Compare commits

..

36 Commits

Author SHA1 Message Date
fd9a4fd6b3 do not delay bootloader 2019-08-23 14:31:03 +08:00
d5c30eca7c add delay to cap button improve reliability 2019-08-23 14:28:25 +08:00
b3ac739a35 make touch sensor edge based to avoid approving >1 transaction 2019-08-23 13:44:06 +08:00
3b53537077 refactor fido2 user presence handling & increase timeout to 29s 2019-08-23 13:19:28 +08:00
3fad9a7a7d add response to reset command and delete debug 2019-08-23 10:43:09 +08:00
8973608f59 docs: update .all-contributorsrc 2019-08-22 22:42:17 +02:00
8af6505f6d docs: update README.md 2019-08-22 22:42:17 +02:00
d39d7978fd small fix 2019-08-22 21:04:01 +08:00
c972a13034 fix reboot 2019-08-22 20:55:25 +08:00
a95e62e2ea reset 2019-08-22 20:55:25 +08:00
c79b7abfb6 add reset placeholder 2019-08-22 20:55:25 +08:00
dfb124dc8b refactoring 2019-08-22 20:55:12 +08:00
972760eb78 added APDU input chaining 2019-08-22 20:55:12 +08:00
0d621d13f9 fix decoding apdu 2019-08-22 20:55:12 +08:00
728acc1671 chaining not needs to go to the start 2019-08-21 12:13:16 +08:00
62b4418dac fix pck length math 2019-08-21 12:13:16 +08:00
8059a9765f was wrong buffer 2019-08-21 12:13:16 +08:00
b743d5fac5 sketch 2019-08-21 12:13:16 +08:00
dccfb0d1b3 stub pc build 2019-08-21 12:06:06 +08:00
a72f0ede05 take a lazy approach to key agreement generation to not hold up boot time for nfc 2019-08-21 12:06:06 +08:00
adcbd3aeb8 speed up public key derivation slightly for nfc 2019-08-21 12:06:06 +08:00
d931954a13 remove WTX, move debug log 2019-08-21 12:06:06 +08:00
b706cc30b0 for now, always gen key agreement 2019-08-21 12:06:06 +08:00
57fe39704b Merge pull request #282 from solokeys/update-udev-docs
Update udev docs
2019-08-21 02:48:33 +02:00
4b6619b705 Update udev docs 2019-08-21 02:37:15 +02:00
095b08e3d9 add some stability in small responses 2019-08-19 22:33:32 +08:00
89e021003a small fix for HID readers 2019-08-19 22:33:32 +08:00
4f3d4b09eb Update README.md 2019-08-16 17:22:46 -04:00
3f4843b03a Merge pull request #270 from solokeys/bump_2.4.3
Update STABLE_VERSION
2019-08-16 21:07:59 +02:00
26af0c423e Update solo-extras.md 2019-08-16 14:04:43 +08:00
19422d9daa add info for rng use 2019-08-16 14:04:43 +08:00
b7a4cf001a run through fixes 2019-08-16 14:04:43 +08:00
3927aec06d dont remove solo.hex bootloader.hex 2019-08-16 14:04:43 +08:00
f5794481ae initial draft 2019-08-16 14:04:43 +08:00
caac9d0cc1 add secure build that uses default attestation key 2019-08-16 14:04:43 +08:00
ffadab05a3 Update STABLE_VERSION 2019-08-15 19:35:54 +08:00
16 changed files with 346 additions and 133 deletions

View File

@ -168,6 +168,16 @@
"infra",
"tool"
]
},
{
"login": "kimusan",
"name": "Kim Schulz",
"avatar_url": "https://avatars1.githubusercontent.com/u/1150049?v=4",
"profile": "http://www.schulz.dk",
"contributions": [
"business",
"ideas"
]
}
],
"contributorsPerLine": 7,

View File

@ -1,24 +1,18 @@
[![License](https://img.shields.io/github/license/solokeys/solo.svg)](https://github.com/solokeys/solo/blob/master/LICENSE)
[![All Contributors](https://img.shields.io/badge/all_contributors-17-orange.svg?style=flat-square)](#contributors)
[![Build Status](https://travis-ci.com/solokeys/solo.svg?branch=master)](https://travis-ci.com/solokeys/solo)
[![Discourse Users](https://img.shields.io/discourse/https/discourse.solokeys.com/users.svg)](https://discourse.solokeys.com)
**NEW!** We launched a new tiny security key called Somu, it's live on Crowd Supply and you can [pre-order it now](https://solokeys.com/somu)!
[<img src="https://miro.medium.com/max/1400/1*PnzCPLqq_5nt1gjgSEY2LQ.png" width="600">](https://solokeys.com/somu)
Somu is the micro version of Solo. We were inspired to make a secure Tomu, so we took its tiny form factor, we added the secure microcontroller and firmware of Solo, et voilà! Here we have Somu.
