_LFBPRESC0_LEUART1_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
default:
EFM_ASSERT(0);
break;
}
#endif
}
/***************************************************************************//**
* @brief
* Enable/disable a clock.
*
* @details
* In general, module clocking is disabled after a reset. If a module
* clock is disabled, the registers of that module are not accessible and
* reading from such registers may return undefined values. Writing to
* registers of clock disabled modules have no effect. One should normally
* avoid accessing module registers of a module with a disabled clock.
*
* @note
* If enabling/disabling a LF clock, synchronization into the low frequency
* domain is required. If the same register is modified before a previous
* update has completed, this function will stall until the previous
* synchronization has completed. Please refer to CMU_FreezeEnable() for
* a suggestion on how to reduce stalling time in some use cases.
*
* @param[in] clock
* The clock to enable/disable. Notice that not all defined clock
* points have separate enable/disable control, please refer to CMU overview
* in reference manual.
*
* @param[in] enable
* @li true - enable specified clock.
* @li false - disable specified clock.
******************************************************************************/
void CMU_ClockEnable(CMU_Clock_TypeDef clock, bool enable)
{
volatile uint32_t *reg;
uint32_t bit;
uint32_t sync = 0;
/* Identify enable register */
switch ((clock >> CMU_EN_REG_POS) & CMU_EN_REG_MASK) {
#if defined(_CMU_CTRL_HFPERCLKEN_MASK)
case CMU_CTRL_EN_REG:
reg = &CMU->CTRL;
break;
#endif
#if defined(_CMU_HFCORECLKEN0_MASK)
case CMU_HFCORECLKEN0_EN_REG:
reg = &CMU->HFCORECLKEN0;
#if defined(CMU_MAX_FREQ_HFLE)
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE));
#endif
break;
#endif
#if defined(_CMU_HFBUSCLKEN0_MASK)
case CMU_HFBUSCLKEN0_EN_REG:
reg = &CMU->HFBUSCLKEN0;
break;
#endif
#if defined(_CMU_HFPERCLKDIV_MASK)
case CMU_HFPERCLKDIV_EN_REG:
reg = &CMU->HFPERCLKDIV;
break;
#endif
case CMU_HFPERCLKEN0_EN_REG:
reg = &CMU->HFPERCLKEN0;
break;
#if defined(_CMU_HFPERCLKEN1_MASK)
case CMU_HFPERCLKEN1_EN_REG:
reg = &CMU->HFPERCLKEN1;
break;
#endif
case CMU_LFACLKEN0_EN_REG:
reg = &CMU->LFACLKEN0;
sync = CMU_SYNCBUSY_LFACLKEN0;
break;
case CMU_LFBCLKEN0_EN_REG:
reg = &CMU->LFBCLKEN0;
sync = CMU_SYNCBUSY_LFBCLKEN0;
break;
#if defined(_CMU_LFCCLKEN0_MASK)
case CMU_LFCCLKEN0_EN_REG:
reg = &CMU->LFCCLKEN0;
sync = CMU_SYNCBUSY_LFCCLKEN0;
break;
#endif
#if defined(_CMU_LFECLKEN0_MASK)
case CMU_LFECLKEN0_EN_REG:
reg = &CMU->LFECLKEN0;
sync = CMU_SYNCBUSY_LFECLKEN0;
break;
#endif
#if defined(_CMU_SDIOCTRL_MASK)
case CMU_SDIOREF_EN_REG:
reg = &CMU->SDIOCTRL;
enable = !enable;
break;
#endif
#if defined(_CMU_QSPICTRL_MASK)
case CMU_QSPI0REF_EN_REG:
reg = &CMU->QSPICTRL;
enable = !enable;
break;
#endif
#if defined(_CMU_USBCTRL_MASK)
case CMU_USBRCLK_EN_REG:
reg = &CMU->USBCTRL;
break;
#endif
case CMU_PCNT_EN_REG:
reg = &CMU->PCNTCTRL;
break;
default: /* Cannot enable/disable clock point */
EFM_ASSERT(0);
return;
}
/* Get bit position used to enable/disable */
bit = (clock >> CMU_EN_BIT_POS) & CMU_EN_BIT_MASK;
/* LF synchronization required? */
if (sync) {
syncReg(sync);
}
/* Set/clear bit as requested */
BUS_RegBitWrite(reg, bit, enable);
}
/***************************************************************************//**
* @brief
* Get clock frequency for a clock point.
*
* @param[in] clock
* Clock point to fetch frequency for.
*
* @return
* The current frequency in Hz.
******************************************************************************/
uint32_t CMU_ClockFreqGet(CMU_Clock_TypeDef clock)
{
uint32_t ret;
switch (clock & (CMU_CLK_BRANCH_MASK << CMU_CLK_BRANCH_POS)) {
case (CMU_HF_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
break;
case (CMU_HFPER_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
/* Calculate frequency after HFPER divider. */
#if defined(_CMU_HFPERCLKDIV_HFPERCLKDIV_MASK)
ret >>= (CMU->HFPERCLKDIV & _CMU_HFPERCLKDIV_HFPERCLKDIV_MASK)
>> _CMU_HFPERCLKDIV_HFPERCLKDIV_SHIFT;
#endif
#if defined(_CMU_HFPERPRESC_PRESC_MASK)
ret /= 1U + ((CMU->HFPERPRESC & _CMU_HFPERPRESC_PRESC_MASK)
>> _CMU_HFPERPRESC_PRESC_SHIFT);
#endif
break;
#if defined(_SILICON_LABS_32B_SERIES_1)
#if defined(CRYPTO_PRESENT) \
|| defined(LDMA_PRESENT) \
|| defined(GPCRC_PRESENT) \
|| defined(PRS_PRESENT) \
|| defined(GPIO_PRESENT)
case (CMU_HFBUS_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
break;
#endif
case (CMU_HFCORE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
ret /= 1U + ((CMU->HFCOREPRESC & _CMU_HFCOREPRESC_PRESC_MASK)
>> _CMU_HFCOREPRESC_PRESC_SHIFT);
break;
case (CMU_HFEXP_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = SystemHFClockGet();
ret /= 1U + ((CMU->HFEXPPRESC & _CMU_HFEXPPRESC_PRESC_MASK)
>> _CMU_HFEXPPRESC_PRESC_SHIFT);
break;
#endif
#if defined(_SILICON_LABS_32B_SERIES_0)
#if defined(AES_PRESENT) \
|| defined(DMA_PRESENT) \
|| defined(EBI_PRESENT) \
|| defined(USB_PRESENT)
case (CMU_HFCORE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
{
ret = SystemCoreClockGet();
} break;
#endif
#endif
case (CMU_LFA_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
break;
#if defined(_CMU_LFACLKEN0_RTC_MASK)
case (CMU_RTC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_RTC_MASK)
>> _CMU_LFAPRESC0_RTC_SHIFT;
break;
#endif
#if defined(_CMU_LFECLKEN0_RTCC_MASK)
case (CMU_RTCC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFE);
break;
#endif
#if defined(_CMU_LFACLKEN0_LETIMER0_MASK)
case (CMU_LETIMER0_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
#if defined(_SILICON_LABS_32B_SERIES_0)
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK)
>> _CMU_LFAPRESC0_LETIMER0_SHIFT;
#else
ret /= CMU_Log2ToDiv((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK)
>> _CMU_LFAPRESC0_LETIMER0_SHIFT);
#endif
break;
#endif
#if defined(_CMU_LFACLKEN0_LCD_MASK)
case (CMU_LCDPRE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
#if defined(_SILICON_LABS_32B_SERIES_0)
ret >>= ((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK)
>> _CMU_LFAPRESC0_LCD_SHIFT)
+ CMU_DivToLog2(cmuClkDiv_16);
#else
ret /= CMU_Log2ToDiv((CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK)
>> _CMU_LFAPRESC0_LCD_SHIFT);
#endif
break;
#if defined(_CMU_LCDCTRL_MASK)
case (CMU_LCD_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK)
>> _CMU_LFAPRESC0_LCD_SHIFT;
ret /= 1U + ((CMU->LCDCTRL & _CMU_LCDCTRL_FDIV_MASK)
>> _CMU_LCDCTRL_FDIV_SHIFT);
break;
#endif
#endif
#if defined(_CMU_LFACLKEN0_LESENSE_MASK)
case (CMU_LESENSE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFA);
ret >>= (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LESENSE_MASK)
>> _CMU_LFAPRESC0_LESENSE_SHIFT;
break;
#endif
case (CMU_LFB_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFB);
break;
#if defined(_CMU_LFBCLKEN0_LEUART0_MASK)
case (CMU_LEUART0_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFB);
#if defined(_SILICON_LABS_32B_SERIES_0)
ret >>= (CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK)
>> _CMU_LFBPRESC0_LEUART0_SHIFT;
#else
ret /= CMU_Log2ToDiv((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK)
>> _CMU_LFBPRESC0_LEUART0_SHIFT);
#endif
break;
#endif
#if defined(_CMU_LFBCLKEN0_LEUART1_MASK)
case (CMU_LEUART1_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFB);
#if defined(_SILICON_LABS_32B_SERIES_0)
ret >>= (CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK)
>> _CMU_LFBPRESC0_LEUART1_SHIFT;
#else
ret /= CMU_Log2ToDiv((CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK)
>> _CMU_LFBPRESC0_LEUART1_SHIFT);
#endif
break;
#endif
#if defined(_CMU_LFBCLKEN0_CSEN_MASK)
case (CMU_CSEN_LF_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFB);
ret /= CMU_Log2ToDiv(((CMU->LFBPRESC0 & _CMU_LFBPRESC0_CSEN_MASK)
>> _CMU_LFBPRESC0_CSEN_SHIFT) + 4);
break;
#endif
#if defined(_SILICON_LABS_32B_SERIES_1)
case (CMU_LFE_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = lfClkGet(cmuClock_LFE);
break;
#endif
case (CMU_DBG_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = dbgClkGet();
break;
case (CMU_AUX_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = auxClkGet();
break;
#if defined(USBC_CLOCK_PRESENT)
case (CMU_USBC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = usbCClkGet();
break;
#endif
#if defined(_CMU_ADCCTRL_ADC0CLKSEL_MASK)
case (CMU_ADC0ASYNC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = adcAsyncClkGet(0);
#if defined(_CMU_ADCCTRL_ADC0CLKDIV_MASK)
ret /= 1U + ((CMU->ADCCTRL & _CMU_ADCCTRL_ADC0CLKDIV_MASK)
>> _CMU_ADCCTRL_ADC0CLKDIV_SHIFT);
#endif
break;
#endif
#if defined(_CMU_ADCCTRL_ADC1CLKSEL_MASK)
case (CMU_ADC1ASYNC_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = adcAsyncClkGet(1);
#if defined(_CMU_ADCCTRL_ADC1CLKDIV_MASK)
ret /= 1U + ((CMU->ADCCTRL & _CMU_ADCCTRL_ADC1CLKDIV_MASK)
>> _CMU_ADCCTRL_ADC1CLKDIV_SHIFT);
#endif
break;
#endif
#if defined(_CMU_SDIOCTRL_SDIOCLKSEL_MASK)
case (CMU_SDIOREF_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = sdioRefClkGet();
break;
#endif
#if defined(_CMU_QSPICTRL_QSPI0CLKSEL_MASK)
case (CMU_QSPI0REF_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = qspiRefClkGet(0);
break;
#endif
#if defined(USBR_CLOCK_PRESENT)
case (CMU_USBR_CLK_BRANCH << CMU_CLK_BRANCH_POS):
ret = usbRateClkGet();
break;
#endif
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
#if defined(_SILICON_LABS_32B_SERIES_1)
/***************************************************************************//**
* @brief
* Get clock prescaler.
*
* @param[in] clock
* Clock point to get the prescaler for. Notice that not all clock points
* have a prescaler. Please refer to CMU overview in reference manual.
*
* @return
* The prescaler value of the current clock point. 0 is returned
* if @p clock specifies a clock point without a prescaler.
******************************************************************************/
uint32_t CMU_ClockPrescGet(CMU_Clock_TypeDef clock)
{
uint32_t prescReg;
uint32_t ret;
/* Get prescaler register id. */
prescReg = (clock >> CMU_PRESC_REG_POS) & CMU_PRESC_REG_MASK;
switch (prescReg) {
case CMU_HFPRESC_REG:
ret = (CMU->HFPRESC & _CMU_HFPRESC_PRESC_MASK)
>> _CMU_HFPRESC_PRESC_SHIFT;
break;
case CMU_HFEXPPRESC_REG:
ret = (CMU->HFEXPPRESC & _CMU_HFEXPPRESC_PRESC_MASK)
>> _CMU_HFEXPPRESC_PRESC_SHIFT;
break;
case CMU_HFCLKLEPRESC_REG:
ret = (CMU->HFPRESC & _CMU_HFPRESC_HFCLKLEPRESC_MASK)
>> _CMU_HFPRESC_HFCLKLEPRESC_SHIFT;
break;
case CMU_HFPERPRESC_REG:
ret = (CMU->HFPERPRESC & _CMU_HFPERPRESC_PRESC_MASK)
>> _CMU_HFPERPRESC_PRESC_SHIFT;
break;
case CMU_HFCOREPRESC_REG:
ret = (CMU->HFCOREPRESC & _CMU_HFCOREPRESC_PRESC_MASK)
>> _CMU_HFCOREPRESC_PRESC_SHIFT;
break;
case CMU_LFAPRESC0_REG:
switch (clock) {
#if defined(_CMU_LFAPRESC0_LETIMER0_MASK)
case cmuClock_LETIMER0:
ret = (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER0_MASK)
>> _CMU_LFAPRESC0_LETIMER0_SHIFT;
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined(_CMU_LFAPRESC0_LESENSE_MASK)
case cmuClock_LESENSE:
ret = (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LESENSE_MASK)
>> _CMU_LFAPRESC0_LESENSE_SHIFT;
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined(_CMU_LFAPRESC0_LETIMER1_MASK)
case cmuClock_LETIMER1:
ret = (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LETIMER1_MASK)
>> _CMU_LFAPRESC0_LETIMER1_SHIFT;
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined(_CMU_LFAPRESC0_LCD_MASK)
case cmuClock_LCD:
case cmuClock_LCDpre:
ret = (CMU->LFAPRESC0 & _CMU_LFAPRESC0_LCD_MASK)
>> _CMU_LFAPRESC0_LCD_SHIFT;
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined(_CMU_LFAPRESC0_RTC_MASK)
case cmuClock_RTC:
ret = (CMU->LFAPRESC0 & _CMU_LFAPRESC0_RTC_MASK)
>> _CMU_LFAPRESC0_RTC_SHIFT;
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock) {
#if defined(_CMU_LFBPRESC0_LEUART0_MASK)
case cmuClock_LEUART0:
ret = (CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART0_MASK)
>> _CMU_LFBPRESC0_LEUART0_SHIFT;
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined(_CMU_LFBPRESC0_LEUART1_MASK)
case cmuClock_LEUART1:
ret = (CMU->LFBPRESC0 & _CMU_LFBPRESC0_LEUART1_MASK)
>> _CMU_LFBPRESC0_LEUART1_SHIFT;
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret) - 1U;
break;
#endif
#if defined(_CMU_LFBPRESC0_CSEN_MASK)
case cmuClock_CSEN_LF:
ret = (CMU->LFBPRESC0 & _CMU_LFBPRESC0_CSEN_MASK)
>> _CMU_LFBPRESC0_CSEN_SHIFT;
/* Convert the exponent to prescaler value. */
ret = CMU_Log2ToDiv(ret + 4) - 1U;
break;
#endif
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
break;
case CMU_LFEPRESC0_REG:
switch (clock) {
#if defined(RTCC_PRESENT)
case cmuClock_RTCC:
/* No need to compute with LFEPRESC0_RTCC - DIV1 is the only */
/* allowed value. Convert the exponent to prescaler value. */
ret = _CMU_LFEPRESC0_RTCC_DIV1;
break;
default:
EFM_ASSERT(0);
ret = 0U;
break;
#endif
}
break;
case CMU_ADCASYNCDIV_REG:
switch (clock) {
#if defined(_CMU_ADCCTRL_ADC0CLKDIV_MASK)
case cmuClock_ADC0ASYNC:
ret = (CMU->ADCCTRL & _CMU_ADCCTRL_ADC0CLKDIV_MASK)
>> _CMU_ADCCTRL_ADC0CLKDIV_SHIFT;
break;
#endif
#if defined(_CMU_ADCCTRL_ADC1CLKDIV_MASK)
case cmuClock_ADC1ASYNC:
ret = (CMU->ADCCTRL & _CMU_ADCCTRL_ADC1CLKDIV_MASK)
>> _CMU_ADCCTRL_ADC1CLKDIV_SHIFT;
break;
#endif
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
break;
default:
EFM_ASSERT(0);
ret = 0U;
break;
}
return ret;
}
#endif
#if defined(_SILICON_LABS_32B_SERIES_1)
/***************************************************************************//**
* @brief
* Set clock prescaler.