[![latest release](https://img.shields.io/github/release/solokeys/solo.svg)](https://update.solokeys.com/)
[![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public)
[![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fsolokeys%2Fsolo.svg?type=shield)](https://app.fossa.io/projects/git%2Bgithub.com%2Fsolokeys%2Fsolo?ref=badge_shield)
[![latest release](https://img.shields.io/github/release/solokeys/solo.svg)](https://github.com/solokeys/solo/releases)
[![commits since last release](https://img.shields.io/github/commits-since/solokeys/solo/latest.svg)](https://github.com/solokeys/solo/commits/master)
[![last commit](https://img.shields.io/github/last-commit/solokeys/solo.svg)](https://github.com/solokeys/solo/commits/master)
[![commit activity](https://img.shields.io/github/commit-activity/m/solokeys/solo.svg)](https://github.com/solokeys/solo/commits/master)
[![contributors](https://img.shields.io/github/contributors/solokeys/solo.svg)](https://github.com/solokeys/solo/graphs/contributors)
# Solo
[![Build Status](https://travis-ci.com/solokeys/solo.svg?style=flat-square&branch=master)](https://travis-ci.com/solokeys/solo)
Solo is an open source security key, and you can get one at [solokeys.com](https://solokeys.com).
Solo supports FIDO2 and U2F standards for strong two-factor authentication and password-less login, and it will protect you against phishing and other online attacks. With colored cases and multilingual guides we want to make secure login more personable and accessible to everyone around the globe.
[<img src="https://static.solokeys.com/images/photos/hero-on-white-cropped.png" width="600">](https://solokeys.com)
<img src="https://static.solokeys.com/images/photos/hero-on-white-cropped.png" width="600">
Solo supports FIDO2 and U2F standards for strong two-factor authentication and password-less login, and it will protect you against phishing and other online attacks. With colored cases and multilingual guides we want to make secure login more personable and accessible to everyone around the globe.
This repo contains the Solo firmware, including implementations of FIDO2 and U2F (CTAP2 and CTAP) over USB and NFC. The main implementation is for STM32L432, but it is easily portable.
@ -42,7 +36,7 @@ Solo for Hacker is a special version of Solo that let you customize its firmware
Check out [solokeys.com](https://solokeys.com), for options on where to buy Solo. Solo Hacker can be converted to a secure version, but normal Solo cannot be converted to a Hacker version.
If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.io/solo/building/). We only support Python3.
If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.io/solo/building/). We support Python3.
```bash
git clone --recurse-submodules https://github.com/solokeys/solo
@ -140,6 +134,7 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
<td align="center"><a href="http://1bitsquared.com"><img src="https://avatars3.githubusercontent.com/u/17334?v=4" width="100px;" alt="Piotr Esden-Tempski"/><br /><sub><b>Piotr Esden-Tempski</b></sub></a><br /><a href="#business-esden" title="Business development">💼</a></td>
<td align="center"><a href="https://github.com/m3hm00d"><img src="https://avatars1.githubusercontent.com/u/42179593?v=4" width="100px;" alt="f.m3hm00d"/><br /><sub><b>f.m3hm00d</b></sub></a><br /><a href="https://github.com/solokeys/solo/commits?author=m3hm00d" title="Documentation">📖</a></td>
<td align="center"><a href="http://blogs.gnome.org/hughsie/"><img src="https://avatars0.githubusercontent.com/u/151380?v=4" width="100px;" alt="Richard Hughes"/><br /><sub><b>Richard Hughes</b></sub></a><br /><a href="#ideas-hughsie" title="Ideas, Planning, & Feedback">🤔</a> <a href="https://github.com/solokeys/solo/commits?author=hughsie" title="Code">💻</a> <a href="#infra-hughsie" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="#tool-hughsie" title="Tools">🔧</a></td>
<td align="center"><a href="http://www.schulz.dk"><img src="https://avatars1.githubusercontent.com/u/1150049?v=4" width="100px;" alt="Kim Schulz"/><br /><sub><b>Kim Schulz</b></sub></a><br /><a href="#business-kimusan" title="Business development">💼</a> <a href="#ideas-kimusan" title="Ideas, Planning, & Feedback">🤔</a></td>
</tr>
</table>
@ -168,3 +163,19 @@ You may use Solo documentation under the terms of the CC-BY-SA 4.0 license
You can buy Solo, Solo Tap, and Solo for Hackers at [solokeys.com](https://solokeys.com).
<br/>
<hr/>
<br/>
[![License](https://img.shields.io/github/license/solokeys/solo.svg)](https://github.com/solokeys/solo/blob/master/LICENSE)
[![All Contributors](https://img.shields.io/badge/all_contributors-18-orange.svg?style=flat-square)](#contributors)
[![Build Status](https://travis-ci.com/solokeys/solo.svg?branch=master)](https://travis-ci.com/solokeys/solo)
[![Discourse Users](https://img.shields.io/discourse/https/discourse.solokeys.com/users.svg)](https://discourse.solokeys.com)
[![Keybase Chat](https://img.shields.io/badge/chat-on%20keybase-brightgreen.svg)](https://keybase.io/team/solokeys.public)
[![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fsolokeys%2Fsolo.svg?type=shield)](https://app.fossa.io/projects/git%2Bgithub.com%2Fsolokeys%2Fsolo?ref=badge_shield)
[![latest release](https://img.shields.io/github/release/solokeys/solo.svg)](https://github.com/solokeys/solo/releases)
[![commits since last release](https://img.shields.io/github/commits-since/solokeys/solo/latest.svg)](https://github.com/solokeys/solo/commits/master)
[![last commit](https://img.shields.io/github/last-commit/solokeys/solo.svg)](https://github.com/solokeys/solo/commits/master)
[![commit activity](https://img.shields.io/github/commit-activity/m/solokeys/solo.svg)](https://github.com/solokeys/solo/commits/master)
[![contributors](https://img.shields.io/github/contributors/solokeys/solo.svg)](https://github.com/solokeys/solo/graphs/contributors)

View File

@ -1 +1 @@
2.4.2
2.4.3

View File

@ -1,20 +1,21 @@
# Summary
On Linux, by default USB dongles can't be accessed by users, for security reasons. To allow user access, so-called "udev rules" must be installed. (Under Fedora, your key may work without such a rule.)
On Linux, by default USB dongles can't be accessed by users, for security reasons. To allow user access, so-called "udev rules" must be installed.
Create a file like [`70-solokeys-access.rules`](https://github.com/solokeys/solo/blob/master/udev/70-solokeys-access.rules) in your `/etc/udev/rules.d` directory, for instance the following rule should cover normal access (it has to be on one line):
For some users, things will work automatically:
```
SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0483", ATTRS{idProduct}=="a2ca", TAG+="uaccess", MODE="0660", GROUP="plugdev"
```
- Fedora seems to use a ["universal" udev rule for FIDO devices](https://github.com/amluto/u2f-hidraw-policy)
- Our udev rule made it into [libu2f-host](https://github.com/Yubico/libu2f-host/) v1.1.10
- Arch Linux [has this package](https://www.archlinux.org/packages/community/x86_64/libu2f-host/)
- [Debian sid](https://packages.debian.org/sid/libu2f-udev) and [Ubuntu Eon](https://packages.ubuntu.com/eoan/libu2f-udev) can use the `libu2f-udev` package
- Debian Buster and Ubuntu Disco still distribute v1.1.10, so need the manual rule
- FreeBSD has support in [u2f-devd](https://github.com/solokeys/solo/issues/144#issuecomment-500216020)
Additionally, run the following command after you create this file (it is not necessary to do this again in the future):
There is hope that `udev` itself will adopt the Fedora approach (which is to check for HID usage page `F1D0`, and avoids manually whitelisting each U2F/FIDO2 key): <https://github.com/systemd/systemd/issues/11996>.
```
sudo udevadm control --reload-rules && sudo udevadm trigger
```
Further progress is tracked in: <https://github.com/solokeys/solo/issues/144>.
A simple way to setup both the udev rule and the udevadm reload is:
If you still need to setup a rule, a simple way to do it is:
```
git clone git@github.com:solokeys/solo.git
@ -22,9 +23,11 @@ cd solo/udev
make setup
```
We are working on getting user access to Solo keys enabled automatically in common Linux distributions: <https://github.com/solokeys/solo/issues/144>.
Or, manually, create a file like [`70-solokeys-access.rules`](https://github.com/solokeys/solo/blob/master/udev/70-solokeys-access.rules) in your `/etc/udev/rules.d` directory.
Additionally, run the following command after you create this file (it is not necessary to do this again in the future):
```
sudo udevadm control --reload-rules && sudo udevadm trigger
```
# How do udev rules work and why are they needed

View File

@ -13,7 +13,7 @@ int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu)
{
EXT_APDU_HEADER *hapdu = (EXT_APDU_HEADER *)data;
apdu->cla = hapdu->cla;
apdu->cla = hapdu->cla & 0xef; // mask chaining bit if any
apdu->ins = hapdu->ins;
apdu->p1 = hapdu->p1;
apdu->p2 = hapdu->p2;

View File

@ -42,14 +42,20 @@ extern int apdu_decode(uint8_t *data, size_t len, APDU_STRUCT *apdu);
#define APDU_FIDO_U2F_AUTHENTICATE 0x02
#define APDU_FIDO_U2F_VERSION 0x03
#define APDU_FIDO_NFCCTAP_MSG 0x10
#define APDU_FIDO_U2F_VENDOR_FIRST 0xc0 // First vendor defined command
#define APDU_FIDO_U2F_VENDOR_LAST 0xff // Last vendor defined command
#define APDU_SOLO_RESET 0xee
#define APDU_INS_SELECT 0xA4
#define APDU_INS_READ_BINARY 0xB0
#define APDU_GET_RESPONSE 0xC0
#define SW_SUCCESS 0x9000
#define SW_GET_RESPONSE 0x6100 // Command successfully executed; 'XX' bytes of data are available and can be requested using GET RESPONSE.