*
* @note
* If setting a LF clock prescaler, synchronization into the low frequency
* domain is required. If the same register is modified before a previous
* update has completed, this function will stall until the previous
* synchronization has completed. Please refer to CMU_FreezeEnable() for
* a suggestion on how to reduce stalling time in some use cases.
*
* @param[in] clock
* Clock point to set prescaler for. Notice that not all clock points
* have a prescaler, please refer to CMU overview in the reference manual.
*
* @param[in] presc
* The clock prescaler to use.
******************************************************************************/
void CMU_ClockPrescSet(CMU_Clock_TypeDef clock, CMU_ClkPresc_TypeDef presc)
{
uint32_t freq;
uint32_t prescReg;
/* Get divisor reg id */
prescReg = (clock >> CMU_PRESC_REG_POS) & CMU_PRESC_REG_MASK;
switch (prescReg) {
case CMU_HFPRESC_REG:
EFM_ASSERT(presc < 32U);
/* Configure worst case wait-states for flash and HFLE. */
flashWaitStateMax();
setHfLeConfig(CMU_MAX_FREQ_HFLE + 1);
CMU->HFPRESC = (CMU->HFPRESC & ~_CMU_HFPRESC_PRESC_MASK)
| (presc << _CMU_HFPRESC_PRESC_SHIFT);
/* Update CMSIS core clock variable (this function updates the global variable).
Optimize flash and HFLE wait states. */
freq = SystemCoreClockGet();
CMU_UpdateWaitStates(freq, VSCALE_DEFAULT);
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE));
break;
case CMU_HFEXPPRESC_REG:
EFM_ASSERT(presc < 32U);
CMU->HFEXPPRESC = (CMU->HFEXPPRESC & ~_CMU_HFEXPPRESC_PRESC_MASK)
| (presc << _CMU_HFEXPPRESC_PRESC_SHIFT);
break;
case CMU_HFCLKLEPRESC_REG:
#if defined (CMU_HFPRESC_HFCLKLEPRESC_DIV8)
EFM_ASSERT(presc < 3U);
#else
EFM_ASSERT(presc < 2U);
#endif
/* Specifies the clock divider for HFCLKLE. This clock divider must be set
* high enough for the divided clock frequency to be at or below the max
* frequency allowed for the HFCLKLE clock. */
CMU->HFPRESC = (CMU->HFPRESC & ~_CMU_HFPRESC_HFCLKLEPRESC_MASK)
| (presc << _CMU_HFPRESC_HFCLKLEPRESC_SHIFT);
break;
case CMU_HFPERPRESC_REG:
EFM_ASSERT(presc < 512U);
CMU->HFPERPRESC = (CMU->HFPERPRESC & ~_CMU_HFPERPRESC_PRESC_MASK)
| (presc << _CMU_HFPERPRESC_PRESC_SHIFT);
break;
case CMU_HFCOREPRESC_REG:
EFM_ASSERT(presc < 512U);
/* Configure worst case wait-states for flash and HFLE. */
flashWaitStateMax();
setHfLeConfig(CMU_MAX_FREQ_HFLE + 1);
CMU->HFCOREPRESC = (CMU->HFCOREPRESC & ~_CMU_HFCOREPRESC_PRESC_MASK)
| (presc << _CMU_HFCOREPRESC_PRESC_SHIFT);
/* Update CMSIS core clock variable (this function updates the global variable).
Optimize flash and HFLE wait states. */
freq = SystemCoreClockGet();
CMU_UpdateWaitStates(freq, VSCALE_DEFAULT);
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE));
break;
case CMU_LFAPRESC0_REG:
switch (clock) {
#if defined(RTC_PRESENT)
case cmuClock_RTC:
EFM_ASSERT(presc <= 32768U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_RTC_MASK)
| (presc << _CMU_LFAPRESC0_RTC_SHIFT);
break;
#endif
#if defined(RTCC_PRESENT)
case cmuClock_RTCC:
#if defined(_CMU_LFEPRESC0_RTCC_MASK)
/* DIV1 is the only accepted value. */
EFM_ASSERT(presc <= 0U);
/* LF register about to be modified require sync. Busy check.. */
syncReg(CMU_SYNCBUSY_LFEPRESC0);
CMU->LFEPRESC0 = (CMU->LFEPRESC0 & ~_CMU_LFEPRESC0_RTCC_MASK)
| (presc << _CMU_LFEPRESC0_RTCC_SHIFT);
#else
EFM_ASSERT(presc <= 32768U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_RTCC_MASK)
| (presc << _CMU_LFAPRESC0_RTCC_SHIFT);
#endif
break;
#endif
#if defined(_CMU_LFAPRESC0_LETIMER0_MASK)
case cmuClock_LETIMER0:
EFM_ASSERT(presc <= 32768U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LETIMER0_MASK)
| (presc << _CMU_LFAPRESC0_LETIMER0_SHIFT);
break;
#endif
#if defined(_CMU_LFAPRESC0_LESENSE_MASK)
case cmuClock_LESENSE:
EFM_ASSERT(presc <= 8);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LESENSE_MASK)
| (presc << _CMU_LFAPRESC0_LESENSE_SHIFT);
break;
#endif
#if defined(_CMU_LFAPRESC0_LCD_MASK)
case cmuClock_LCDpre:
case cmuClock_LCD:
{
EFM_ASSERT(presc <= 32768U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFAPRESC0);
CMU->LFAPRESC0 = (CMU->LFAPRESC0 & ~_CMU_LFAPRESC0_LCD_MASK)
| (presc << _CMU_LFAPRESC0_LCD_SHIFT);
} break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
case CMU_LFBPRESC0_REG:
switch (clock) {
#if defined(_CMU_LFBPRESC0_LEUART0_MASK)
case cmuClock_LEUART0:
EFM_ASSERT(presc <= 8U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART0_MASK)
| (presc << _CMU_LFBPRESC0_LEUART0_SHIFT);
break;
#endif
#if defined(_CMU_LFBPRESC0_LEUART1_MASK)
case cmuClock_LEUART1:
EFM_ASSERT(presc <= 8U);
/* Convert prescaler value to DIV exponent scale. */
presc = CMU_PrescToLog2(presc);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_LEUART1_MASK)
| (presc << _CMU_LFBPRESC0_LEUART1_SHIFT);
break;
#endif
#if defined(_CMU_LFBPRESC0_CSEN_MASK)
case cmuClock_CSEN_LF:
EFM_ASSERT((presc <= 127U) && (presc >= 15U));
/* Convert prescaler value to DIV exponent scale.
* DIV16 is the lowest supported prescaler. */
presc = CMU_PrescToLog2(presc) - 4;
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFBPRESC0);
CMU->LFBPRESC0 = (CMU->LFBPRESC0 & ~_CMU_LFBPRESC0_CSEN_MASK)
| (presc << _CMU_LFBPRESC0_CSEN_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
case CMU_LFEPRESC0_REG:
switch (clock) {
#if defined(_CMU_LFEPRESC0_RTCC_MASK)
case cmuClock_RTCC:
EFM_ASSERT(presc <= 0U);
/* LF register about to be modified require sync. Busy check. */
syncReg(CMU_SYNCBUSY_LFEPRESC0);
CMU->LFEPRESC0 = (CMU->LFEPRESC0 & ~_CMU_LFEPRESC0_RTCC_MASK)
| (presc << _CMU_LFEPRESC0_RTCC_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
case CMU_ADCASYNCDIV_REG:
switch (clock) {
#if defined(_CMU_ADCCTRL_ADC0CLKDIV_MASK)
case cmuClock_ADC0ASYNC:
EFM_ASSERT(presc <= 3);
CMU->ADCCTRL = (CMU->ADCCTRL & ~_CMU_ADCCTRL_ADC0CLKDIV_MASK)
| (presc << _CMU_ADCCTRL_ADC0CLKDIV_SHIFT);
break;
#endif
#if defined(_CMU_ADCCTRL_ADC1CLKDIV_MASK)
case cmuClock_ADC1ASYNC:
EFM_ASSERT(presc <= 3);
CMU->ADCCTRL = (CMU->ADCCTRL & ~_CMU_ADCCTRL_ADC1CLKDIV_MASK)
| (presc << _CMU_ADCCTRL_ADC1CLKDIV_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
break;
default:
EFM_ASSERT(0);
break;
}
}
#endif
/***************************************************************************//**
* @brief
* Get currently selected reference clock used for a clock branch.
*
* @param[in] clock
* Clock branch to fetch selected ref. clock for. One of:
* @li #cmuClock_HF
* @li #cmuClock_LFA
* @li #cmuClock_LFB @if _CMU_LFCLKSEL_LFAE_ULFRCO
* @li #cmuClock_LFC
* @endif @if _SILICON_LABS_32B_SERIES_1
* @li #cmuClock_LFE
* @endif
* @li #cmuClock_DBG @if DOXYDOC_USB_PRESENT
* @li #cmuClock_USBC
* @endif
*
* @return
* Reference clock used for clocking selected branch, #cmuSelect_Error if
* invalid @p clock provided.