#define SW_WRONG_LENGTH 0x6700
#define SW_COND_USE_NOT_SATISFIED 0x6985
#define SW_FILE_NOT_FOUND 0x6a82
#define SW_INCORRECT_P1P2 0x6a86
#define SW_INS_INVALID 0x6d00 // Instruction code not supported or invalid
#define SW_CLA_INVALID 0x6e00
#define SW_INTERNAL_EXCEPTION 0x6f00

View File

@ -262,6 +262,11 @@ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8
memmove(y,pubkey+32,32);
}
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len)
{
_signing_key = key;

View File

@ -26,6 +26,7 @@ void crypto_sha512_final(uint8_t * hash);
void crypto_ecc256_init();
void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8_t * y);
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey);
void crypto_ecc256_load_key(uint8_t * data, int len, uint8_t * data2, int len2);
void crypto_ecc256_load_attestation_key();

View File

@ -256,7 +256,9 @@ static int ctap_generate_cose_key(CborEncoder * cose_key, uint8_t * hmac_input,
switch(algtype)
{
case COSE_ALG_ES256:
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
crypto_ecc256_derive_public_key(hmac_input, len, x, y);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
break;
default:
printf2(TAG_ERR,"Error, COSE alg %d not supported\n", algtype);
@ -435,7 +437,19 @@ static unsigned int get_credential_id_size(CTAP_credentialDescriptor * cred)
static int ctap2_user_presence_test()
{
device_set_status(CTAPHID_STATUS_UPNEEDED);
return ctap_user_presence_test(CTAP2_UP_DELAY_MS);
int ret = ctap_user_presence_test(CTAP2_UP_DELAY_MS);
if ( ret > 0 )
{
return CTAP1_ERR_SUCCESS;
}
else if (ret < 0)
{
return CTAP2_ERR_KEEPALIVE_CANCEL;
}
else
{
return CTAP2_ERR_ACTION_TIMEOUT;
}
}
static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * auth_data_buf, uint32_t * len, CTAP_credInfo * credInfo)
@ -468,15 +482,7 @@ static int ctap_make_auth_data(struct rpId * rp, CborEncoder * map, uint8_t * au
int but;
but = ctap2_user_presence_test(CTAP2_UP_DELAY_MS);
if (!but)
{
return CTAP2_ERR_OPERATION_DENIED;
}
else if (but < 0) // Cancel
{
return CTAP2_ERR_KEEPALIVE_CANCEL;
}
check_retr(but);
device_set_status(CTAPHID_STATUS_PROCESSING);
@ -705,10 +711,7 @@ uint8_t ctap_make_credential(CborEncoder * encoder, uint8_t * request, int lengt
}
if (MC.pinAuthEmpty)
{
if (!ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
{
return CTAP2_ERR_OPERATION_DENIED;
}
check_retr( ctap2_user_presence_test(CTAP2_UP_DELAY_MS) );
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_AUTH_INVALID : CTAP2_ERR_PIN_NOT_SET;
}
if ((MC.paramsParsed & MC_requiredMask) != MC_requiredMask)
@ -1141,10 +1144,7 @@ uint8_t ctap_get_assertion(CborEncoder * encoder, uint8_t * request, int length)
if (GA.pinAuthEmpty)
{
if (!ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
{
return CTAP2_ERR_OPERATION_DENIED;
}
check_retr( ctap2_user_presence_test(CTAP2_UP_DELAY_MS) );
return ctap_is_pin_set() == 1 ? CTAP2_ERR_PIN_AUTH_INVALID : CTAP2_ERR_PIN_NOT_SET;
}
if (GA.pinAuthPresent)
@ -1479,6 +1479,11 @@ uint8_t ctap_client_pin(CborEncoder * encoder, uint8_t * request, int length)
ret = cbor_encode_int(&map, RESP_keyAgreement);
check_ret(ret);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
crypto_ecc256_compute_public_key(KEY_AGREEMENT_PRIV, KEY_AGREEMENT_PUB);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
ret = ctap_add_cose_key(&map, KEY_AGREEMENT_PUB, KEY_AGREEMENT_PUB+32, PUB_KEY_CRED_PUB_KEY, COSE_ALG_ECDH_ES_HKDF_256);
check_retr(ret);
@ -1649,14 +1654,11 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break;
case CTAP_RESET:
printf1(TAG_CTAP,"CTAP_RESET\n");
if (ctap2_user_presence_test(CTAP2_UP_DELAY_MS))
status = ctap2_user_presence_test(CTAP2_UP_DELAY_MS);
if (status == CTAP1_ERR_SUCCESS)
{
ctap_reset();
}
else
{
status = CTAP2_ERR_OPERATION_DENIED;
}
break;
case GET_NEXT_ASSERTION:
printf1(TAG_CTAP,"CTAP_NEXT_ASSERTION\n");
@ -1678,7 +1680,7 @@ uint8_t ctap_request(uint8_t * pkt_raw, int length, CTAP_RESPONSE * resp)
break;
default:
status = CTAP1_ERR_INVALID_COMMAND;
printf2(TAG_ERR,"error, invalid cmd\n");
printf2(TAG_ERR,"error, invalid cmd: 0x%02x\n", cmd);
}
done:
@ -1767,10 +1769,7 @@ void ctap_init()
exit(1);
}
if (device_is_nfc() != NFC_IS_ACTIVE)
{
ctap_reset_key_agreement();
}
ctap_reset_key_agreement();
#ifdef BRIDGE_TO_WALLET
wallet_init();
@ -1969,7 +1968,7 @@ int8_t ctap_load_key(uint8_t index, uint8_t * key)
static void ctap_reset_key_agreement()
{
crypto_ecc256_make_key_pair(KEY_AGREEMENT_PUB, KEY_AGREEMENT_PRIV);
ctap_generate_rng(KEY_AGREEMENT_PRIV, sizeof(KEY_AGREEMENT_PRIV));
}
void ctap_reset()

View File

@ -131,7 +131,7 @@
#define PIN_LOCKOUT_ATTEMPTS 8 // Number of attempts total
#define PIN_BOOT_ATTEMPTS 3 // number of attempts per boot
#define CTAP2_UP_DELAY_MS 5000
#define CTAP2_UP_DELAY_MS 29000
typedef struct
{

View File

@ -49,6 +49,7 @@
#define CTAP2_ERR_PIN_POLICY_VIOLATION 0x37
#define CTAP2_ERR_PIN_TOKEN_EXPIRED 0x38
#define CTAP2_ERR_REQUEST_TOO_LARGE 0x39
#define CTAP2_ERR_ACTION_TIMEOUT 0x3A
#define CTAP1_ERR_OTHER 0x7F
#define CTAP2_ERR_SPEC_LAST 0xDF
#define CTAP2_ERR_EXTENSION_FIRST 0xE0

View File

@ -30,6 +30,7 @@ void main_loop_delay();
void heartbeat();
void device_reboot();
void authenticator_read_state(AuthenticatorState * );

View File

@ -43,7 +43,11 @@ void device_set_status(uint32_t status)
__device_status = status;
}
void device_reboot()
{
printf1(TAG_RED, "REBOOT command recieved!\r\n");
exit(100);
}
int udp_server()
{
@ -628,3 +632,8 @@ int device_is_nfc()
{
return 0;
}
void device_set_clock_rate(DEVICE_CLOCK_RATE param)
{
}

View File

@ -282,6 +282,11 @@ void crypto_ecc256_derive_public_key(uint8_t * data, int len, uint8_t * x, uint8
memmove(x,pubkey,32);
memmove(y,pubkey+32,32);
}
void crypto_ecc256_compute_public_key(uint8_t * privkey, uint8_t * pubkey)
{
uECC_compute_public_key(privkey, pubkey, _es256_curve);
}
void crypto_load_external_key(uint8_t * key, int len)
{

View File

@ -55,11 +55,43 @@ static int is_physical_button_pressed()
static int is_touch_button_pressed()
{
return tsc_read_button(0) || tsc_read_button(1);
int is_pressed = (tsc_read_button(0) || tsc_read_button(1));
#ifndef IS_BOOTLOADER
if (is_pressed)
{
// delay for debounce, and longer than polling timer period.
delay(95);
return (tsc_read_button(0) || tsc_read_button(1));
}
#endif
return is_pressed;
}
int (*IS_BUTTON_PRESSED)() = is_physical_button_pressed;
static void edge_detect_touch_button()
{
static uint8_t last_touch = 0;
uint8_t current_touch = 0;
if (is_touch_button_pressed == IS_BUTTON_PRESSED)
{
current_touch = (tsc_read_button(0) || tsc_read_button(1));
// 1 sample per 25 ms
if ((millis() - __last_button_bounce_time) > 25)
{
// Detect "touch / rising edge"
if (!last_touch && current_touch)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
last_touch = current_touch;
}
}
}
void request_from_nfc(bool request_active) {
_RequestComeFromNFC = request_active;
}
@ -78,19 +110,7 @@ void TIM6_DAC_IRQHandler()
}
}
if (is_touch_button_pressed == IS_BUTTON_PRESSED)
{
if (IS_BUTTON_PRESSED())
{
// Only allow 1 press per 25 ms.
if ((millis() - __last_button_bounce_time) > 25)
{
__last_button_press_time = millis();
}
__last_button_bounce_time = millis();
}
}
edge_detect_touch_button();
#ifndef IS_BOOTLOADER
// NFC sending WTX if needs
@ -142,7 +162,6 @@ void device_set_status(uint32_t status)
int device_is_button_pressed()
{
return IS_BUTTON_PRESSED();
}

View File

@ -14,6 +14,11 @@
#define IS_IRQ_ACTIVE() (1 == (LL_GPIO_ReadInputPort(SOLO_AMS_IRQ_PORT) & SOLO_AMS_IRQ_PIN))
// chain buffer for 61XX responses
static uint8_t chain_buffer[2048] = {0};
static size_t chain_buffer_len = 0;
static bool chain_buffer_tx = false;
uint8_t p14443_block_offset(uint8_t pcb) {
uint8_t offset = 1;
// NAD following
@ -196,8 +201,15 @@ bool nfc_write_response_ex(uint8_t req0, uint8_t * data, uint8_t len, uint16_t r
res[len + block_offset + 0] = resp >> 8;
res[len + block_offset + 1] = resp & 0xff;
nfc_write_frame(res, block_offset + len + 2);
if (!ams_wait_for_tx(1))
{
printf1(TAG_NFC, "TX resp timeout. len: %d \r\n", len);
return false;
}
return true;
}
@ -206,7 +218,7 @@ bool nfc_write_response(uint8_t req0, uint16_t resp)