******************************************************************************/
CMU_Select_TypeDef CMU_ClockSelectGet(CMU_Clock_TypeDef clock)
{
CMU_Select_TypeDef ret = cmuSelect_Disabled;
uint32_t selReg;
selReg = (clock >> CMU_SEL_REG_POS) & CMU_SEL_REG_MASK;
switch (selReg) {
case CMU_HFCLKSEL_REG:
#if defined(_CMU_HFCLKSTATUS_MASK)
switch (CMU->HFCLKSTATUS & _CMU_HFCLKSTATUS_SELECTED_MASK) {
case CMU_HFCLKSTATUS_SELECTED_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_HFCLKSTATUS_SELECTED_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_HFCLKSTATUS_SELECTED_HFXO:
ret = cmuSelect_HFXO;
break;
default:
ret = cmuSelect_HFRCO;
break;
}
#else
switch (CMU->STATUS
& (CMU_STATUS_HFRCOSEL
| CMU_STATUS_HFXOSEL
| CMU_STATUS_LFRCOSEL
#if defined(CMU_STATUS_USHFRCODIV2SEL)
| CMU_STATUS_USHFRCODIV2SEL
#endif
| CMU_STATUS_LFXOSEL)) {
case CMU_STATUS_LFXOSEL:
ret = cmuSelect_LFXO;
break;
case CMU_STATUS_LFRCOSEL:
ret = cmuSelect_LFRCO;
break;
case CMU_STATUS_HFXOSEL:
ret = cmuSelect_HFXO;
break;
#if defined(CMU_STATUS_USHFRCODIV2SEL)
case CMU_STATUS_USHFRCODIV2SEL:
ret = cmuSelect_USHFRCODIV2;
break;
#endif
default:
ret = cmuSelect_HFRCO;
break;
}
#endif
break;
#if defined(_CMU_LFCLKSEL_MASK) || defined(_CMU_LFACLKSEL_MASK)
case CMU_LFACLKSEL_REG:
#if defined(_CMU_LFCLKSEL_MASK)
switch (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFA_MASK) {
case CMU_LFCLKSEL_LFA_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFCLKSEL_LFA_LFXO:
ret = cmuSelect_LFXO;
break;
#if defined(CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2)
case CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2:
ret = cmuSelect_HFCLKLE;
break;
#endif
default:
#if defined(CMU_LFCLKSEL_LFAE)
if (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFAE_MASK) {
ret = cmuSelect_ULFRCO;
break;
}
#else
ret = cmuSelect_Disabled;
#endif
break;
}
#elif defined(_CMU_LFACLKSEL_MASK)
switch (CMU->LFACLKSEL & _CMU_LFACLKSEL_LFA_MASK) {
case CMU_LFACLKSEL_LFA_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFACLKSEL_LFA_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_LFACLKSEL_LFA_ULFRCO:
ret = cmuSelect_ULFRCO;
break;
#if defined(_CMU_LFACLKSEL_LFA_HFCLKLE)
case CMU_LFACLKSEL_LFA_HFCLKLE:
ret = cmuSelect_HFCLKLE;
break;
#endif
#if defined(CMU_LFACLKSEL_LFA_PLFRCO)
case CMU_LFACLKSEL_LFA_PLFRCO:
ret = cmuSelect_PLFRCO;
break;
#endif
default:
ret = cmuSelect_Disabled;
break;
}
#endif
break;
#endif /* _CMU_LFCLKSEL_MASK || _CMU_LFACLKSEL_MASK */
#if defined(_CMU_LFCLKSEL_MASK) || defined(_CMU_LFBCLKSEL_MASK)
case CMU_LFBCLKSEL_REG:
#if defined(_CMU_LFCLKSEL_MASK)
switch (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFB_MASK) {
case CMU_LFCLKSEL_LFB_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFCLKSEL_LFB_LFXO:
ret = cmuSelect_LFXO;
break;
#if defined(CMU_LFCLKSEL_LFB_HFCORECLKLEDIV2)
case CMU_LFCLKSEL_LFB_HFCORECLKLEDIV2:
ret = cmuSelect_HFCLKLE;
break;
#endif
#if defined(CMU_LFCLKSEL_LFB_HFCLKLE)
case CMU_LFCLKSEL_LFB_HFCLKLE:
ret = cmuSelect_HFCLKLE;
break;
#endif
default:
#if defined(CMU_LFCLKSEL_LFBE)
if (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFBE_MASK) {
ret = cmuSelect_ULFRCO;
break;
}
#else
ret = cmuSelect_Disabled;
#endif
break;
}
#elif defined(_CMU_LFBCLKSEL_MASK)
switch (CMU->LFBCLKSEL & _CMU_LFBCLKSEL_LFB_MASK) {
case CMU_LFBCLKSEL_LFB_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFBCLKSEL_LFB_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_LFBCLKSEL_LFB_ULFRCO:
ret = cmuSelect_ULFRCO;
break;
case CMU_LFBCLKSEL_LFB_HFCLKLE:
ret = cmuSelect_HFCLKLE;
break;
#if defined(CMU_LFBCLKSEL_LFB_PLFRCO)
case CMU_LFBCLKSEL_LFB_PLFRCO:
ret = cmuSelect_PLFRCO;
break;
#endif
default:
ret = cmuSelect_Disabled;
break;
}
#endif
break;
#endif /* _CMU_LFCLKSEL_MASK || _CMU_LFBCLKSEL_MASK */
#if defined(_CMU_LFCLKSEL_LFC_MASK)
case CMU_LFCCLKSEL_REG:
switch (CMU->LFCLKSEL & _CMU_LFCLKSEL_LFC_MASK) {
case CMU_LFCLKSEL_LFC_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFCLKSEL_LFC_LFXO:
ret = cmuSelect_LFXO;
break;
default:
ret = cmuSelect_Disabled;
break;
}
break;
#endif
#if defined(_CMU_LFECLKSEL_LFE_MASK)
case CMU_LFECLKSEL_REG:
switch (CMU->LFECLKSEL & _CMU_LFECLKSEL_LFE_MASK) {
case CMU_LFECLKSEL_LFE_LFRCO:
ret = cmuSelect_LFRCO;
break;
case CMU_LFECLKSEL_LFE_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_LFECLKSEL_LFE_ULFRCO:
ret = cmuSelect_ULFRCO;
break;
#if defined (_CMU_LFECLKSEL_LFE_HFCLKLE)
case CMU_LFECLKSEL_LFE_HFCLKLE:
ret = cmuSelect_HFCLKLE;
break;
#endif
#if defined(CMU_LFECLKSEL_LFE_PLFRCO)
case CMU_LFECLKSEL_LFE_PLFRCO:
ret = cmuSelect_PLFRCO;
break;
#endif
default:
ret = cmuSelect_Disabled;
break;
}
break;
#endif /* CMU_LFECLKSEL_REG */
case CMU_DBGCLKSEL_REG:
#if defined(_CMU_DBGCLKSEL_DBG_MASK)
switch (CMU->DBGCLKSEL & _CMU_DBGCLKSEL_DBG_MASK) {
case CMU_DBGCLKSEL_DBG_HFCLK:
ret = cmuSelect_HFCLK;
break;
case CMU_DBGCLKSEL_DBG_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
}
#elif defined(_CMU_CTRL_DBGCLK_MASK)
switch (CMU->CTRL & _CMU_CTRL_DBGCLK_MASK) {
case CMU_CTRL_DBGCLK_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
case CMU_CTRL_DBGCLK_HFCLK:
ret = cmuSelect_HFCLK;
break;
}
#else
ret = cmuSelect_AUXHFRCO;
#endif
break;
#if defined(USBC_CLOCK_PRESENT)
case CMU_USBCCLKSEL_REG:
switch (CMU->STATUS
& (CMU_STATUS_USBCLFXOSEL
#if defined(_CMU_STATUS_USBCHFCLKSEL_MASK)
| CMU_STATUS_USBCHFCLKSEL
#endif
#if defined(_CMU_STATUS_USBCUSHFRCOSEL_MASK)
| CMU_STATUS_USBCUSHFRCOSEL
#endif
| CMU_STATUS_USBCLFRCOSEL)) {
#if defined(_CMU_STATUS_USBCHFCLKSEL_MASK)
case CMU_STATUS_USBCHFCLKSEL:
ret = cmuSelect_HFCLK;
break;
#endif
#if defined(_CMU_STATUS_USBCUSHFRCOSEL_MASK)
case CMU_STATUS_USBCUSHFRCOSEL:
ret = cmuSelect_USHFRCO;
break;
#endif
case CMU_STATUS_USBCLFXOSEL:
ret = cmuSelect_LFXO;
break;
case CMU_STATUS_USBCLFRCOSEL:
ret = cmuSelect_LFRCO;
break;
default:
ret = cmuSelect_Disabled;
break;
}
break;
#endif
#if defined(_CMU_ADCCTRL_ADC0CLKSEL_MASK)
case CMU_ADC0ASYNCSEL_REG:
switch (CMU->ADCCTRL & _CMU_ADCCTRL_ADC0CLKSEL_MASK) {
case CMU_ADCCTRL_ADC0CLKSEL_DISABLED:
ret = cmuSelect_Disabled;
break;
case CMU_ADCCTRL_ADC0CLKSEL_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
case CMU_ADCCTRL_ADC0CLKSEL_HFXO:
ret = cmuSelect_HFXO;
break;
case CMU_ADCCTRL_ADC0CLKSEL_HFSRCCLK:
ret = cmuSelect_HFSRCCLK;
break;
}
break;
#endif
#if defined(_CMU_ADCCTRL_ADC1CLKSEL_MASK)
case CMU_ADC1ASYNCSEL_REG:
switch (CMU->ADCCTRL & _CMU_ADCCTRL_ADC1CLKSEL_MASK) {
case CMU_ADCCTRL_ADC1CLKSEL_DISABLED:
ret = cmuSelect_Disabled;
break;
case CMU_ADCCTRL_ADC1CLKSEL_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
case CMU_ADCCTRL_ADC1CLKSEL_HFXO:
ret = cmuSelect_HFXO;
break;
case CMU_ADCCTRL_ADC1CLKSEL_HFSRCCLK:
ret = cmuSelect_HFSRCCLK;
break;
}
break;
#endif
#if defined(_CMU_SDIOCTRL_SDIOCLKSEL_MASK)
case CMU_SDIOREFSEL_REG:
switch (CMU->SDIOCTRL & _CMU_SDIOCTRL_SDIOCLKSEL_MASK) {
case CMU_SDIOCTRL_SDIOCLKSEL_HFRCO:
ret = cmuSelect_HFRCO;
break;
case CMU_SDIOCTRL_SDIOCLKSEL_HFXO:
ret = cmuSelect_HFXO;
break;
case CMU_SDIOCTRL_SDIOCLKSEL_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
case CMU_SDIOCTRL_SDIOCLKSEL_USHFRCO:
ret = cmuSelect_USHFRCO;
break;
}
break;
#endif
#if defined(_CMU_QSPICTRL_QSPI0CLKSEL_MASK)
case CMU_QSPI0REFSEL_REG:
switch (CMU->QSPICTRL & _CMU_QSPICTRL_QSPI0CLKSEL_MASK) {
case CMU_QSPICTRL_QSPI0CLKSEL_HFRCO:
ret = cmuSelect_HFRCO;
break;
case CMU_QSPICTRL_QSPI0CLKSEL_HFXO:
ret = cmuSelect_HFXO;
break;
case CMU_QSPICTRL_QSPI0CLKSEL_AUXHFRCO:
ret = cmuSelect_AUXHFRCO;
break;
case CMU_QSPICTRL_QSPI0CLKSEL_USHFRCO:
ret = cmuSelect_USHFRCO;
break;
}
break;
#endif
#if defined(_CMU_USBCTRL_USBCLKSEL_MASK)
case CMU_USBRCLKSEL_REG:
switch (CMU->USBCTRL & _CMU_USBCTRL_USBCLKSEL_MASK) {
case CMU_USBCTRL_USBCLKSEL_USHFRCO:
ret = cmuSelect_USHFRCO;
break;
case CMU_USBCTRL_USBCLKSEL_HFXO:
ret = cmuSelect_HFXO;
break;
case CMU_USBCTRL_USBCLKSEL_HFXOX2:
ret = cmuSelect_HFXOX2;
break;
case CMU_USBCTRL_USBCLKSEL_HFRCO:
ret = cmuSelect_HFRCO;
break;
case CMU_USBCTRL_USBCLKSEL_LFXO:
ret = cmuSelect_LFXO;
break;
case CMU_USBCTRL_USBCLKSEL_LFRCO:
ret = cmuSelect_LFRCO;
break;
}
break;
#endif
default:
EFM_ASSERT(0);
ret = cmuSelect_Error;
break;
}
return ret;
}
/***************************************************************************//**
* @brief
* Select reference clock/oscillator used for a clock branch.
*
* @details
* Notice that if a selected reference is not enabled prior to selecting its
* use, it will be enabled, and this function will wait for the selected
* oscillator to be stable. It will however NOT be disabled if another
* reference clock is selected later.
*
* This feature is particularly important if selecting a new reference
* clock for the clock branch clocking the core, otherwise the system
* may halt.
*
* @param[in] clock
* Clock branch to select reference clock for. One of:
* @li #cmuClock_HF
* @li #cmuClock_LFA
* @li #cmuClock_LFB
* @if _CMU_LFCCLKEN0_MASK
* @li #cmuClock_LFC
* @endif
* @if _CMU_LFECLKEN0_MASK
* @li #cmuClock_LFE
* @endif
* @li #cmuClock_DBG
* @if _CMU_CMD_USBCLKSEL_MASK
* @li #cmuClock_USBC
* @endif
* @if _CMU_USBCTRL_MASK
* @li #cmuClock_USBR
* @endif
*
* @param[in] ref
* Reference selected for clocking, please refer to reference manual for
* for details on which reference is available for a specific clock branch.
* @li #cmuSelect_HFRCO
* @li #cmuSelect_LFRCO
* @li #cmuSelect_HFXO
* @if _CMU_HFXOCTRL_HFXOX2EN_MASK
* @li #cmuSelect_HFXOX2
* @endif
* @li #cmuSelect_LFXO
* @li #cmuSelect_HFCLKLE
* @li #cmuSelect_AUXHFRCO
* @if _CMU_USHFRCOCTRL_MASK
* @li #cmuSelect_USHFRCO
* @endif
* @li #cmuSelect_HFCLK
* @ifnot DOXYDOC_EFM32_GECKO_FAMILY
* @li #cmuSelect_ULFRCO
* @li #cmuSelect_PLFRCO
* @endif
******************************************************************************/
void CMU_ClockSelectSet(CMU_Clock_TypeDef clock, CMU_Select_TypeDef ref)
{
uint32_t select = cmuOsc_HFRCO;
CMU_Osc_TypeDef osc = cmuOsc_HFRCO;
uint32_t freq;
uint32_t tmp;
uint32_t selRegId;
#if defined(_SILICON_LABS_32B_SERIES_1)
volatile uint32_t *selReg = NULL;
#endif
#if defined(CMU_LFCLKSEL_LFAE_ULFRCO)
uint32_t lfExtended = 0;
#endif
#if defined(_EMU_CMD_EM01VSCALE0_MASK)
uint32_t vScaleFrequency = 0; /* Use default */
/* Start voltage upscaling before clock is set. */
if (clock == cmuClock_HF) {
if (ref == cmuSelect_HFXO) {
vScaleFrequency = SystemHFXOClockGet();
} else if ((ref == cmuSelect_HFRCO)
&& (CMU_HFRCOBandGet() > CMU_VSCALEEM01_LOWPOWER_VOLTAGE_CLOCK_MAX)) {
vScaleFrequency = CMU_HFRCOBandGet();
}
if (vScaleFrequency != 0) {
EMU_VScaleEM01ByClock(vScaleFrequency, false);
}
}
#endif
selRegId = (clock >> CMU_SEL_REG_POS) & CMU_SEL_REG_MASK;
switch (selRegId) {
case CMU_HFCLKSEL_REG:
switch (ref) {
case cmuSelect_LFXO:
#if defined(_SILICON_LABS_32B_SERIES_1)
select = CMU_HFCLKSEL_HF_LFXO;
#elif defined(_SILICON_LABS_32B_SERIES_0)
select = CMU_CMD_HFCLKSEL_LFXO;
#endif
osc = cmuOsc_LFXO;
break;
case cmuSelect_LFRCO:
#if defined(_SILICON_LABS_32B_SERIES_1)
select = CMU_HFCLKSEL_HF_LFRCO;
#elif defined(_SILICON_LABS_32B_SERIES_0)
select = CMU_CMD_HFCLKSEL_LFRCO;
#endif
osc = cmuOsc_LFRCO;
break;
case cmuSelect_HFXO:
#if defined(CMU_HFCLKSEL_HF_HFXO)
select = CMU_HFCLKSEL_HF_HFXO;
#elif defined(CMU_CMD_HFCLKSEL_HFXO)
select = CMU_CMD_HFCLKSEL_HFXO;
#endif
osc = cmuOsc_HFXO;
#if defined(CMU_MAX_FREQ_HFLE)
/* Set 1 HFLE wait-state until the new HFCLKLE frequency is known.
This is known after 'select' is written below. */
setHfLeConfig(CMU_MAX_FREQ_HFLE + 1);
#endif
#if defined(CMU_CTRL_HFXOBUFCUR_BOOSTABOVE32MHZ)
/* Adjust HFXO buffer current for frequencies above 32MHz */
if (SystemHFXOClockGet() > 32000000) {
CMU->CTRL = (CMU->CTRL & ~_CMU_CTRL_HFXOBUFCUR_MASK)
| CMU_CTRL_HFXOBUFCUR_BOOSTABOVE32MHZ;
} else {
CMU->CTRL = (CMU->CTRL & ~_CMU_CTRL_HFXOBUFCUR_MASK)
| CMU_CTRL_HFXOBUFCUR_BOOSTUPTO32MHZ;
}
#endif
break;
case cmuSelect_HFRCO:
#if defined(_SILICON_LABS_32B_SERIES_1)
select = CMU_HFCLKSEL_HF_HFRCO;
#elif defined(_SILICON_LABS_32B_SERIES_0)
select = CMU_CMD_HFCLKSEL_HFRCO;
#endif
osc = cmuOsc_HFRCO;
#if defined(CMU_MAX_FREQ_HFLE)
/* Set 1 HFLE wait-state until the new HFCLKLE frequency is known.