return nfc_write_response_ex(req0, NULL, 0, resp);
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
void nfc_write_response_chaining_plain(uint8_t req0, uint8_t * data, int len)
{
uint8_t res[32 + 2];
uint8_t iBlock = NFC_CMD_IBLOCK | (req0 & 0x0f);
@ -277,6 +289,38 @@ void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len)
}
}
void append_get_response(uint8_t *data, size_t rest_len)
{
data[0] = 0x61;
data[1] = 0x00;
if (rest_len <= 0xff)
data[1] = rest_len & 0xff;
}
void nfc_write_response_chaining(uint8_t req0, uint8_t * data, int len, bool extapdu)
{
chain_buffer_len = 0;
chain_buffer_tx = true;
// if we dont need to break data to parts that need to exchange via GET RESPONSE command (ISO 7816-4 7.1.3)
if (len <= 255 || extapdu)
{
nfc_write_response_chaining_plain(req0, data, len);
} else {
size_t pcklen = MIN(253, len);
chain_buffer_len = len - pcklen;
printf1(TAG_NFC, "61XX chaining %d/%d.\r\n", pcklen, chain_buffer_len);
memmove(chain_buffer, data, pcklen);
append_get_response(&chain_buffer[pcklen], chain_buffer_len);
nfc_write_response_chaining_plain(req0, chain_buffer, pcklen + 2); // 2 for 61XX
// put the rest data into chain buffer
memmove(chain_buffer, &data[pcklen], chain_buffer_len);
}
}
// WTX on/off:
// sends/receives WTX frame to reader every `WTX_time` time in ms
// works via timer interrupts
@ -476,37 +520,70 @@ int select_applet(uint8_t * aid, int len)
return APP_NOTHING;
}
void nfc_process_iblock(uint8_t * buf, int len)
void apdu_process(uint8_t buf0, uint8_t *apduptr, APDU_STRUCT *apdu)
{
int selected;
CTAP_RESPONSE ctap_resp;
int status;
uint16_t reslen;
printf1(TAG_NFC,"Iblock: ");
dump_hex1(TAG_NFC, buf, len);
uint8_t block_offset = p14443_block_offset(buf[0]);
APDU_STRUCT apdu;
if (apdu_decode(buf + block_offset, len - block_offset, &apdu)) {
printf1(TAG_NFC,"apdu decode error\r\n");
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
return;
}
printf1(TAG_NFC,"apdu ok. %scase=%02x cla=%02x ins=%02x p1=%02x p2=%02x lc=%d le=%d\r\n",
apdu.extended_apdu ? "[e]":"", apdu.case_type, apdu.cla, apdu.ins, apdu.p1, apdu.p2, apdu.lc, apdu.le);
// check CLA
if (apdu.cla != 0x00 && apdu.cla != 0x80) {
printf1(TAG_NFC, "Unknown CLA %02x\r\n", apdu.cla);
nfc_write_response(buf[0], SW_CLA_INVALID);
if (apdu->cla != 0x00 && apdu->cla != 0x80) {
printf1(TAG_NFC, "Unknown CLA %02x\r\n", apdu->cla);
nfc_write_response(buf0, SW_CLA_INVALID);
return;
}
// TODO this needs to be organized better
switch(apdu.ins)
switch(apdu->ins)
{
// ISO 7816. 7.1 GET RESPONSE command
case APDU_GET_RESPONSE:
if (apdu->p1 != 0x00 || apdu->p2 != 0x00)
{
nfc_write_response(buf0, SW_INCORRECT_P1P2);
printf1(TAG_NFC, "P1 or P2 error\r\n");
return;
}
// too many bytes needs. 0x00 and 0x100 - any length
if (apdu->le != 0 && apdu->le != 0x100 && apdu->le > chain_buffer_len)
{
uint16_t wlresp = SW_WRONG_LENGTH; // here can be 6700, 6C00, 6FXX. but the most standard way - 67XX or 6700
if (chain_buffer_len <= 0xff)
wlresp += chain_buffer_len & 0xff;
nfc_write_response(buf0, wlresp);
printf1(TAG_NFC, "buffer length less than requesteds\r\n");
return;
}
// create temporary packet
uint8_t pck[255] = {0};
size_t pcklen = 253;
if (apdu->le)
pcklen = apdu->le;
if (pcklen > chain_buffer_len)
pcklen = chain_buffer_len;
printf1(TAG_NFC, "GET RESPONSE. pck len: %d buffer len: %d\r\n", pcklen, chain_buffer_len);
// create packet and add 61XX there if we have another portion(s) of data
memmove(pck, chain_buffer, pcklen);
size_t dlen = 0;
if (chain_buffer_len - pcklen)
{
append_get_response(&pck[pcklen], chain_buffer_len - pcklen);
dlen = 2;
}
// send
nfc_write_response_chaining_plain(buf0, pck, pcklen + dlen); // dlen for 61XX
// shift the buffer
chain_buffer_len -= pcklen;
memmove(chain_buffer, &chain_buffer[pcklen], chain_buffer_len);
break;
case APDU_INS_SELECT:
// if (apdu->p1 == 0 && apdu->p2 == 0x0c)
// {
@ -522,49 +599,49 @@ void nfc_process_iblock(uint8_t * buf, int len)
// }
// else
{
selected = select_applet(apdu.data, apdu.lc);
selected = select_applet(apdu->data, apdu->lc);
if (selected == APP_FIDO)
{
nfc_write_response_ex(buf[0], (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
nfc_write_response_ex(buf0, (uint8_t *)"U2F_V2", 6, SW_SUCCESS);
printf1(TAG_NFC, "FIDO applet selected.\r\n");
}
else if (selected != APP_NOTHING)
{
nfc_write_response(buf[0], SW_SUCCESS);
nfc_write_response(buf0, SW_SUCCESS);
printf1(TAG_NFC, "SELECTED %d\r\n", selected);
}
else
{
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected "); dump_hex1(TAG_NFC, apdu.data, apdu.lc);
nfc_write_response(buf0, SW_FILE_NOT_FOUND);
printf1(TAG_NFC, "NOT selected "); dump_hex1(TAG_NFC, apdu->data, apdu->lc);
}
}
break;
case APDU_FIDO_U2F_VERSION:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F GetVersion command.\r\n");
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
break;
case APDU_FIDO_U2F_REGISTER:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F Register command.\r\n");
if (apdu.lc != 64)
if (apdu->lc != 64)
{
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", apdu.lc);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
printf1(TAG_NFC, "U2F Register request length error. len=%d.\r\n", apdu->lc);
nfc_write_response(buf0, SW_WRONG_LENGTH);
return;
}
@ -575,61 +652,61 @@ void nfc_process_iblock(uint8_t * buf, int len)
// SystemClock_Config_LF32();
// delay(300);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_FAST);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
if (device_is_nfc() == NFC_IS_ACTIVE) device_set_clock_rate(DEVICE_LOW_POWER_IDLE);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Register P2 took %d\r\n", timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"U2F Register answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_FIDO_U2F_AUTHENTICATE:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
printf1(TAG_NFC, "U2F Authenticate command.\r\n");
if (apdu.lc != 64 + 1 + apdu.data[64])
if (apdu->lc != 64 + 1 + apdu->data[64])
{
delay(5);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", apdu.lc, apdu.data[64]);
nfc_write_response(buf[0], SW_WRONG_LENGTH);
printf1(TAG_NFC, "U2F Authenticate request length error. len=%d keyhlen=%d.\r\n", apdu->lc, apdu->data[64]);
nfc_write_response(buf0, SW_WRONG_LENGTH);
return;
}
timestamp();
// WTX_on(WTX_TIME_DEFAULT);
u2f_request_nfc(&buf[block_offset], apdu.data, apdu.lc, &ctap_resp);
u2f_request_nfc(apduptr, apdu->data, apdu->lc, &ctap_resp);
// if (!WTX_off())
// return;
printf1(TAG_NFC, "U2F resp len: %d\r\n", ctap_resp.length);
printf1(TAG_NFC,"U2F Authenticate processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"U2F Authenticate answered %d (took %d)\r\n", millis(), timestamp);
break;
case APDU_FIDO_NFCCTAP_MSG:
if (NFC_STATE.selected_applet != APP_FIDO) {
nfc_write_response(buf[0], SW_INS_INVALID);
nfc_write_response(buf0, SW_INS_INVALID);
return;
}
printf1(TAG_NFC, "FIDO2 CTAP message. %d\r\n", timestamp());
WTX_on(WTX_TIME_DEFAULT);
// WTX_on(WTX_TIME_DEFAULT);
request_from_nfc(true);
ctap_response_init(&ctap_resp);
status = ctap_request(apdu.data, apdu.lc, &ctap_resp);
status = ctap_request(apdu->data, apdu->lc, &ctap_resp);
request_from_nfc(false);
if (!WTX_off())
return;
// if (!WTX_off())
// return;
printf1(TAG_NFC, "CTAP resp: 0x%02x len: %d\r\n", status, ctap_resp.length);
@ -645,44 +722,108 @@ void nfc_process_iblock(uint8_t * buf, int len)
ctap_resp.data[ctap_resp.length - 1] = SW_SUCCESS & 0xff;
printf1(TAG_NFC,"CTAP processing %d (took %d)\r\n", millis(), timestamp());
nfc_write_response_chaining(buf[0], ctap_resp.data, ctap_resp.length);
nfc_write_response_chaining(buf0, ctap_resp.data, ctap_resp.length, apdu->extended_apdu);
printf1(TAG_NFC,"CTAP answered %d (took %d)\r\n", millis(), timestamp());
break;
case APDU_INS_READ_BINARY:
// response length
reslen = apdu.le & 0xffff;
reslen = apdu->le & 0xffff;
switch(NFC_STATE.selected_applet)
{
case APP_CAPABILITY_CONTAINER:
printf1(TAG_NFC,"APP_CAPABILITY_CONTAINER\r\n");
if (reslen == 0 || reslen > sizeof(NFC_CC))
reslen = sizeof(NFC_CC);