This is known after 'select' is written below. */
setHfLeConfig(CMU_MAX_FREQ_HFLE + 1);
#endif
break;
#if defined(CMU_CMD_HFCLKSEL_USHFRCODIV2)
case cmuSelect_USHFRCODIV2:
select = CMU_CMD_HFCLKSEL_USHFRCODIV2;
osc = cmuOsc_USHFRCO;
break;
#endif
#if defined(CMU_LFCLKSEL_LFAE_ULFRCO) || defined(CMU_LFACLKSEL_LFA_ULFRCO)
case cmuSelect_ULFRCO:
/* ULFRCO cannot be used as HFCLK */
EFM_ASSERT(0);
return;
#endif
default:
EFM_ASSERT(0);
return;
}
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(osc, true, true);
/* Configure worst case wait states for flash access before selecting */
flashWaitStateMax();
#if defined(_EMU_CMD_EM01VSCALE0_MASK)
/* Wait for voltage upscaling to complete before clock is set. */
if (vScaleFrequency != 0) {
EMU_VScaleWait();
}
#endif
/* Switch to selected oscillator */
#if defined(_CMU_HFCLKSEL_MASK)
CMU->HFCLKSEL = select;
#else
CMU->CMD = select;
#endif
#if defined(CMU_MAX_FREQ_HFLE)
/* Update HFLE configuration after 'select' is set.
Note that the HFCLKLE clock is connected differently on planform 1 and 2 */
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE));
#endif
/* Update CMSIS core clock variable */
/* (The function will update the global variable) */
freq = SystemCoreClockGet();
/* Optimize flash access wait state setting for currently selected core clk */
CMU_UpdateWaitStates(freq, VSCALE_DEFAULT);
#if defined(_EMU_CMD_EM01VSCALE0_MASK)
/* Keep EMU module informed on source HF clock frequency. This will apply voltage
downscaling after clock is set if downscaling is configured. */
if (vScaleFrequency == 0) {
EMU_VScaleEM01ByClock(0, true);
}
#endif
break;
#if defined(_SILICON_LABS_32B_SERIES_1)
case CMU_LFACLKSEL_REG:
selReg = (selReg == NULL) ? &CMU->LFACLKSEL : selReg;
#if !defined(_CMU_LFACLKSEL_LFA_HFCLKLE)
/* HFCLKCLE can not be used as LFACLK */
EFM_ASSERT(ref != cmuSelect_HFCLKLE);
#endif
/* Fall through and select clock source */
#if defined(_CMU_LFCCLKSEL_MASK)
case CMU_LFCCLKSEL_REG:
selReg = (selReg == NULL) ? &CMU->LFCCLKSEL : selReg;
#if !defined(_CMU_LFCCLKSEL_LFC_HFCLKLE)
/* HFCLKCLE can not be used as LFCCLK */
EFM_ASSERT(ref != cmuSelect_HFCLKLE);
#endif
#endif
/* Fall through and select clock source */
case CMU_LFECLKSEL_REG:
selReg = (selReg == NULL) ? &CMU->LFECLKSEL : selReg;
#if !defined(_CMU_LFECLKSEL_LFE_HFCLKLE)
/* HFCLKCLE can not be used as LFECLK */
EFM_ASSERT(ref != cmuSelect_HFCLKLE);
#endif
/* Fall through and select clock source */
case CMU_LFBCLKSEL_REG:
selReg = (selReg == NULL) ? &CMU->LFBCLKSEL : selReg;
switch (ref) {
case cmuSelect_Disabled:
tmp = _CMU_LFACLKSEL_LFA_DISABLED;
break;
case cmuSelect_LFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
tmp = _CMU_LFACLKSEL_LFA_LFXO;
break;
case cmuSelect_LFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
tmp = _CMU_LFACLKSEL_LFA_LFRCO;
break;
case cmuSelect_HFCLKLE:
/* Ensure correct HFLE wait-states and enable HFCLK to LE */
setHfLeConfig(SystemCoreClockGet());
BUS_RegBitWrite(&CMU->HFBUSCLKEN0, _CMU_HFBUSCLKEN0_LE_SHIFT, 1);
tmp = _CMU_LFBCLKSEL_LFB_HFCLKLE;
break;
case cmuSelect_ULFRCO:
/* ULFRCO is always on, there is no need to enable it. */
tmp = _CMU_LFACLKSEL_LFA_ULFRCO;
break;
#if defined(_CMU_STATUS_PLFRCOENS_MASK)
case cmuSelect_PLFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_PLFRCO, true, true);
tmp = _CMU_LFACLKSEL_LFA_PLFRCO;
break;
#endif
default:
EFM_ASSERT(0);
return;
}
*selReg = tmp;
break;
#elif defined(_SILICON_LABS_32B_SERIES_0)
case CMU_LFACLKSEL_REG:
case CMU_LFBCLKSEL_REG:
switch (ref) {
case cmuSelect_Disabled:
tmp = _CMU_LFCLKSEL_LFA_DISABLED;
break;
case cmuSelect_LFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
tmp = _CMU_LFCLKSEL_LFA_LFXO;
break;
case cmuSelect_LFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
tmp = _CMU_LFCLKSEL_LFA_LFRCO;
break;
case cmuSelect_HFCLKLE:
#if defined(CMU_MAX_FREQ_HFLE)
/* Set HFLE wait-state and divider */
freq = SystemCoreClockGet();
setHfLeConfig(freq);
#endif
/* Ensure HFCORE to LE clocking is enabled */
BUS_RegBitWrite(&CMU->HFCORECLKEN0, _CMU_HFCORECLKEN0_LE_SHIFT, 1);
tmp = _CMU_LFCLKSEL_LFA_HFCORECLKLEDIV2;
break;
#if defined(CMU_LFCLKSEL_LFAE_ULFRCO)
case cmuSelect_ULFRCO:
/* ULFRCO is always enabled */
tmp = _CMU_LFCLKSEL_LFA_DISABLED;
lfExtended = 1;
break;
#endif
default:
/* Illegal clock source for LFA/LFB selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
if (selRegId == CMU_LFACLKSEL_REG) {
#if defined(_CMU_LFCLKSEL_LFAE_MASK)
CMU->LFCLKSEL = (CMU->LFCLKSEL
& ~(_CMU_LFCLKSEL_LFA_MASK | _CMU_LFCLKSEL_LFAE_MASK))
| (tmp << _CMU_LFCLKSEL_LFA_SHIFT)
| (lfExtended << _CMU_LFCLKSEL_LFAE_SHIFT);
#else
CMU->LFCLKSEL = (CMU->LFCLKSEL & ~_CMU_LFCLKSEL_LFA_MASK)
| (tmp << _CMU_LFCLKSEL_LFA_SHIFT);
#endif
} else {
#if defined(_CMU_LFCLKSEL_LFBE_MASK)
CMU->LFCLKSEL = (CMU->LFCLKSEL
& ~(_CMU_LFCLKSEL_LFB_MASK | _CMU_LFCLKSEL_LFBE_MASK))
| (tmp << _CMU_LFCLKSEL_LFB_SHIFT)
| (lfExtended << _CMU_LFCLKSEL_LFBE_SHIFT);
#else
CMU->LFCLKSEL = (CMU->LFCLKSEL & ~_CMU_LFCLKSEL_LFB_MASK)
| (tmp << _CMU_LFCLKSEL_LFB_SHIFT);
#endif
}
break;
#if defined(_CMU_LFCLKSEL_LFC_MASK)
case CMU_LFCCLKSEL_REG:
switch (ref) {
case cmuSelect_Disabled:
tmp = _CMU_LFCLKSEL_LFA_DISABLED;
break;
case cmuSelect_LFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
tmp = _CMU_LFCLKSEL_LFC_LFXO;
break;
case cmuSelect_LFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
tmp = _CMU_LFCLKSEL_LFC_LFRCO;
break;
default:
/* Illegal clock source for LFC selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
CMU->LFCLKSEL = (CMU->LFCLKSEL & ~_CMU_LFCLKSEL_LFC_MASK)
| (tmp << _CMU_LFCLKSEL_LFC_SHIFT);
break;
#endif
#endif
#if defined(_CMU_DBGCLKSEL_DBG_MASK) || defined(CMU_CTRL_DBGCLK)
case CMU_DBGCLKSEL_REG:
switch (ref) {
#if defined(_CMU_DBGCLKSEL_DBG_MASK)
case cmuSelect_AUXHFRCO:
/* Select AUXHFRCO as debug clock */
CMU->DBGCLKSEL = CMU_DBGCLKSEL_DBG_AUXHFRCO;
break;
case cmuSelect_HFCLK:
/* Select divided HFCLK as debug clock */
CMU->DBGCLKSEL = CMU_DBGCLKSEL_DBG_HFCLK;
break;
#endif
#if defined(CMU_CTRL_DBGCLK)
case cmuSelect_AUXHFRCO:
/* Select AUXHFRCO as debug clock */
CMU->CTRL = (CMU->CTRL & ~(_CMU_CTRL_DBGCLK_MASK))
| CMU_CTRL_DBGCLK_AUXHFRCO;
break;
case cmuSelect_HFCLK:
/* Select divided HFCLK as debug clock */
CMU->CTRL = (CMU->CTRL & ~(_CMU_CTRL_DBGCLK_MASK))
| CMU_CTRL_DBGCLK_HFCLK;
break;
#endif
default:
/* Illegal clock source for debug selected */
EFM_ASSERT(0);
return;
}
break;
#endif
#if defined(USBC_CLOCK_PRESENT)
case CMU_USBCCLKSEL_REG:
switch (ref) {
case cmuSelect_LFXO:
/* Select LFXO as clock source for USB, can only be used in sleep mode */
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
/* Switch oscillator */
CMU->CMD = CMU_CMD_USBCCLKSEL_LFXO;
/* Wait until clock is activated */
while ((CMU->STATUS & CMU_STATUS_USBCLFXOSEL) == 0) {
}
break;
case cmuSelect_LFRCO:
/* Select LFRCO as clock source for USB, can only be used in sleep mode */
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
/* Switch oscillator */
CMU->CMD = CMU_CMD_USBCCLKSEL_LFRCO;
/* Wait until clock is activated */
while ((CMU->STATUS & CMU_STATUS_USBCLFRCOSEL) == 0) {
}
break;
#if defined(CMU_STATUS_USBCHFCLKSEL)
case cmuSelect_HFCLK:
/* Select undivided HFCLK as clock source for USB */
/* Oscillator must already be enabled to avoid a core lockup */
CMU->CMD = CMU_CMD_USBCCLKSEL_HFCLKNODIV;
/* Wait until clock is activated */
while ((CMU->STATUS & CMU_STATUS_USBCHFCLKSEL) == 0) {
}
break;
#endif
#if defined(CMU_CMD_USBCCLKSEL_USHFRCO)
case cmuSelect_USHFRCO:
/* Select USHFRCO as clock source for USB */
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_USHFRCO, true, true);
/* Switch oscillator */
CMU->CMD = CMU_CMD_USBCCLKSEL_USHFRCO;
/* Wait until clock is activated */
while ((CMU->STATUS & CMU_STATUS_USBCUSHFRCOSEL) == 0) {
}
break;
#endif
default:
/* Illegal clock source for USB */
EFM_ASSERT(0);
return;
}
break;
#endif
#if defined(_CMU_ADCCTRL_ADC0CLKSEL_MASK)
case CMU_ADC0ASYNCSEL_REG:
switch (ref) {
case cmuSelect_Disabled:
tmp = _CMU_ADCCTRL_ADC0CLKSEL_DISABLED;
break;
case cmuSelect_AUXHFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_AUXHFRCO, true, true);
tmp = _CMU_ADCCTRL_ADC0CLKSEL_AUXHFRCO;
break;
case cmuSelect_HFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFXO, true, true);
tmp = _CMU_ADCCTRL_ADC0CLKSEL_HFXO;
break;
case cmuSelect_HFSRCCLK:
tmp = _CMU_ADCCTRL_ADC0CLKSEL_HFSRCCLK;
break;
default:
/* Illegal clock source for ADC0ASYNC selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
CMU->ADCCTRL = (CMU->ADCCTRL & ~_CMU_ADCCTRL_ADC0CLKSEL_MASK)
| (tmp << _CMU_ADCCTRL_ADC0CLKSEL_SHIFT);
break;
#endif
#if defined(_CMU_ADCCTRL_ADC1CLKSEL_MASK)
case CMU_ADC1ASYNCSEL_REG:
switch (ref) {
case cmuSelect_Disabled:
tmp = _CMU_ADCCTRL_ADC1CLKSEL_DISABLED;
break;
case cmuSelect_AUXHFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_AUXHFRCO, true, true);
tmp = _CMU_ADCCTRL_ADC1CLKSEL_AUXHFRCO;
break;
case cmuSelect_HFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFXO, true, true);
tmp = _CMU_ADCCTRL_ADC1CLKSEL_HFXO;
break;
case cmuSelect_HFSRCCLK:
tmp = _CMU_ADCCTRL_ADC1CLKSEL_HFSRCCLK;
break;
default:
/* Illegal clock source for ADC1ASYNC selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
CMU->ADCCTRL = (CMU->ADCCTRL & ~_CMU_ADCCTRL_ADC1CLKSEL_MASK)
| (tmp << _CMU_ADCCTRL_ADC1CLKSEL_SHIFT);
break;
#endif
#if defined(_CMU_SDIOCTRL_SDIOCLKSEL_MASK)
case CMU_SDIOREFSEL_REG:
switch (ref) {
case cmuSelect_HFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFRCO, true, true);
tmp = _CMU_SDIOCTRL_SDIOCLKSEL_HFRCO;
break;
case cmuSelect_HFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFXO, true, true);
tmp = _CMU_SDIOCTRL_SDIOCLKSEL_HFXO;
break;
case cmuSelect_AUXHFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_AUXHFRCO, true, true);
tmp = _CMU_SDIOCTRL_SDIOCLKSEL_AUXHFRCO;
break;
case cmuSelect_USHFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_USHFRCO, true, true);
tmp = _CMU_SDIOCTRL_SDIOCLKSEL_USHFRCO;
break;
default:
/* Illegal clock source for SDIOREF selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
CMU->SDIOCTRL = (CMU->SDIOCTRL & ~_CMU_SDIOCTRL_SDIOCLKSEL_MASK)
| (tmp << _CMU_SDIOCTRL_SDIOCLKSEL_SHIFT);
break;
#endif
#if defined(_CMU_QSPICTRL_QSPI0CLKSEL_MASK)
case CMU_QSPI0REFSEL_REG:
switch (ref) {
case cmuSelect_HFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFRCO, true, true);
tmp = _CMU_QSPICTRL_QSPI0CLKSEL_HFRCO;
break;
case cmuSelect_HFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFXO, true, true);
tmp = _CMU_QSPICTRL_QSPI0CLKSEL_HFXO;
break;
case cmuSelect_AUXHFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_AUXHFRCO, true, true);
tmp = _CMU_QSPICTRL_QSPI0CLKSEL_AUXHFRCO;
break;
case cmuSelect_USHFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_USHFRCO, true, true);
tmp = _CMU_QSPICTRL_QSPI0CLKSEL_USHFRCO;
break;
default:
/* Illegal clock source for QSPI0REF selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
CMU->QSPICTRL = (CMU->QSPICTRL & ~_CMU_QSPICTRL_QSPI0CLKSEL_MASK)
| (tmp << _CMU_QSPICTRL_QSPI0CLKSEL_SHIFT);
break;
#endif
#if defined(_CMU_USBCTRL_USBCLKSEL_MASK)
case CMU_USBRCLKSEL_REG:
switch (ref) {
case cmuSelect_USHFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_USHFRCO, true, true);
tmp = _CMU_USBCTRL_USBCLKSEL_USHFRCO;
break;
case cmuSelect_HFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFXO, true, true);
tmp = _CMU_USBCTRL_USBCLKSEL_HFXO;
break;
case cmuSelect_HFXOX2:
/* Only allowed for HFXO frequencies up to 25 MHz */
EFM_ASSERT(SystemHFXOClockGet() <= 25000000u);
/* Enable HFXO X2 */
CMU->HFXOCTRL |= CMU_HFXOCTRL_HFXOX2EN;
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFXO, true, true);
tmp = _CMU_USBCTRL_USBCLKSEL_HFXOX2;
break;
case cmuSelect_HFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_HFRCO, true, true);
tmp = _CMU_USBCTRL_USBCLKSEL_HFRCO;
break;
case cmuSelect_LFXO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFXO, true, true);
tmp = _CMU_USBCTRL_USBCLKSEL_LFXO;
break;
case cmuSelect_LFRCO:
/* Ensure selected oscillator is enabled, waiting for it to stabilize */
CMU_OscillatorEnable(cmuOsc_LFRCO, true, true);
tmp = _CMU_USBCTRL_USBCLKSEL_LFRCO;
break;
default:
/* Illegal clock source for USBR selected */
EFM_ASSERT(0);
return;
}
/* Apply select */
CMU->USBCTRL = (CMU->USBCTRL & ~_CMU_USBCTRL_USBCLKSEL_MASK)
| (tmp << _CMU_USBCTRL_USBCLKSEL_SHIFT);
break;
#endif
default:
EFM_ASSERT(0);
break;
}
}
#if defined(CMU_OSCENCMD_DPLLEN)
/**************************************************************************//**
* @brief
* Lock the DPLL to a given frequency.
*
* The frequency is given by: Fout = Fref * (N+1) / (M+1).
*
* @note
* This function does not check if the given N & M values will actually
* produce the desired target frequency.
* Any peripheral running off HFRCO should be switched to HFRCODIV2 prior to
* calling this function to avoid over-clocking.
*
* @param[in] init
* DPLL setup parameters.
*
* @return
* Returns false on invalid target frequency or DPLL locking error.
*****************************************************************************/
bool CMU_DPLLLock(CMU_DPLLInit_TypeDef *init)
{
int index = 0;
unsigned int i;
bool hfrcoDiv2 = false;
uint32_t hfrcoCtrlVal, lockStatus, sysFreq;
EFM_ASSERT(init->frequency >= hfrcoCtrlTable[0].minFreq);
EFM_ASSERT(init->frequency
<= hfrcoCtrlTable[HFRCOCTRLTABLE_ENTRIES - 1].maxFreq);
EFM_ASSERT(init->n >= 32);
EFM_ASSERT(init->n <= (_CMU_DPLLCTRL1_N_MASK >> _CMU_DPLLCTRL1_N_SHIFT));
EFM_ASSERT(init->m <= (_CMU_DPLLCTRL1_M_MASK >> _CMU_DPLLCTRL1_M_SHIFT));
EFM_ASSERT(init->ssInterval <= (_CMU_HFRCOSS_SSINV_MASK
>> _CMU_HFRCOSS_SSINV_SHIFT));
EFM_ASSERT(init->ssAmplitude <= (_CMU_HFRCOSS_SSAMP_MASK
>> _CMU_HFRCOSS_SSAMP_SHIFT));
#if defined(_EMU_STATUS_VSCALE_MASK)
if ((EMU_VScaleGet() == emuVScaleEM01_LowPower)
&& (init->frequency > CMU_VSCALEEM01_LOWPOWER_VOLTAGE_CLOCK_MAX)) {
EFM_ASSERT(false);
return false;
}
#endif
// Find correct HFRCO band, and retrieve a HFRCOCTRL value.
for (i = 0; i < HFRCOCTRLTABLE_ENTRIES; i++) {
if ((init->frequency >= hfrcoCtrlTable[i].minFreq)
&& (init->frequency <= hfrcoCtrlTable[i].maxFreq)) {
index = i; // Correct band found
break;
}
}
if (index == HFRCOCTRLTABLE_ENTRIES) {
EFM_ASSERT(false);
return false; // Target frequency out of spec.
}
hfrcoCtrlVal = hfrcoCtrlTable[index].value;
// Check if we have a calibrated HFRCOCTRL.TUNING value in device DI page.
if (hfrcoCtrlTable[index].band != (CMU_HFRCOFreq_TypeDef)0) {
uint32_t tuning;
tuning = (CMU_HFRCODevinfoGet(hfrcoCtrlTable[index].band)
& _CMU_HFRCOCTRL_TUNING_MASK)
>> _CMU_HFRCOCTRL_TUNING_SHIFT;
// When HFRCOCTRL.FINETUNINGEN is enabled, the center frequency
// of the band shifts down by 5.8%. We subtract 9 to compensate.
if (tuning > 9) {
tuning -= 9;
} else {
tuning = 0;
}
hfrcoCtrlVal |= tuning << _CMU_HFRCOCTRL_TUNING_SHIFT;
}
// Update CMSIS frequency SystemHfrcoFreq value.
SystemHfrcoFreq = init->frequency;
// Set max wait-states while changing core clock.
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO) {
flashWaitStateMax();
}
// Update HFLE configuration before updating HFRCO, use new DPLL frequency.
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO) {
setHfLeConfig(init->frequency);
// Switch to HFRCO/2 before setting DPLL to avoid over-clocking.
hfrcoDiv2 = (CMU->HFCLKSTATUS & _CMU_HFCLKSTATUS_SELECTED_MASK)
== CMU_HFCLKSTATUS_SELECTED_HFRCODIV2;
CMU->HFCLKSEL = CMU_HFCLKSEL_HF_HFRCODIV2;
}
CMU->OSCENCMD = CMU_OSCENCMD_DPLLDIS;
while ((CMU->STATUS & (CMU_STATUS_DPLLENS | CMU_STATUS_DPLLRDY)) != 0) ;
CMU->IFC = CMU_IFC_DPLLRDY | CMU_IFC_DPLLLOCKFAILLOW
| CMU_IFC_DPLLLOCKFAILHIGH;
CMU->DPLLCTRL1 = (init->n << _CMU_DPLLCTRL1_N_SHIFT)
| (init->m << _CMU_DPLLCTRL1_M_SHIFT);
CMU->HFRCOCTRL = hfrcoCtrlVal;
CMU->DPLLCTRL = (init->refClk << _CMU_DPLLCTRL_REFSEL_SHIFT)
| (init->autoRecover << _CMU_DPLLCTRL_AUTORECOVER_SHIFT)
| (init->edgeSel << _CMU_DPLLCTRL_EDGESEL_SHIFT)
| (init->lockMode << _CMU_DPLLCTRL_MODE_SHIFT);
CMU->OSCENCMD = CMU_OSCENCMD_DPLLEN;
while ((lockStatus = (CMU->IF & (CMU_IF_DPLLRDY
| CMU_IF_DPLLLOCKFAILLOW
| CMU_IF_DPLLLOCKFAILHIGH))) == 0) ;
if ((CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO)
&& (hfrcoDiv2 == false)) {
CMU->HFCLKSEL = CMU_HFCLKSEL_HF_HFRCO;
}
// If HFRCO is selected as HF clock, optimize flash access wait-state
// configuration for this frequency and update CMSIS core clock variable.
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO) {
// Call SystemCoreClockGet() to update CMSIS core clock variable.
sysFreq = SystemCoreClockGet();
EFM_ASSERT(sysFreq <= init->frequency);
EFM_ASSERT(sysFreq <= SystemHfrcoFreq);
EFM_ASSERT(init->frequency == SystemHfrcoFreq);
CMU_UpdateWaitStates(sysFreq, VSCALE_DEFAULT);
}
// Reduce HFLE frequency if possible.
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE));
#if defined(_EMU_CMD_EM01VSCALE0_MASK)
// Update voltage scaling.
EMU_VScaleEM01ByClock(0, true);
#endif
if (lockStatus == CMU_IF_DPLLRDY) {
return true;
}
return false;
}
#endif // CMU_OSCENCMD_DPLLEN
/**************************************************************************//**
* @brief
* CMU low frequency register synchronization freeze control.
*
* @details
* Some CMU registers requires synchronization into the low frequency (LF)
* domain. The freeze feature allows for several such registers to be
* modified before passing them to the LF domain simultaneously (which
* takes place when the freeze mode is disabled).
*
* Another usage scenario of this feature, is when using an API (such
* as the CMU API) for modifying several bit fields consecutively in the
* same register. If freeze mode is enabled during this sequence, stalling
* can be avoided.
*
* @note
* When enabling freeze mode, this function will wait for all current
* ongoing CMU synchronization to LF domain to complete (Normally
* synchronization will not be in progress.) However for this reason, when
* using freeze mode, modifications of registers requiring LF synchronization
* should be done within one freeze enable/disable block to avoid unecessary
* stalling.
*
* @param[in] enable
* @li true - enable freeze, modified registers are not propagated to the
* LF domain
* @li false - disable freeze, modified registers are propagated to LF
* domain
*****************************************************************************/
void CMU_FreezeEnable(bool enable)
{
if (enable) {
/* Wait for any ongoing LF synchronization to complete. This is just to */
/* protect against the rare case when a user */
/* - modifies a register requiring LF sync */
/* - then enables freeze before LF sync completed */
/* - then modifies the same register again */
/* since modifying a register while it is in sync progress should be */
/* avoided. */
while (CMU->SYNCBUSY) {
}
CMU->FREEZE = CMU_FREEZE_REGFREEZE;
} else {
CMU->FREEZE = 0;
}
}
#if defined(_CMU_HFRCOCTRL_BAND_MASK)
/***************************************************************************//**
* @brief
* Get HFRCO band in use.
*
* @return
* HFRCO band in use.
******************************************************************************/
CMU_HFRCOBand_TypeDef CMU_HFRCOBandGet(void)
{
return (CMU_HFRCOBand_TypeDef)((CMU->HFRCOCTRL & _CMU_HFRCOCTRL_BAND_MASK)
>> _CMU_HFRCOCTRL_BAND_SHIFT);
}
#endif /* _CMU_HFRCOCTRL_BAND_MASK */
#if defined(_CMU_HFRCOCTRL_BAND_MASK)
/***************************************************************************//**
* @brief
* Set HFRCO band and the tuning value based on the value in the calibration
* table made during production.
*
* @param[in] band
* HFRCO band to activate.
******************************************************************************/
void CMU_HFRCOBandSet(CMU_HFRCOBand_TypeDef band)
{
uint32_t tuning;
uint32_t freq;
CMU_Select_TypeDef osc;
/* Read tuning value from calibration table */
switch (band) {
case cmuHFRCOBand_1MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND1_MASK)
>> _DEVINFO_HFRCOCAL0_BAND1_SHIFT;
break;
case cmuHFRCOBand_7MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND7_MASK)
>> _DEVINFO_HFRCOCAL0_BAND7_SHIFT;
break;
case cmuHFRCOBand_11MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND11_MASK)
>> _DEVINFO_HFRCOCAL0_BAND11_SHIFT;
break;
case cmuHFRCOBand_14MHz:
tuning = (DEVINFO->HFRCOCAL0 & _DEVINFO_HFRCOCAL0_BAND14_MASK)
>> _DEVINFO_HFRCOCAL0_BAND14_SHIFT;
break;
case cmuHFRCOBand_21MHz:
tuning = (DEVINFO->HFRCOCAL1 & _DEVINFO_HFRCOCAL1_BAND21_MASK)
>> _DEVINFO_HFRCOCAL1_BAND21_SHIFT;
break;
#if defined(_CMU_HFRCOCTRL_BAND_28MHZ)
case cmuHFRCOBand_28MHz:
tuning = (DEVINFO->HFRCOCAL1 & _DEVINFO_HFRCOCAL1_BAND28_MASK)
>> _DEVINFO_HFRCOCAL1_BAND28_SHIFT;
break;
#endif
default:
EFM_ASSERT(0);
return;
}
/* If HFRCO is used for core clock, we have to consider flash access WS. */
osc = CMU_ClockSelectGet(cmuClock_HF);
if (osc == cmuSelect_HFRCO) {
/* Configure worst case wait states for flash access before setting divider */
flashWaitStateMax();
}
/* Set band/tuning */
CMU->HFRCOCTRL = (CMU->HFRCOCTRL
& ~(_CMU_HFRCOCTRL_BAND_MASK | _CMU_HFRCOCTRL_TUNING_MASK))
| (band << _CMU_HFRCOCTRL_BAND_SHIFT)
| (tuning << _CMU_HFRCOCTRL_TUNING_SHIFT);
/* If HFRCO is used for core clock, optimize flash WS */
if (osc == cmuSelect_HFRCO) {
/* Call SystemCoreClockGet() to update CMSIS core clock variable. */
freq = SystemCoreClockGet();
CMU_UpdateWaitStates(freq, VSCALE_DEFAULT);
}
#if defined(CMU_MAX_FREQ_HFLE)
/* Reduce HFLE frequency if possible. */
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE));
#endif
}
#endif /* _CMU_HFRCOCTRL_BAND_MASK */
#if defined(_CMU_HFRCOCTRL_FREQRANGE_MASK)
/**************************************************************************//**
* @brief
* Get the HFRCO frequency calibration word in DEVINFO
*
* @param[in] freq
* Frequency in Hz
*
* @return
* HFRCO calibration word for a given frequency
*****************************************************************************/
static uint32_t CMU_HFRCODevinfoGet(CMU_HFRCOFreq_TypeDef freq)
{
switch (freq) {
/* 1, 2 and 4MHz share the same calibration word */
case cmuHFRCOFreq_1M0Hz:
case cmuHFRCOFreq_2M0Hz:
case cmuHFRCOFreq_4M0Hz:
return DEVINFO->HFRCOCAL0;
case cmuHFRCOFreq_7M0Hz:
return DEVINFO->HFRCOCAL3;
case cmuHFRCOFreq_13M0Hz:
return DEVINFO->HFRCOCAL6;
case cmuHFRCOFreq_16M0Hz:
return DEVINFO->HFRCOCAL7;
case cmuHFRCOFreq_19M0Hz:
return DEVINFO->HFRCOCAL8;
case cmuHFRCOFreq_26M0Hz:
return DEVINFO->HFRCOCAL10;
case cmuHFRCOFreq_32M0Hz:
return DEVINFO->HFRCOCAL11;
case cmuHFRCOFreq_38M0Hz:
return DEVINFO->HFRCOCAL12;
#if defined(_DEVINFO_HFRCOCAL16_MASK)
case cmuHFRCOFreq_48M0Hz:
return DEVINFO->HFRCOCAL13;
case cmuHFRCOFreq_56M0Hz:
return DEVINFO->HFRCOCAL14;
case cmuHFRCOFreq_64M0Hz:
return DEVINFO->HFRCOCAL15;
case cmuHFRCOFreq_72M0Hz:
return DEVINFO->HFRCOCAL16;
#endif
default: /* cmuHFRCOFreq_UserDefined */
return 0;
}
}
/***************************************************************************//**
* @brief
* Get current HFRCO frequency.
*
* @return
* HFRCO frequency
******************************************************************************/
CMU_HFRCOFreq_TypeDef CMU_HFRCOBandGet(void)
{
return (CMU_HFRCOFreq_TypeDef)SystemHfrcoFreq;
}
/***************************************************************************//**
* @brief
* Set HFRCO calibration for the selected target frequency.
*
* @param[in] setFreq
* HFRCO frequency to set
******************************************************************************/
void CMU_HFRCOBandSet(CMU_HFRCOFreq_TypeDef setFreq)
{
uint32_t freqCal;
uint32_t sysFreq;
uint32_t prevFreq;
/* Get DEVINFO index, set CMSIS frequency SystemHfrcoFreq */
freqCal = CMU_HFRCODevinfoGet(setFreq);
EFM_ASSERT((freqCal != 0) && (freqCal != UINT_MAX));
prevFreq = SystemHfrcoFreq;
SystemHfrcoFreq = (uint32_t)setFreq;
/* Set max wait-states while changing core clock */
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO) {
flashWaitStateMax();
}
/* Wait for any previous sync to complete, and then set calibration data
for the selected frequency. */
while (BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_HFRCOBSY_SHIFT)) ;
/* Check for valid calibration data */
EFM_ASSERT(freqCal != UINT_MAX);
/* Set divider in HFRCOCTRL for 1, 2 and 4MHz */
switch (setFreq) {
case cmuHFRCOFreq_1M0Hz:
freqCal = (freqCal & ~_CMU_HFRCOCTRL_CLKDIV_MASK)
| CMU_HFRCOCTRL_CLKDIV_DIV4;
break;
case cmuHFRCOFreq_2M0Hz:
freqCal = (freqCal & ~_CMU_HFRCOCTRL_CLKDIV_MASK)
| CMU_HFRCOCTRL_CLKDIV_DIV2;
break;
case cmuHFRCOFreq_4M0Hz:
freqCal = (freqCal & ~_CMU_HFRCOCTRL_CLKDIV_MASK)
| CMU_HFRCOCTRL_CLKDIV_DIV1;
break;
default:
break;
}
/* Update HFLE configuration before updating HFRCO.
Use the new set frequency. */
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO) {
/* setFreq is worst-case as dividers may reduce the HFLE frequency. */
setHfLeConfig(setFreq);
}
if (setFreq > prevFreq) {
#if defined(_EMU_CMD_EM01VSCALE0_MASK)
/* When increasing frequency we need to voltage scale before the change */
EMU_VScaleEM01ByClock(setFreq, true);
#endif
}
CMU->HFRCOCTRL = freqCal;
/* If HFRCO is selected as HF clock, optimize flash access wait-state configuration
for this frequency and update CMSIS core clock variable. */
if (CMU_ClockSelectGet(cmuClock_HF) == cmuSelect_HFRCO) {
/* Call SystemCoreClockGet() to update CMSIS core clock variable. */
sysFreq = SystemCoreClockGet();
EFM_ASSERT(sysFreq <= (uint32_t)setFreq);
EFM_ASSERT(sysFreq <= SystemHfrcoFreq);
EFM_ASSERT(setFreq == SystemHfrcoFreq);
CMU_UpdateWaitStates(sysFreq, VSCALE_DEFAULT);
}
/* Reduce HFLE frequency if possible. */
setHfLeConfig(CMU_ClockFreqGet(cmuClock_HFLE));
if (setFreq <= prevFreq) {
#if defined(_EMU_CMD_EM01VSCALE0_MASK)
/* When decreasing frequency we need to voltage scale after the change */
EMU_VScaleEM01ByClock(0, true);
#endif
}
}
#endif /* _CMU_HFRCOCTRL_FREQRANGE_MASK */
#if defined(_CMU_HFRCOCTRL_SUDELAY_MASK)
/***************************************************************************//**
* @brief
* Get the HFRCO startup delay.
*
* @details
* Please refer to the reference manual for further details.
*
* @return
* The startup delay in use.
******************************************************************************/
uint32_t CMU_HFRCOStartupDelayGet(void)
{
return (CMU->HFRCOCTRL & _CMU_HFRCOCTRL_SUDELAY_MASK)
>> _CMU_HFRCOCTRL_SUDELAY_SHIFT;
}
/***************************************************************************//**
* @brief
* Set the HFRCO startup delay.
*
* @details
* Please refer to the reference manual for further details.
*
* @param[in] delay
* The startup delay to set (<= 31).
******************************************************************************/
void CMU_HFRCOStartupDelaySet(uint32_t delay)
{
EFM_ASSERT(delay <= 31);
delay &= _CMU_HFRCOCTRL_SUDELAY_MASK >> _CMU_HFRCOCTRL_SUDELAY_SHIFT;
CMU->HFRCOCTRL = (CMU->HFRCOCTRL & ~(_CMU_HFRCOCTRL_SUDELAY_MASK))
| (delay << _CMU_HFRCOCTRL_SUDELAY_SHIFT);
}
#endif
#if defined(_CMU_USHFRCOCTRL_FREQRANGE_MASK)
/**************************************************************************//**
* @brief
* Get the USHFRCO frequency calibration word in DEVINFO
*
* @param[in] freq
* Frequency in Hz
*
* @return
* USHFRCO calibration word for a given frequency
*****************************************************************************/
static uint32_t CMU_USHFRCODevinfoGet(CMU_USHFRCOFreq_TypeDef freq)
{
switch (freq) {
case cmuUSHFRCOFreq_16M0Hz:
return DEVINFO->USHFRCOCAL7;
case cmuUSHFRCOFreq_32M0Hz:
return DEVINFO->USHFRCOCAL11;
case cmuUSHFRCOFreq_48M0Hz:
return DEVINFO->USHFRCOCAL13;
case cmuUSHFRCOFreq_50M0Hz:
return DEVINFO->USHFRCOCAL14;
default: /* cmuUSHFRCOFreq_UserDefined */
return 0;
}
}
/***************************************************************************//**
* @brief
* Get current USHFRCO frequency.
*
* @return
* HFRCO frequency
******************************************************************************/
CMU_USHFRCOFreq_TypeDef CMU_USHFRCOBandGet(void)
{
return (CMU_USHFRCOFreq_TypeDef) ushfrcoFreq;
}
/***************************************************************************//**
* @brief
* Set USHFRCO calibration for the selected target frequency.
*
* @param[in] setFreq
* USHFRCO frequency to set
******************************************************************************/
void CMU_USHFRCOBandSet(CMU_USHFRCOFreq_TypeDef setFreq)
{
uint32_t freqCal;
/* Get DEVINFO calibration values */
freqCal = CMU_USHFRCODevinfoGet(setFreq);
EFM_ASSERT((freqCal != 0) && (freqCal != UINT_MAX));
ushfrcoFreq = (uint32_t)setFreq;
/* Wait for any previous sync to complete, and then set calibration data
for the selected frequency. */
while (BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_USHFRCOBSY_SHIFT)) ;
CMU->USHFRCOCTRL = freqCal;
}
#endif /* _CMU_USHFRCOCTRL_FREQRANGE_MASK */
#if defined(_CMU_HFXOCTRL_AUTOSTARTEM0EM1_MASK)
/***************************************************************************//**
* @brief
* Enable or disable HFXO autostart
*
* @param[in] userSel
* Additional user specified enable bit.
*
* @param[in] enEM0EM1Start
* If true, HFXO is automatically started upon entering EM0/EM1 entry from
* EM2/EM3. HFXO selection has to be handled by the user.
* If false, HFXO is not started automatically when entering EM0/EM1.
*
* @param[in] enEM0EM1StartSel
* If true, HFXO is automatically started and immediately selected upon
* entering EM0/EM1 entry from EM2/EM3. Note that this option stalls the use of
* HFSRCCLK until HFXO becomes ready.
* If false, HFXO is not started or selected automatically when entering
* EM0/EM1.
******************************************************************************/
void CMU_HFXOAutostartEnable(uint32_t userSel,
bool enEM0EM1Start,
bool enEM0EM1StartSel)
{
uint32_t hfxoFreq;
uint32_t hfxoCtrl;
/* Mask supported enable bits. */
#if defined(_CMU_HFXOCTRL_AUTOSTARTRDYSELRAC_MASK)
userSel &= _CMU_HFXOCTRL_AUTOSTARTRDYSELRAC_MASK;
#else
userSel = 0;
#endif
hfxoCtrl = CMU->HFXOCTRL & ~(userSel
| _CMU_HFXOCTRL_AUTOSTARTEM0EM1_MASK
| _CMU_HFXOCTRL_AUTOSTARTSELEM0EM1_MASK);
hfxoCtrl |= userSel
| (enEM0EM1Start ? CMU_HFXOCTRL_AUTOSTARTEM0EM1 : 0)
| (enEM0EM1StartSel ? CMU_HFXOCTRL_AUTOSTARTSELEM0EM1 : 0);
/* Set wait-states for HFXO if automatic start and select is configured. */
if (userSel || enEM0EM1StartSel) {
hfxoFreq = SystemHFXOClockGet();
CMU_UpdateWaitStates(hfxoFreq, VSCALE_DEFAULT);
setHfLeConfig(hfxoFreq);
}
/* Update HFXOCTRL after wait-states are updated as HF may automatically switch
to HFXO when automatic select is enabled . */
CMU->HFXOCTRL = hfxoCtrl;
}
#endif
/**************************************************************************//**
* @brief
* Set HFXO control registers
*
* @note
* HFXO configuration should be obtained from a configuration tool,
* app note or xtal datasheet. This function disables the HFXO to ensure
* a valid state before update.
*
* @param[in] hfxoInit
* HFXO setup parameters
*****************************************************************************/
void CMU_HFXOInit(const CMU_HFXOInit_TypeDef *hfxoInit)
{
/* Do not disable HFXO if it is currently selected as HF/Core clock */
EFM_ASSERT(CMU_ClockSelectGet(cmuClock_HF) != cmuSelect_HFXO);
/* HFXO must be disabled before reconfiguration */
CMU_OscillatorEnable(cmuOsc_HFXO, false, true);
#if defined(_SILICON_LABS_32B_SERIES_1) && (_SILICON_LABS_GECKO_INTERNAL_SDID >= 100)
uint32_t tmp = CMU_HFXOCTRL_MODE_XTAL;
switch (hfxoInit->mode) {
case cmuOscMode_Crystal:
tmp = CMU_HFXOCTRL_MODE_XTAL;
break;
case cmuOscMode_External:
tmp = CMU_HFXOCTRL_MODE_DIGEXTCLK;
break;
case cmuOscMode_AcCoupled:
tmp = CMU_HFXOCTRL_MODE_ACBUFEXTCLK;
break;
default:
EFM_ASSERT(false); /* Unsupported configuration */
}
/* HFXO Doubler can only be enabled on crystals up to max 25 MHz */
if (SystemHFXOClockGet() <= 25000000) {
tmp |= CMU_HFXOCTRL_HFXOX2EN;
}
CMU->HFXOCTRL = (CMU->HFXOCTRL & ~(_CMU_HFXOCTRL_MODE_MASK
| _CMU_HFXOCTRL_HFXOX2EN_MASK))
| tmp;
/* Set tuning for startup and steady state */
CMU->HFXOSTARTUPCTRL = (hfxoInit->ctuneStartup << _CMU_HFXOSTARTUPCTRL_CTUNE_SHIFT)
| (hfxoInit->xoCoreBiasTrimStartup << _CMU_HFXOSTARTUPCTRL_IBTRIMXOCORE_SHIFT);
CMU->HFXOSTEADYSTATECTRL = (CMU->HFXOSTEADYSTATECTRL & ~(_CMU_HFXOSTEADYSTATECTRL_CTUNE_MASK
| _CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_MASK))
| (hfxoInit->ctuneSteadyState << _CMU_HFXOSTEADYSTATECTRL_CTUNE_SHIFT)
| (hfxoInit->xoCoreBiasTrimSteadyState << _CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_SHIFT);
/* Set timeouts */
CMU->HFXOTIMEOUTCTRL = (hfxoInit->timeoutPeakDetect << _CMU_HFXOTIMEOUTCTRL_PEAKDETTIMEOUT_SHIFT)
| (hfxoInit->timeoutSteady << _CMU_HFXOTIMEOUTCTRL_STEADYTIMEOUT_SHIFT)
| (hfxoInit->timeoutStartup << _CMU_HFXOTIMEOUTCTRL_STARTUPTIMEOUT_SHIFT);
#elif defined(_CMU_HFXOCTRL_MASK)
/* Verify that the deprecated autostart fields are not used,
* @ref CMU_HFXOAutostartEnable must be used instead. */
EFM_ASSERT(!(hfxoInit->autoStartEm01
|| hfxoInit->autoSelEm01
|| hfxoInit->autoStartSelOnRacWakeup));
uint32_t tmp = CMU_HFXOCTRL_MODE_XTAL;
/* AC coupled external clock not supported */
EFM_ASSERT(hfxoInit->mode != cmuOscMode_AcCoupled);
if (hfxoInit->mode == cmuOscMode_External) {
tmp = CMU_HFXOCTRL_MODE_DIGEXTCLK;
}
/* Apply control settings */
CMU->HFXOCTRL = (CMU->HFXOCTRL & ~_CMU_HFXOCTRL_MODE_MASK)
| tmp;
BUS_RegBitWrite(&CMU->HFXOCTRL, _CMU_HFXOCTRL_LOWPOWER_SHIFT, hfxoInit->lowPowerMode);
/* Set XTAL tuning parameters */
#if defined(_CMU_HFXOCTRL1_PEAKDETTHR_MASK)
/* Set peak detection threshold */
CMU->HFXOCTRL1 = (CMU->HFXOCTRL1 & ~_CMU_HFXOCTRL1_PEAKDETTHR_MASK)
| (hfxoInit->thresholdPeakDetect << _CMU_HFXOCTRL1_PEAKDETTHR_SHIFT);
#endif
/* Set tuning for startup and steady state */
CMU->HFXOSTARTUPCTRL = (hfxoInit->ctuneStartup << _CMU_HFXOSTARTUPCTRL_CTUNE_SHIFT)
| (hfxoInit->xoCoreBiasTrimStartup << _CMU_HFXOSTARTUPCTRL_IBTRIMXOCORE_SHIFT);
CMU->HFXOSTEADYSTATECTRL = (CMU->HFXOSTEADYSTATECTRL & ~(_CMU_HFXOSTEADYSTATECTRL_CTUNE_MASK
| _CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_MASK
| _CMU_HFXOSTEADYSTATECTRL_REGISH_MASK
| _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_MASK))
| (hfxoInit->ctuneSteadyState << _CMU_HFXOSTEADYSTATECTRL_CTUNE_SHIFT)
| (hfxoInit->xoCoreBiasTrimSteadyState << _CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_SHIFT)
| (hfxoInit->regIshSteadyState << _CMU_HFXOSTEADYSTATECTRL_REGISH_SHIFT)
| getRegIshUpperVal(hfxoInit->regIshSteadyState);
/* Set timeouts */
CMU->HFXOTIMEOUTCTRL = (hfxoInit->timeoutPeakDetect << _CMU_HFXOTIMEOUTCTRL_PEAKDETTIMEOUT_SHIFT)
| (hfxoInit->timeoutSteady << _CMU_HFXOTIMEOUTCTRL_STEADYTIMEOUT_SHIFT)
| (hfxoInit->timeoutStartup << _CMU_HFXOTIMEOUTCTRL_STARTUPTIMEOUT_SHIFT)
| (hfxoInit->timeoutShuntOptimization << _CMU_HFXOTIMEOUTCTRL_SHUNTOPTTIMEOUT_SHIFT);
#else
CMU->CTRL = (CMU->CTRL & ~(_CMU_CTRL_HFXOTIMEOUT_MASK
| _CMU_CTRL_HFXOBOOST_MASK
| _CMU_CTRL_HFXOMODE_MASK
| _CMU_CTRL_HFXOGLITCHDETEN_MASK))
| (hfxoInit->timeout << _CMU_CTRL_HFXOTIMEOUT_SHIFT)
| (hfxoInit->boost << _CMU_CTRL_HFXOBOOST_SHIFT)
| (hfxoInit->mode << _CMU_CTRL_HFXOMODE_SHIFT)
| (hfxoInit->glitchDetector ? CMU_CTRL_HFXOGLITCHDETEN : 0);
#endif
}
/***************************************************************************//**
* @brief
* Get the LCD framerate divisor (FDIV) setting.
*
* @return
* The LCD framerate divisor.
******************************************************************************/
uint32_t CMU_LCDClkFDIVGet(void)
{
#if defined(LCD_PRESENT) && defined(_CMU_LCDCTRL_MASK)
return (CMU->LCDCTRL & _CMU_LCDCTRL_FDIV_MASK) >> _CMU_LCDCTRL_FDIV_SHIFT;
#else
return 0;
#endif /* defined(LCD_PRESENT) */
}
/***************************************************************************//**
* @brief
* Set the LCD framerate divisor (FDIV) setting.
*
* @note
* The FDIV field (CMU LCDCTRL register) should only be modified while the
* LCD module is clock disabled (CMU LFACLKEN0.LCD bit is 0). This function
* will NOT modify FDIV if the LCD module clock is enabled. Please refer to
* CMU_ClockEnable() for disabling/enabling LCD clock.
*
* @param[in] div
* The FDIV setting to use.
******************************************************************************/
void CMU_LCDClkFDIVSet(uint32_t div)
{
#if defined(LCD_PRESENT) && defined(_CMU_LCDCTRL_MASK)
EFM_ASSERT(div <= cmuClkDiv_128);
/* Do not allow modification if LCD clock enabled */
if (CMU->LFACLKEN0 & CMU_LFACLKEN0_LCD) {
return;
}
div <<= _CMU_LCDCTRL_FDIV_SHIFT;
div &= _CMU_LCDCTRL_FDIV_MASK;
CMU->LCDCTRL = (CMU->LCDCTRL & ~_CMU_LCDCTRL_FDIV_MASK) | div;
#else
(void)div; /* Unused parameter */
#endif /* defined(LCD_PRESENT) */
}
/**************************************************************************//**
* @brief
* Set LFXO control registers
*
* @note
* LFXO configuration should be obtained from a configuration tool,
* app note or xtal datasheet. This function disables the LFXO to ensure
* a valid state before update.
*
* @param[in] lfxoInit
* LFXO setup parameters
*****************************************************************************/
void CMU_LFXOInit(const CMU_LFXOInit_TypeDef *lfxoInit)
{
/* Do not disable LFXO if it is currently selected as HF/Core clock */
EFM_ASSERT(CMU_ClockSelectGet(cmuClock_HF) != cmuSelect_LFXO);
/* LFXO must be disabled before reconfiguration */
CMU_OscillatorEnable(cmuOsc_LFXO, false, false);
#if defined(_CMU_LFXOCTRL_MASK)
BUS_RegMaskedWrite(&CMU->LFXOCTRL,
_CMU_LFXOCTRL_TUNING_MASK
| _CMU_LFXOCTRL_GAIN_MASK
| _CMU_LFXOCTRL_TIMEOUT_MASK
| _CMU_LFXOCTRL_MODE_MASK,
(lfxoInit->ctune << _CMU_LFXOCTRL_TUNING_SHIFT)
| (lfxoInit->gain << _CMU_LFXOCTRL_GAIN_SHIFT)
| (lfxoInit->timeout << _CMU_LFXOCTRL_TIMEOUT_SHIFT)
| (lfxoInit->mode << _CMU_LFXOCTRL_MODE_SHIFT));
#else
bool cmuBoost = (lfxoInit->boost & 0x2);
BUS_RegMaskedWrite(&CMU->CTRL,
_CMU_CTRL_LFXOTIMEOUT_MASK
| _CMU_CTRL_LFXOBOOST_MASK
| _CMU_CTRL_LFXOMODE_MASK,
(lfxoInit->timeout << _CMU_CTRL_LFXOTIMEOUT_SHIFT)
| ((cmuBoost ? 1 : 0) << _CMU_CTRL_LFXOBOOST_SHIFT)
| (lfxoInit->mode << _CMU_CTRL_LFXOMODE_SHIFT));
#endif
#if defined(_EMU_AUXCTRL_REDLFXOBOOST_MASK)
bool emuReduce = (lfxoInit->boost & 0x1);
BUS_RegBitWrite(&EMU->AUXCTRL, _EMU_AUXCTRL_REDLFXOBOOST_SHIFT, emuReduce ? 1 : 0);
#endif
}
/***************************************************************************//**
* @brief
* Enable/disable oscillator.
*
* @note
* WARNING: When this function is called to disable either cmuOsc_LFXO or
* cmuOsc_HFXO the LFXOMODE or HFXOMODE fields of the CMU_CTRL register
* are reset to the reset value. I.e. if external clock sources are selected
* in either LFXOMODE or HFXOMODE fields, the configuration will be cleared
* and needs to be reconfigured if needed later.
*
* @param[in] osc
* The oscillator to enable/disable.
*
* @param[in] enable
* @li true - enable specified oscillator.
* @li false - disable specified oscillator.
*
* @param[in] wait
* Only used if @p enable is true.
* @li true - wait for oscillator start-up time to timeout before returning.
* @li false - do not wait for oscillator start-up time to timeout before
* returning.
******************************************************************************/
void CMU_OscillatorEnable(CMU_Osc_TypeDef osc, bool enable, bool wait)
{
uint32_t rdyBitPos;
#if defined(_SILICON_LABS_32B_SERIES_1)
uint32_t ensBitPos;
#endif
#if defined(_CMU_STATUS_HFXOPEAKDETRDY_MASK)
uint32_t hfxoTrimStatus;
#endif
uint32_t enBit;
uint32_t disBit;
switch (osc) {
case cmuOsc_HFRCO:
enBit = CMU_OSCENCMD_HFRCOEN;
disBit = CMU_OSCENCMD_HFRCODIS;
rdyBitPos = _CMU_STATUS_HFRCORDY_SHIFT;
#if defined(_SILICON_LABS_32B_SERIES_1)
ensBitPos = _CMU_STATUS_HFRCOENS_SHIFT;
#endif
break;
case cmuOsc_HFXO:
enBit = CMU_OSCENCMD_HFXOEN;
disBit = CMU_OSCENCMD_HFXODIS;
rdyBitPos = _CMU_STATUS_HFXORDY_SHIFT;
#if defined(_SILICON_LABS_32B_SERIES_1)
ensBitPos = _CMU_STATUS_HFXOENS_SHIFT;
#endif
break;
case cmuOsc_AUXHFRCO:
enBit = CMU_OSCENCMD_AUXHFRCOEN;
disBit = CMU_OSCENCMD_AUXHFRCODIS;
rdyBitPos = _CMU_STATUS_AUXHFRCORDY_SHIFT;
#if defined(_SILICON_LABS_32B_SERIES_1)
ensBitPos = _CMU_STATUS_AUXHFRCOENS_SHIFT;
#endif
break;
case cmuOsc_LFRCO:
enBit = CMU_OSCENCMD_LFRCOEN;
disBit = CMU_OSCENCMD_LFRCODIS;
rdyBitPos = _CMU_STATUS_LFRCORDY_SHIFT;
#if defined(_SILICON_LABS_32B_SERIES_1)
ensBitPos = _CMU_STATUS_LFRCOENS_SHIFT;
#endif
break;
case cmuOsc_LFXO:
enBit = CMU_OSCENCMD_LFXOEN;
disBit = CMU_OSCENCMD_LFXODIS;
rdyBitPos = _CMU_STATUS_LFXORDY_SHIFT;
#if defined(_SILICON_LABS_32B_SERIES_1)
ensBitPos = _CMU_STATUS_LFXOENS_SHIFT;
#endif
break;
#if defined(_CMU_STATUS_USHFRCOENS_MASK)
case cmuOsc_USHFRCO:
enBit = CMU_OSCENCMD_USHFRCOEN;
disBit = CMU_OSCENCMD_USHFRCODIS;
rdyBitPos = _CMU_STATUS_USHFRCORDY_SHIFT;
#if defined(_SILICON_LABS_32B_SERIES_1)
ensBitPos = _CMU_STATUS_USHFRCOENS_SHIFT;
#endif
break;
#endif
#if defined(_CMU_STATUS_PLFRCOENS_MASK)
case cmuOsc_PLFRCO:
enBit = CMU_OSCENCMD_PLFRCOEN;
disBit = CMU_OSCENCMD_PLFRCODIS;
rdyBitPos = _CMU_STATUS_PLFRCORDY_SHIFT;
ensBitPos = _CMU_STATUS_PLFRCOENS_SHIFT;
break;
#endif
default:
/* Undefined clock source or cmuOsc_ULFRCO. ULFRCO is always enabled,
and cannot be disabled. Ie. the definition of cmuOsc_ULFRCO is primarely
intended for information: the ULFRCO is always on. */
EFM_ASSERT(0);
return;
}
if (enable) {
#if defined(_CMU_HFXOCTRL_MASK)
bool firstHfxoEnable = false;
/* Enabling the HFXO for the first time requires special handling. We use the
* PEAKDETSHUTOPTMODE field of the HFXOCTRL register to see if this is the
* first time the HFXO is enabled. */
if ((osc == cmuOsc_HFXO) && (getHfxoTuningMode() == HFXO_TUNING_MODE_AUTO)) {
/* REGPWRSEL must be set to DVDD before the HFXO can be enabled. */
#if defined(_EMU_PWRCTRL_REGPWRSEL_MASK)
EFM_ASSERT(EMU->PWRCTRL & EMU_PWRCTRL_REGPWRSEL_DVDD);
#endif
firstHfxoEnable = true;
/* First time we enable an external clock we should switch to CMD mode to make sure that
* we only do SCO and not PDA tuning. */
if ((CMU->HFXOCTRL & (_CMU_HFXOCTRL_MODE_MASK)) == CMU_HFXOCTRL_MODE_DIGEXTCLK) {
setHfxoTuningMode(HFXO_TUNING_MODE_CMD);
}
}
#endif
CMU->OSCENCMD = enBit;
#if defined(_SILICON_LABS_32B_SERIES_1)
/* Always wait for ENS to go high */
while (!BUS_RegBitRead(&CMU->STATUS, ensBitPos)) {
}
#endif
/* Wait for clock to become ready after enable */
if (wait) {
while (!BUS_RegBitRead(&CMU->STATUS, rdyBitPos)) ;
#if defined(_SILICON_LABS_32B_SERIES_1)
if ((osc == cmuOsc_HFXO) && firstHfxoEnable) {
if ((CMU->HFXOCTRL & _CMU_HFXOCTRL_MODE_MASK) == CMU_HFXOCTRL_MODE_DIGEXTCLK) {
#if defined(CMU_CMD_HFXOSHUNTOPTSTART)
/* External clock mode should only do shunt current optimization. */
CMU_OscillatorTuningOptimize(cmuOsc_HFXO, cmuHFXOTuningMode_ShuntCommand, true);
#endif
} else {
/* Wait for peak detection and shunt current optimization to complete. */
CMU_OscillatorTuningWait(cmuOsc_HFXO, cmuHFXOTuningMode_Auto);
}
/* Disable the HFXO again to apply the trims. Apply trim from HFXOTRIMSTATUS
when disabled. */
hfxoTrimStatus = CMU_OscillatorTuningGet(cmuOsc_HFXO);
CMU_OscillatorEnable(cmuOsc_HFXO, false, true);
CMU_OscillatorTuningSet(cmuOsc_HFXO, hfxoTrimStatus);
/* Restart in CMD mode. */
CMU->OSCENCMD = enBit;
while (!BUS_RegBitRead(&CMU->STATUS, rdyBitPos)) ;
}
#endif
}
} else {
CMU->OSCENCMD = disBit;
#if defined(_SILICON_LABS_32B_SERIES_1)
/* Always wait for ENS to go low */
while (BUS_RegBitRead(&CMU->STATUS, ensBitPos)) {
}
#endif
}
}
/***************************************************************************//**
* @brief
* Get oscillator frequency tuning setting.
*
* @param[in] osc
* Oscillator to get tuning value for, one of:
* @li #cmuOsc_LFRCO
* @li #cmuOsc_HFRCO @if _CMU_USHFRCOCTRL_TUNING_MASK
* @li #cmuOsc_USHFRCO
* @endif
* @li #cmuOsc_AUXHFRCO
* @li #cmuOsc_HFXO if CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE is defined
*
* @return
* The oscillator frequency tuning setting in use.
******************************************************************************/
uint32_t CMU_OscillatorTuningGet(CMU_Osc_TypeDef osc)
{
uint32_t ret;
switch (osc) {
case cmuOsc_LFRCO:
ret = (CMU->LFRCOCTRL & _CMU_LFRCOCTRL_TUNING_MASK)
>> _CMU_LFRCOCTRL_TUNING_SHIFT;
break;
case cmuOsc_HFRCO:
ret = (CMU->HFRCOCTRL & _CMU_HFRCOCTRL_TUNING_MASK)
>> _CMU_HFRCOCTRL_TUNING_SHIFT;
break;
#if defined (_CMU_USHFRCOCTRL_TUNING_MASK)
case cmuOsc_USHFRCO:
ret = (CMU->USHFRCOCTRL & _CMU_USHFRCOCTRL_TUNING_MASK)
>> _CMU_USHFRCOCTRL_TUNING_SHIFT;
break;
#endif
case cmuOsc_AUXHFRCO:
ret = (CMU->AUXHFRCOCTRL & _CMU_AUXHFRCOCTRL_TUNING_MASK)
>> _CMU_AUXHFRCOCTRL_TUNING_SHIFT;
break;
#if defined(_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK)
case cmuOsc_HFXO:
ret = CMU->HFXOTRIMSTATUS & (_CMU_HFXOTRIMSTATUS_IBTRIMXOCORE_MASK
#if defined(_CMU_HFXOTRIMSTATUS_REGISH_MASK)
| _CMU_HFXOTRIMSTATUS_REGISH_MASK
#endif
);
break;
#endif
default:
EFM_ASSERT(0);
ret = 0;
break;
}
return ret;
}
/***************************************************************************//**
* @brief
* Set the oscillator frequency tuning control.
*
* @note
* Oscillator tuning is done during production, and the tuning value is
* automatically loaded after a reset. Changing the tuning value from the
* calibrated value is for more advanced use. Certain oscillators also have
* build-in tuning optimization.
*
* @param[in] osc
* Oscillator to set tuning value for, one of:
* @li #cmuOsc_LFRCO
* @li #cmuOsc_HFRCO @if _CMU_USHFRCOCTRL_TUNING_MASK
* @li #cmuOsc_USHFRCO
* @endif
* @li #cmuOsc_AUXHFRCO
* @li #cmuOsc_HFXO if PEAKDETSHUNTOPTMODE is available. Note that CMD mode is set.
*
* @param[in] val
* The oscillator frequency tuning setting to use.
******************************************************************************/
void CMU_OscillatorTuningSet(CMU_Osc_TypeDef osc, uint32_t val)
{
#if defined(_CMU_HFXOSTEADYSTATECTRL_REGISH_MASK)
uint32_t regIshUpper;
#endif
switch (osc) {
case cmuOsc_LFRCO:
EFM_ASSERT(val <= (_CMU_LFRCOCTRL_TUNING_MASK
>> _CMU_LFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_LFRCOCTRL_TUNING_MASK >> _CMU_LFRCOCTRL_TUNING_SHIFT);
#if defined(_SILICON_LABS_32B_SERIES_1)
while (BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_LFRCOBSY_SHIFT)) ;
#endif
CMU->LFRCOCTRL = (CMU->LFRCOCTRL & ~(_CMU_LFRCOCTRL_TUNING_MASK))
| (val << _CMU_LFRCOCTRL_TUNING_SHIFT);
break;
case cmuOsc_HFRCO:
EFM_ASSERT(val <= (_CMU_HFRCOCTRL_TUNING_MASK
>> _CMU_HFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_HFRCOCTRL_TUNING_MASK >> _CMU_HFRCOCTRL_TUNING_SHIFT);
#if defined(_SILICON_LABS_32B_SERIES_1)
while (BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_HFRCOBSY_SHIFT)) {
}
#endif
CMU->HFRCOCTRL = (CMU->HFRCOCTRL & ~(_CMU_HFRCOCTRL_TUNING_MASK))
| (val << _CMU_HFRCOCTRL_TUNING_SHIFT);
break;
#if defined (_CMU_USHFRCOCTRL_TUNING_MASK)
case cmuOsc_USHFRCO:
EFM_ASSERT(val <= (_CMU_USHFRCOCTRL_TUNING_MASK
>> _CMU_USHFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_USHFRCOCTRL_TUNING_MASK >> _CMU_USHFRCOCTRL_TUNING_SHIFT);
#if defined(_SILICON_LABS_32B_SERIES_1)
while (BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_USHFRCOBSY_SHIFT)) {
}
#endif
CMU->USHFRCOCTRL = (CMU->USHFRCOCTRL & ~(_CMU_USHFRCOCTRL_TUNING_MASK))
| (val << _CMU_USHFRCOCTRL_TUNING_SHIFT);
break;
#endif
case cmuOsc_AUXHFRCO:
EFM_ASSERT(val <= (_CMU_AUXHFRCOCTRL_TUNING_MASK
>> _CMU_AUXHFRCOCTRL_TUNING_SHIFT));
val &= (_CMU_AUXHFRCOCTRL_TUNING_MASK >> _CMU_AUXHFRCOCTRL_TUNING_SHIFT);
#if defined(_SILICON_LABS_32B_SERIES_1)
while (BUS_RegBitRead(&CMU->SYNCBUSY, _CMU_SYNCBUSY_AUXHFRCOBSY_SHIFT)) {
}
#endif
CMU->AUXHFRCOCTRL = (CMU->AUXHFRCOCTRL & ~(_CMU_AUXHFRCOCTRL_TUNING_MASK))
| (val << _CMU_AUXHFRCOCTRL_TUNING_SHIFT);
break;
#if defined(_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK)
case cmuOsc_HFXO:
/* Do set PEAKDETSHUNTOPTMODE or HFXOSTEADYSTATECTRL if HFXO is enabled */
EFM_ASSERT(!(CMU->STATUS & CMU_STATUS_HFXOENS));
/* Switch to command mode. Automatic SCO and PDA calibration is not done
at the next enable. Set user REGISH, REGISHUPPER and IBTRIMXOCORE. */
CMU->HFXOCTRL = (CMU->HFXOCTRL & ~_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK)
| CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_CMD;
#if defined(_CMU_HFXOSTEADYSTATECTRL_REGISH_MASK)
regIshUpper = getRegIshUpperVal((val & _CMU_HFXOSTEADYSTATECTRL_REGISH_MASK)
>> _CMU_HFXOSTEADYSTATECTRL_REGISH_SHIFT);
CMU->HFXOSTEADYSTATECTRL = (CMU->HFXOSTEADYSTATECTRL
& ~(_CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_MASK
| _CMU_HFXOSTEADYSTATECTRL_REGISH_MASK
| _CMU_HFXOSTEADYSTATECTRL_REGISHUPPER_MASK))
| val
| regIshUpper;
#else
CMU->HFXOSTEADYSTATECTRL = (CMU->HFXOSTEADYSTATECTRL
& ~_CMU_HFXOSTEADYSTATECTRL_IBTRIMXOCORE_MASK)
| val;
#endif
break;
#endif
default:
EFM_ASSERT(0);
break;
}
}
#if defined(_CMU_HFXOCTRL_PEAKDETSHUNTOPTMODE_MASK) || defined(_CMU_HFXOCTRL_PEAKDETMODE_MASK)
/***************************************************************************//**
* @brief
* Wait for oscillator tuning optimization.
*
* @param[in] osc
* Oscillator to set tuning value for, one of:
* @li #cmuOsc_HFXO
*
* @param[in] mode
* Tuning optimization mode.
*
* @return
* Returns false on invalid parameters or oscillator error status.
******************************************************************************/
bool CMU_OscillatorTuningWait(CMU_Osc_TypeDef osc,
CMU_HFXOTuningMode_TypeDef mode)
{
uint32_t waitFlags;
EFM_ASSERT(osc == cmuOsc_HFXO);
/* Currently implemented for HFXO with PEAKDETSHUNTOPTMODE only */
(void)osc;
if (getHfxoTuningMode() == HFXO_TUNING_MODE_AUTO) {
waitFlags = HFXO_TUNING_READY_FLAGS;
} else {
/* Set wait flags for each command and wait */
switch (mode) {
#if defined(_CMU_STATUS_HFXOSHUNTOPTRDY_MASK)
case cmuHFXOTuningMode_ShuntCommand:
waitFlags = CMU_STATUS_HFXOSHUNTOPTRDY;
break;
#endif
case cmuHFXOTuningMode_Auto:
waitFlags = HFXO_TUNING_READY_FLAGS;
break;
#if defined(CMU_CMD_HFXOSHUNTOPTSTART)
case cmuHFXOTuningMode_PeakShuntCommand:
waitFlags = HFXO_TUNING_READY_FLAGS;
break;
#endif
default:
waitFlags = _CMU_STATUS_MASK;
EFM_ASSERT(false);
}
}
while ((CMU->STATUS & waitFlags) != waitFlags) ;
#if defined(CMU_IF_HFXOPEAKDETERR)
/* Check error flags */
if (waitFlags & CMU_STATUS_HFXOPEAKDETRDY) {
return (CMU->IF & CMU_IF_HFXOPEAKDETERR ? true : false);
}
#endif
return true;
}
/***************************************************************************//**
* @brief
* Start and optionally wait for oscillator tuning optimization.
*
* @param[in] osc
* Oscillator to set tuning value for, one of:
* @li #cmuOsc_HFXO
*
* @param[in] mode
* Tuning optimization mode.
*
* @param[in] wait
* Wait for tuning optimization to complete.
* true - wait for tuning optimization to complete.
* false - return without waiting.
*
* @return
* Returns false on invalid parameters or oscillator error status.
******************************************************************************/
bool CMU_OscillatorTuningOptimize(CMU_Osc_TypeDef osc,
CMU_HFXOTuningMode_TypeDef mode,
bool wait)
{
switch (osc) {
case cmuOsc_HFXO:
if (mode) {
#if defined(CMU_IF_HFXOPEAKDETERR)
/* Clear error flag before command write */
CMU->IFC = CMU_IFC_HFXOPEAKDETERR;
#endif
CMU->CMD = mode;
}
if (wait) {
return CMU_OscillatorTuningWait(osc, mode);
}
break;
default:
EFM_ASSERT(false);
}
return true;
}
#endif
/**************************************************************************//**
* @brief
* Determine if currently selected PCNTn clock used is external or LFBCLK.
*
* @param[in] instance
* PCNT instance number to get currently selected clock source for.
*
* @return
* @li true - selected clock is external clock.
* @li false - selected clock is LFBCLK.
*****************************************************************************/
bool CMU_PCNTClockExternalGet(unsigned int instance)
{
uint32_t setting;
switch (instance) {
#if defined(_CMU_PCNTCTRL_PCNT0CLKEN_MASK)
case 0:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT0CLKSEL_PCNT0S0;
break;
#if defined(_CMU_PCNTCTRL_PCNT1CLKEN_MASK)
case 1:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT1CLKSEL_PCNT1S0;
break;
#if defined(_CMU_PCNTCTRL_PCNT2CLKEN_MASK)
case 2:
setting = CMU->PCNTCTRL & CMU_PCNTCTRL_PCNT2CLKSEL_PCNT2S0;
break;
#endif
#endif
#endif
default:
setting = 0;
break;
}
return (setting ? true : false);
}
/**************************************************************************//**
* @brief
* Select PCNTn clock.
*
* @param[in] instance
* PCNT instance number to set selected clock source for.
*
* @param[in] external
* Set to true to select external clock, false to select LFBCLK.
*****************************************************************************/
void CMU_PCNTClockExternalSet(unsigned int instance, bool external)
{
#if defined(PCNT_PRESENT)
uint32_t setting = 0;
EFM_ASSERT(instance < PCNT_COUNT);
if (external) {
setting = 1;
}
BUS_RegBitWrite(&(CMU->PCNTCTRL), (instance * 2) + 1, setting);
#else
(void)instance; /* Unused parameter */
(void)external; /* Unused parameter */
#endif
}
#if defined(_CMU_USHFRCOCONF_BAND_MASK)
/***************************************************************************//**
* @brief
* Get USHFRCO band in use.
*
* @return
* USHFRCO band in use.
******************************************************************************/
CMU_USHFRCOBand_TypeDef CMU_USHFRCOBandGet(void)
{
return (CMU_USHFRCOBand_TypeDef)((CMU->USHFRCOCONF
& _CMU_USHFRCOCONF_BAND_MASK)
>> _CMU_USHFRCOCONF_BAND_SHIFT);
}
#endif
#if defined(_CMU_USHFRCOCONF_BAND_MASK)
/***************************************************************************//**
* @brief
* Set USHFRCO band to use.
*
* @param[in] band
* USHFRCO band to activate.
******************************************************************************/
void CMU_USHFRCOBandSet(CMU_USHFRCOBand_TypeDef band)
{
uint32_t tuning;
uint32_t fineTuning;
CMU_Select_TypeDef osc;
/* Cannot switch band if USHFRCO is already selected as HF clock. */
osc = CMU_ClockSelectGet(cmuClock_HF);
EFM_ASSERT((CMU_USHFRCOBandGet() != band) && (osc != cmuSelect_USHFRCO));
/* Read tuning value from calibration table */
switch (band) {
case cmuUSHFRCOBand_24MHz:
tuning = (DEVINFO->USHFRCOCAL0 & _DEVINFO_USHFRCOCAL0_BAND24_TUNING_MASK)
>> _DEVINFO_USHFRCOCAL0_BAND24_TUNING_SHIFT;
fineTuning = (DEVINFO->USHFRCOCAL0
& _DEVINFO_USHFRCOCAL0_BAND24_FINETUNING_MASK)
>> _DEVINFO_USHFRCOCAL0_BAND24_FINETUNING_SHIFT;
ushfrcoFreq = 24000000UL;
break;
case cmuUSHFRCOBand_48MHz:
tuning = (DEVINFO->USHFRCOCAL0 & _DEVINFO_USHFRCOCAL0_BAND48_TUNING_MASK)
>> _DEVINFO_USHFRCOCAL0_BAND48_TUNING_SHIFT;
fineTuning = (DEVINFO->USHFRCOCAL0
& _DEVINFO_USHFRCOCAL0_BAND48_FINETUNING_MASK)
>> _DEVINFO_USHFRCOCAL0_BAND48_FINETUNING_SHIFT;
/* Enable the clock divider before switching the band from 24 to 48MHz */
BUS_RegBitWrite(&CMU->USHFRCOCONF, _CMU_USHFRCOCONF_USHFRCODIV2DIS_SHIFT, 0);
ushfrcoFreq = 48000000UL;
break;
default:
EFM_ASSERT(0);
return;
}
/* Set band and tuning */
CMU->USHFRCOCONF = (CMU->USHFRCOCONF & ~_CMU_USHFRCOCONF_BAND_MASK)
| (band << _CMU_USHFRCOCONF_BAND_SHIFT);
CMU->USHFRCOCTRL = (CMU->USHFRCOCTRL & ~_CMU_USHFRCOCTRL_TUNING_MASK)
| (tuning << _CMU_USHFRCOCTRL_TUNING_SHIFT);
CMU->USHFRCOTUNE = (CMU->USHFRCOTUNE & ~_CMU_USHFRCOTUNE_FINETUNING_MASK)
| (fineTuning << _CMU_USHFRCOTUNE_FINETUNING_SHIFT);
/* Disable the clock divider after switching the band from 48 to 24MHz */
if (band == cmuUSHFRCOBand_24MHz) {
BUS_RegBitWrite(&CMU->USHFRCOCONF, _CMU_USHFRCOCONF_USHFRCODIV2DIS_SHIFT, 1);
}
}
#endif
/** @} (end addtogroup CMU) */
/** @} (end addtogroup emlib) */
#endif /* __EM_CMU_H */