nfc_write_response_ex(buf[0], (uint8_t *)&NFC_CC, reslen, SW_SUCCESS);
nfc_write_response_ex(buf0, (uint8_t *)&NFC_CC, reslen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
case APP_NDEF_TAG:
printf1(TAG_NFC,"APP_NDEF_TAG\r\n");
if (reslen == 0 || reslen > sizeof(NDEF_SAMPLE) - 1)
reslen = sizeof(NDEF_SAMPLE) - 1;
nfc_write_response_ex(buf[0], NDEF_SAMPLE, reslen, SW_SUCCESS);
nfc_write_response_ex(buf0, NDEF_SAMPLE, reslen, SW_SUCCESS);
ams_wait_for_tx(10);
break;
default:
nfc_write_response(buf[0], SW_FILE_NOT_FOUND);
nfc_write_response(buf0, SW_FILE_NOT_FOUND);
printf1(TAG_ERR, "No binary applet selected!\r\n");
return;
break;
}
break;
case APDU_SOLO_RESET:
if (apdu->lc == 4 && !memcmp(apdu->data, "\x12\x56\xab\xf0", 4)) {
printf1(TAG_NFC, "Reset...\r\n");
nfc_write_response(buf0, SW_SUCCESS);
delay(20);
device_reboot();
while(1);
} else {
printf1(TAG_NFC, "Reset FAIL\r\n");
nfc_write_response(buf0, SW_INS_INVALID);
}
break;
default:
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu.ins);
nfc_write_response(buf[0], SW_INS_INVALID);
printf1(TAG_NFC, "Unknown INS %02x\r\n", apdu->ins);
nfc_write_response(buf0, SW_INS_INVALID);
break;
}
}
void nfc_process_iblock(uint8_t * buf, int len)
{
uint8_t block_offset = p14443_block_offset(buf[0]);
// clear tx chain buffer if we have some other command than GET RESPONSE
if (chain_buffer_tx && buf[block_offset + 1] != APDU_GET_RESPONSE) {
chain_buffer_len = 0;
chain_buffer_tx = false;
}
APDU_STRUCT apdu;
if (apdu_decode(buf + block_offset, len - block_offset, &apdu)) {
printf1(TAG_NFC,"apdu decode error\r\n");
nfc_write_response(buf[0], SW_COND_USE_NOT_SATISFIED);
return;
}
printf1(TAG_NFC,"apdu ok. %scase=%02x cla=%02x ins=%02x p1=%02x p2=%02x lc=%d le=%d\r\n",
apdu.extended_apdu ? "[e]":"", apdu.case_type, apdu.cla, apdu.ins, apdu.p1, apdu.p2, apdu.lc, apdu.le);
// APDU level chaining. ISO7816-4, 5.1.1. class byte
if (!chain_buffer_tx && buf[block_offset] & 0x10) {
if (chain_buffer_len + len > sizeof(chain_buffer)) {
nfc_write_response(buf[0], SW_WRONG_LENGTH);
return;
}
memmove(&chain_buffer[chain_buffer_len], apdu.data, apdu.lc);
chain_buffer_len += apdu.lc;
delay(1);
nfc_write_response(buf[0], SW_SUCCESS);
printf1(TAG_NFC, "APDU chaining ok. %d/%d\r\n", apdu.lc, chain_buffer_len);
return;
}
// if we have ISO 7816 APDU chain - move there all the data
if (!chain_buffer_tx && chain_buffer_len > 0) {
delay(1);
memmove(&apdu.data[chain_buffer_len], apdu.data, apdu.lc);
memmove(apdu.data, chain_buffer, chain_buffer_len);
apdu.lc += chain_buffer_len; // here apdu struct does not match with memory!
printf1(TAG_NFC, "APDU chaining merge. %d/%d\r\n", chain_buffer_len, apdu.lc);
}
apdu_process(buf[0], &buf[block_offset], &apdu);
printf1(TAG_NFC,"prev.Iblock: ");
dump_hex1(TAG_NFC, buf, len);
}
static uint8_t ibuf[1024];
static int ibuflen = 0;
@ -714,7 +855,7 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
uint8_t block_offset = p14443_block_offset(buf[0]);
if (buf[0] & 0x10)
{
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d\r\n", ibuflen, len);
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining blen=%d len=%d offs=%d\r\n", ibuflen, len, block_offset);
if (ibuflen + len > sizeof(ibuf))
{
printf1(TAG_NFC, "I block memory error! must have %d but have only %d\r\n", ibuflen + len, sizeof(ibuf));
@ -747,14 +888,15 @@ void nfc_process_block(uint8_t * buf, unsigned int len)
memmove(ibuf, buf, block_offset);
ibuflen += block_offset;
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d\r\n", ibuflen, len);
printf1(TAG_NFC_APDU, "NFC_CMD_IBLOCK chaining last block. blen=%d len=%d offset=%d\r\n", ibuflen, len, block_offset);
printf1(TAG_NFC_APDU,"i> ");
dump_hex1(TAG_NFC_APDU, buf, len);
nfc_process_iblock(ibuf, ibuflen);
} else {
nfc_process_iblock(buf, len);
memcpy(ibuf, buf, len); // because buf only 32b
nfc_process_iblock(ibuf, len);
}
clear_ibuf();
}
@ -852,6 +994,7 @@ int nfc_loop()
printf1(TAG_NFC, "NFC_CMD_WUPA\r\n");
break;
case NFC_CMD_HLTA:
ams_write_command(AMS_CMD_SLEEP);
printf1(TAG_NFC, "HLTA/Halt\r\n");
break;
case NFC_CMD_RATS: