Compare commits

..

7 Commits

Author SHA1 Message Date
Conor Patrick
5b2d85bbbf bugfix hid cancel 2019-12-01 17:55:17 -05:00
Conor Patrick
522a18a687 update metadata statements 2019-12-01 17:26:15 -05:00
Conor Patrick
4370c9145e pin fido2 dependency 2019-12-01 17:19:21 -05:00
Conor Patrick
e2c34fd53d adjust default impl 2019-12-01 16:59:12 -05:00
Conor Patrick
f35d79ad03 support different aaguid's in cert for different solo models 2019-12-01 16:38:37 -05:00
Conor Patrick
f70c856998 overwrite x509 fields for tap or somu 2019-12-01 15:17:33 -05:00
Conor Patrick
2170036672 update solo_cert to include aaguid field 2019-12-01 14:32:10 -05:00
52 changed files with 276 additions and 1742 deletions

View File

@ -100,10 +100,9 @@ uncached-docker-build-toolchain:
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${SOLO_VERSION_MAJ}
docker tag $(DOCKER_TOOLCHAIN_IMAGE):latest $(DOCKER_TOOLCHAIN_IMAGE):${SOLO_VERSION_MAJ}.${SOLO_VERSION_MIN}
docker-build-all:
docker-build-all:
docker run --rm -v "$(CURDIR)/builds:/builds" \
-v "$(CURDIR):/solo" \
-u $(shell id -u ${USER}):$(shell id -g ${USER}) \
$(DOCKER_TOOLCHAIN_IMAGE) "solo/in-docker-build.sh" ${SOLO_VERSION_FULL}
CPPCHECK_FLAGS=--quiet --error-exitcode=2

View File

@ -30,7 +30,7 @@ Solo for Hacker is a special version of Solo that let you customize its firmware
Check out [solokeys.com](https://solokeys.com), for options on where to buy Solo. Solo Hacker can be converted to a secure version, but normal Solo cannot be converted to a Hacker version.
If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.dev/building/). We support Python3.
If you have a Solo for Hacker, here's how you can load your own code on it. You can find more details, including how to permanently lock it, in our [documentation](https://docs.solokeys.io/solo/building/). We support Python3.
For example, if you want to turn off any blue light emission, you can edit [`led_rgb()`](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/app.h#L48) and change `LED_INIT_VALUE`
to be a different hex color.
@ -61,19 +61,17 @@ git checkout ${VERSION_TO_BUILD}
git submodule update --init --recursive
```
## Installing the toolchain and applying updates
## Installing the toolchain
In order to compile ARM code, you need the ARM compiler and other things like bundling bootloader and firmware require the [solo-python](https://github.com/solokeys/solo-python) python package. Check our [documentation](https://docs.solokeys.dev/) for details.
In order to compile ARM code, you need the ARM compiler and other things like bundling bootloader and firmware require the `solo-python` python package. Check our [documentation](https://docs.solokeys.io/solo/) for details
You can update your solokey after running `pip3 install solo-python` with `solo key update` for the latest version. To apply a custom image use `solo program bootloader <file>(.json|.hex)`.
## Installing the toolkit and compiling in Docker
## Installing the toolkit and compiling in Docker
Alternatively, you can use Docker to create a container with the toolchain.
You can run:
```bash
# Build the toolchain container
make docker-build-toolchain
make docker-build-toolchain
# Build all versions of the firmware in the "builds" folder
make docker-build-all
@ -83,7 +81,7 @@ The `builds` folder will contain all the variation on the firmware in `.hex` fil
## Build locally
If you have the toolchain installed on your machine you can build the firmware with:
If you have the toolchain installed on your machine you can build the firmware with:
```bash
cd targets/stm32l432
@ -122,12 +120,12 @@ Run the Solo application:
In another shell, you can run our [test suite](https://github.com/solokeys/fido2-tests).
You can find more details in our [documentation](https://docs.solokeys.dev/), including how to build on the the NUCLEO-L432KC development board.
You can find more details in our [documentation](https://docs.solokeys.io/solo/), including how to build on the the NUCLEO-L432KC development board.
# Documentation
Check out our [official documentation](https://docs.solokeys.dev/).
Check out our [official documentation](https://docs.solokeys.io/solo/).
# Contributors ✨

View File

@ -21,7 +21,7 @@ To report vulnerabilities you have found:
- preferably contact [@conor1](https://keybase.io/conor1), [@0x0ece](https://keybase.io/0x0ece) or [@nickray](https://keybase.io/nickray) via Keybase, or
- send us e-mail using OpenPGP to [security@solokeys.com](mailto:security@solokeys.com).
<https://keys.openpgp.org/vks/v1/by-fingerprint/BFA3F5387D025E8945CF907FC2F2505A63868DFA>
<https://keys.openpgp.org/vks/v1/by-fingerprint/85AFA2769F4381E5712C36A04DDFC46FEF1F7F3F>
We do not currently run a paid bug bounty program, but are happy to provide you with a bunch of Solo keys in recognition of your findings.

View File

@ -1 +1 @@
4.0.0
3.0.0

View File

@ -1,27 +0,0 @@
let
pkgs = import (fetchTarball { url = "https://github.com/NixOS/nixpkgs/archive/20.03.tar.gz"; sha256 = "0182ys095dfx02vl2a20j1hz92dx3mfgz2a6fhn31bqlp1wa8hlq"; }) { };
pyPackages = (python-packages: with python-packages; ([
solo-python
pytest
] ++ (with builtins; map (d: getAttr d python-packages) (filter (d: stringLength d > 0) (pkgs.lib.splitString "\n" (builtins.readFile ./tools/requirements.txt))))));
python-with-my-packages = pkgs.python3.withPackages pyPackages;
src = with pkgs.lib; builtins.filterSource (path: type: !(hasSuffix path "hex" || hasSuffix path "sha256" || baseNameOf path == "result")) ./.;
in
with pkgs; stdenv.mkDerivation {
name = "solo";
outputs = [ "out" ];
inherit src;
buildInputs = [ src gnumake gcc gcc-arm-embedded-8 git python-with-my-packages ];
phases = [ "unpackPhase" "configurePhase" "buildPhase" "installPhase" ];
installPhase = ''
mkdir -p $out/firmware $out/standalone/bin
make
cp main $out/standalone/bin/
cd targets/stm32l432
make cbor
make build-hacker
cp *.hex *.sha256 *.elf cubeconfig_stm32l442.ioc $out/firmware/
ln -s ${src} $out/src
'';
keepDebugInfo = true;
}

View File

@ -1 +0,0 @@
/solo/* /:splat 302

View File

@ -1 +0,0 @@
../README.md

View File

@ -1,23 +1,16 @@
# Using Solo for passwordless or second factor login on Linux
## Setup on Ubuntu and Manjaro
## Setup on Ubuntu 18.04
Before you can use Solo for passwordless or second factor login in your Linux system you have to install some packages.
This was tested on **Linux Mint 19.3** and on **Manjaro 18.x**
This was tested under **Linux Mint 19.2**.
First you have to install PAM modules for u2f.
**Ubuntu (Linux Mint):**
```
sudo apt install libpam-u2f pamu2fcfg
```
**Manjaro**
```
pacman -Syu pam-u2f
```
## Setting up key
To use Solo as passwordless or second factor login, you have to setup your system with your Solo.
First create a new folder named **Yubico** in your **.config** folder in your **home** directory
@ -35,57 +28,35 @@ If you want to register an additional key use this command instead:
pamu2fcfg >> ~/.config/Yubico/u2f_keys
```
Now press the button on your Solo.
<br>
<br>
If you can't generate your key on **Ubuntu** (error message), you may add Yubico Team from PPA and install latest libpam-u2f and pamu2fcfg and try again.
If you can't generate your key (error message), you may add Yubico Team from PPA and install latest libpam-u2f and pamu2fcfg and try again.
```
sudo add-apt-repository ppa:yubico/stable
sudo apt-get update
sudo apt-get upgrade
```
**Manjaro** should work without problems.
## Login into Linux
### Passwordless
To login passwordless into your Linux system, you have to edit the file **lightdm** (or **gdm** or which display manager you prefered).
In case of lightdm and VIM as editor:
In case of lightdm:
```
sudo vim /etc/pam.d/lightdm
sudo vim /etc/pam.d/lightdm
```
**On Ubuntu:**<br>
Search following entry:
Now search following entry:
```
@include common-auth
@include common-auth
```
and add
```
auth sufficient pam_u2f.so
auth sufficient pam_u2f.so
```
**before** *@include common-auth.*
<br>
<br>
**before** @include common-auth.
**On Manjaro**<br>
Search following enrty
```
auth include system-login
```
and add
```
auth sufficient pam_u2f.so
```
** before** *auth include system-login*.
<br>
<br>
Now save the file and test it.<br>
Save the file and test it.<br>
Insert Solo in your USB port and logout.
Now you should be able to login into Linux without password, only with pressing your button on Solo and press enter.
@ -94,7 +65,7 @@ Why **sufficient**? The difference between the keyword sufficient and required i
The login mechanism can be also used for additional features like:
- Login after screen timeout - edit /etc/pam.d/mate-screensaver (or kde-screensaver, ...)
: - Login after screen timeout - edit /etc/pam.d/mate-screensaver (or kde-screensaver, ...)
- Passwordless sudo - edit /etc/pam.d/sudo
Check out your folder **/etc/pam.d/** and do some experiments.
@ -107,36 +78,17 @@ The login passwordless won't make your system more secure, but maybe more comfor
To use Solo as second factor, for login into your Linux system, is nearly the same.
```
sudo vim /etc/pam.d/lightdm
sudo vim /etc/pam.d/lightdm
```
**On Ubuntu**<br>
Search following entry:
Now search following entry:
```
@include common-auth
@include common-auth
```
and add
```
auth required pam_u2f.so
auth required pam_u2f.so
```
**after** *@include common-auth*.
<br>
<br>
**On Manjaro**<br>
Search following entry:
```
auth include system-login
```
Add following entry
```
auth required pam_u2f.so
```
**after** *auth include system-login*.
<br>
<br>
**after** @include common-auth.
Save the file and test it. <br>
In case your Solo is not present, your password will be incrorrect. If Solo is plugged into your USB port, it will signal pressing the button and you will be able to login into Linux.

View File

@ -6,11 +6,11 @@ If you have a recent version of Solo, you can put it into bootloader mode by run
solo program aux enter-bootloader
```
If your Solo is a bit older (<=2.5.3) You can put Solo into bootloader mode by using the button method:
If your Solo is a bit older (<=2.5.3) You can put Solo into bootloader mode by using the button method:
Hold down button while plugging in Solo. After 2 seconds, bootloader mode will activate.
You'll see a yellowish flashing light and you can let go of the button.
Now Solo is ready to [accept firmware updates](/signed-updates). If the Solo is a secured model, it can only accept signed updates, typically in the `firmware-*.json` format.
Now Solo is ready to [accept firmware updates](/solo/signed-updates). If the Solo is a secured model, it can only accept signed updates, typically in the `firmware-*.json` format.
# The boot stages of Solo
@ -19,10 +19,10 @@ Solo has 3 boot stages.
## DFU
The first stage is the DFU (Device Firmware Update) which is in a ROM on Solo. It is baked into the chip and is not implemented by us.
This is what allows the entire firmware of Solo to be programmed. **It's not recommended to develop for Solo using the DFU because
This is what allows the entire firmware of Solo to be programmed. **It's not recommended to develop for Solo using the DFU because
if you program broken firmware, you could brick your device**.
On hacker/nonverifying-bootloader devices, you can boot into the DFU by holding down the button for 5 seconds,
On hacker/nonverifying-bootloader devices, you can boot into the DFU by holding down the button for 5 seconds,
when Solo is already in bootloader mode.
You can also run this command when Solo is in bootloader mode to put it in DFU mode.

View File

@ -104,24 +104,9 @@ solo mergehex bootloader.hex solo.hex bundle.hex
`bundle.hex` is our complete firmware build. Note it is in this step that you can
include a custom attestation certificate or lock the device from debugging/DFU.
By default the "hacker" attestation certifcate and key is used. Use the `--lock` flag
to make this permanent.
By default the "hacker" attestation certifcate and key is used.
```
solo mergehex \
--attestation-key "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF" \
--attestation-cert attestation.der \
solo.hex \
bootloader.hex \
bundle.hex
```
**Warning**: If you use `--lock`, this will permanently lock the device to this new bootloader. You
won't be able to program the bootloader again or be able to connect a hardware debugger.
The new bootloader may be able to accept (signed) updates still, depending on how you configured it.
```
# Permanent!
solo mergehex \
--attestation-key "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF" \
--attestation-cert attestation.der \
@ -131,7 +116,11 @@ solo mergehex \
bundle.hex
```
See [here for more information on custom attestation](/customization/).
See [here for more information on custom attestation](/solo/customization/).
To learn more about normal updates or a "full" update, you should [read more on Solo's boot stages](/bootloader-mode).
If you use `--lock`, this will permanently lock the device to this new bootloader. You
won't be able to program the bootloader again or be able to connect a hardware debugger.
The new bootloader may be able to accept (signed) updates still, depending on how you configured it.
To learn more about normal updates or a "full" update, you should [read more on Solo's boot stages](/solo/bootloader-mode).

View File

@ -19,7 +19,7 @@ and program it.
### Creating your attestation key pair
Since we are generating keys, it's important to use a good entropy source.
You can use the [True RNG on your Solo](/solo-extras) to generate some good random numbers.
You can use the [True RNG on your Solo](/solo/solo-extras) to generate some good random numbers.
```
# Run for 1 second, then hit control-c
@ -45,7 +45,7 @@ email=example@example.com
openssl ecparam -genkey -name "$curve" -out root_key.pem -rand seed.bin
# generate a "signing request"
openssl req -new -key root_key.pem -out root_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=$CN/emailAddress=$email"
openssl req -new -key root_key.pem -out root_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=example.com/emailAddress=$email"
# self sign the request
openssl x509 -trustout -req -days 18250 -in root_key.pem.csr -signkey root_key.pem -out root_cert.pem -sha256
@ -74,7 +74,7 @@ Note you must use a prime256v1 curve for this step, and you must leave the unit/
country=US
state=Maine
organization=OpenSourceSecurity
unit="Authenticator Attestation" # MUST KEEP THIS AS "Authenticator Attestation" for FIDO2.
unit="Authenticator Attestation"
CN=example.com
email=example@example.com
@ -82,7 +82,7 @@ email=example@example.com
openssl ecparam -genkey -name "$curve" -out device_key.pem -rand seed.bin
# generate a "signing request"
openssl req -new -key device_key.pem -out device_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=$CN/emailAddress=$email"
openssl req -new -key device_key.pem -out device_key.pem.csr -subj "/C=$country/ST=$state/O=$organization/OU=$unit/CN=example.com/emailAddress=$email"
# sign the request
openssl x509 -req -days 18250 -in device_key.pem.csr -extfile v3.ext -CA root_cert.pem -CAkey root_key.pem -set_serial 01 -out device_cert.pem -sha256
@ -114,12 +114,12 @@ If the checks succeed, you are ready to program the device attestation key and c
### Programming an attestation key and certificate
First, [Build your solo application and bootloader](/building).
First, [Build your solo application and bootloader](/solo/building).
Print your attestation key in a hex string format. Using our utility script:
```
python3 tools/gencert/print_x_y.py device_key.pem
python tools/print_x_y.py device_key.pem
```
Merge the `bootloader.hex`, `solo.hex`, attestion key, and certificate into one firmware file.
@ -134,9 +134,7 @@ solo mergehex \
bundle.hex
```
**Warning**: Using the `--lock` flag prevents the DFU from being accessed on the device again. It's recommended to try first without the `--lock` flag to make sure it works.
Now you have a newly created `bundle.hex` file with a custom attestation key and cert. You can [program this `bundle.hex` file
with Solo in DFU mode](/programming#procedure).
with Solo in DFU mode](/solo/programming#procedure).
Are you interested in customizing in bulk? Contact hello@solokeys.com and we can help.

View File

Before

Width:  |  Height:  |  Size: 134 KiB

After

Width:  |  Height:  |  Size: 134 KiB

View File

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 15 KiB

View File

Before

Width:  |  Height:  |  Size: 3.9 KiB

After

Width:  |  Height:  |  Size: 3.9 KiB

View File

Before

Width:  |  Height:  |  Size: 129 KiB

After

Width:  |  Height:  |  Size: 129 KiB

View File

@ -64,7 +64,7 @@ In that case the mentioned patch would not be required.
Environment: Fedora 29 x64, Linux 4.19.9
See <https://docs.solokeys.dev/building/> for the original guide. Here details not included there will be covered.
See <https://docs.solokeys.io/solo/building/> for the original guide. Here details not included there will be covered.
### Install ARM tools Linux
@ -102,7 +102,7 @@ export PATH="/Applications/STMicroelectronics/STM32Cube/STM32CubeProgrammer/STM3
### Building
Please follow <https://docs.solokeys.dev/building/>, as the build way changes rapidly.
Please follow <https://docs.solokeys.io/solo/building/>, as the build way changes rapidly.
Currently (8.1.19) to build the firmware, following lines should be executed
```bash

View File

@ -13,7 +13,7 @@ pip3 install solo-python
## Updating the firmware
If you just want to update the firmware, you can run one of the following commands.
Make sure your key [is in bootloader mode](/bootloader-mode#solo-bootloader) first.
Make sure your key [is in bootloader mode](/solo/bootloader-mode#solo-bootloader) first.
```bash
solo key update <--secure | --hacker>
@ -26,23 +26,19 @@ solo program bootloader <firmware.hex | firmware.json>
```
Note you won't be able to use `all.hex` or the `bundle-*.hex` builds, as these include the solo bootloader. You shouldn't
risk changing the Solo bootloader unless you want to make it a secure device, or [make other customizations](/customization/).
risk changing the Solo bootloader unless you want to make it a secure device, or [make other customizations](/solo/customization/).
## Updating a Hacker to a Secure Solo
Updating a hacker to be a secure build overwrites the [Solo bootloader](/bootloader-mode#solo-bootloader).
Updating a hacker to be a secure build overwrites the [Solo bootloader](/solo/bootloader-mode#solo-bootloader).
So it's important to not mess this up or you may brick your device.
You can use a firmware build from the [latest release](https://github.com/solokeys/solo/releases) or use
a build that you made yourself.
You need to use a firmware file that has the combined bootloader, application, and attestation key pair (bootloader + firmware + key).
This means using the `bundle-*.hex` file or the `bundle.hex` from your build.
#### *Warning*
* **Any DFU update erases everything! If you overwrite the Solo flash with a missing bootloader, it will be bricked.**
* **If you program bootloader and firmware with no attestation, you will run into FIDO registration issues.**
You need to use a firmware file that has the combined bootloader and application (or at the very least just the bootloader).
This means using the `bundle-*.hex` file or the `bundle.hex` from your build. If you overwrite the Solo flash with a missing bootloader,
it will be bricked.
We provide two types of bundled builds. The `bundle-hacker-*.hex` build is the hacker build. If you update with this,
you will update the bootloader and application, but nothing will be secured. The `bundle-secure-non-solokeys.hex`

1
docs/solo/repo-readme.md Symbolic link
View File

@ -0,0 +1 @@
../../README.md

View File

@ -4,12 +4,17 @@ On Linux, by default USB dongles can't be accessed by users, for security reason
For some users, things will work automatically:
- Recent Linux distributions (such as Ubuntu Focal, Fedora 32, [Arch Linux](https://wiki.archlinux.org/index.php/Solo)) with systemd 244 or higher automatically detect FIDO devices (check with `systemctl --version`)
- Fedora seems to use a ["universal" udev rule for FIDO devices](https://github.com/amluto/u2f-hidraw-policy)
- Our udev rule made it into [libu2f-host](https://github.com/Yubico/libu2f-host/) v1.1.10
- Arch Linux [has this package](https://www.archlinux.org/packages/community/x86_64/libu2f-host/)
- [Debian sid](https://packages.debian.org/sid/libu2f-udev) and [Ubuntu Eon](https://packages.ubuntu.com/eoan/libu2f-udev) can use the `libu2f-udev` package
- Debian Buster and Ubuntu Disco still distribute v1.1.10, so need the manual rule
- FreeBSD has support in [u2f-devd](https://github.com/solokeys/solo/issues/144#issuecomment-500216020)
There is hope that `udev` itself will adopt the Fedora approach (which is to check for HID usage page `F1D0`, and avoids manually whitelisting each U2F/FIDO2 key): <https://github.com/systemd/systemd/issues/11996>.
Further progress is tracked in: <https://github.com/solokeys/solo/issues/144>.
If you still need to setup a rule, a simple way to do it is:
```

View File

@ -1,219 +0,0 @@
# Tutorial: Getting started with the solo hacker
This is small guide to let you get started with the solo hacker key. In the end you will have set up everything you need and changed the LED from green to red.
## Some additional ressources
This tutorial will take you through all the necessary steps needed to install and get the solo key running. Before we start, I will just list you additional ressources, which might have important information for you:
* [The git repository](https://github.com/solokeys/solo): Here you will find all the code and a quick readme.
* [The Documenation](https://docs.solokeys.io/solo/building/): The official documentation. Especially the [build instructions](https://docs.solokeys.io/solo/building/) are worth a look, if you got stuck.
## Getting the prerequisites
There are two main tools you will need to work on your solo hacker:
* ARM Compiler tool chain
* Solo python tool
The ARM Compiler is used to compile your C-code to a hex file, which can then be deployed onto your solo hacker. The solo tool helps with deploying, updating etc. of the solo hacker. It is a python3 tool. So make sure, that you got Python3 installed on your system \([pip](https://pip.pypa.io/en/stable/) might also come in handy\).
Besides that, you will also need to get the [solo code](https://github.com/solokeys/solo).
### Get the code
The codebase for the solo hacker and other solo keys, can be found at this [git repository](https://github.com/solokeys/solo). So just clone this into your development folder. Make sure, that all the submodules are loaded by using the following command. I forgot to get all the submoules at my first try and the make command failed \(I got an error message telling me, that no solo.elf target can be found\).
```bash
git clone --recurse-submodules https://github.com/solokeys/solo
```
### Getting the ARM Compiler tool chain
Download the Compiler tool chain for your system [here](https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads). After you have downloaded it, you will have to unzip it and add the path to the installation folder.
**Readme**
There is a readme.txt __ in _gcc-arm-none-eabi-x-yyyy-dd-major/share/doc/gcc-arm-none-eabi_. It contains installation guides for Linux, Windows and Mac.
**Installation**
As I used Mac, I will guide you through the installation using MacOS. If you have unpacked the folder already, you can skip the first step.
```bash
#Unzip the tarball
cd $install_dir && tar xjf gcc-arm-none-eabi-*-yyyymmdd-mac.tar.bz2
#Set path
export PATH=$PATH:$install_dir/gcc-arm-none-eabi-*/bin
#Test if it works
arm-none-eabi-gcc
```
If everything worked your output should like this:
```bash
arm-none-eabi-gcc: fatal error: no input files
compilation terminated.
```
### Getting the solo tool
There are several ways, which are listed at the [build instructions](https://docs.solokeys.io/solo/building/). If you are familiar with pip, just use this.
```bash
pip install solo-python
#Or
pip3 install solo-python
```
**Install all other requirements**
To do this either do it in the virtual env or directly on your machine. The requirements can be found in the source folder in requirements.txt.
```bash
#Move to source folder
cd solo
#Install requirements, use pip3 otherwise
pip install -r solo/tools/requirements.txt
```
## Let's get a red light blinking
You will find the code for the key in _/solo/targets/stm32l432_ \(The target might have another id for you, so just use that id\). The LED colors can be found in [_/solo/targets/stm32l432 /src/app.h_](https://github.com/solokeys/solo/blob/master/targets/stm32l432/src/app.h)_._ To change the color we will just have to change the hex-value. Out of the box it should look like this:
```c
// 0xRRGGBB
#define LED_INIT_VALUE 0x000800
#define LED_WINK_VALUE 0x000010
#define LED_MAX_SCALER 15
#define LED_MIN_SCALER 1
```
_LED\_INIT\_VALUE_ is the color, that the LED shows whenever it is plugged in. It normally is a green light. So let's change it to red:
```c
// 0xRRGGBB
#define LED_INIT_VALUE 0xFF0800
#define LED_WINK_VALUE 0x000010
#define LED_MAX_SCALER 15
#define LED_MIN_SCALER 1
```
_LED\_WINK\_VALUE_ is the color, which is shown, whenever the bottom is pressed. It normally is a blue tone, but let's change it to a yellow:
```c
// 0xRRGGBB
#define LED_INIT_VALUE 0xFF0800
#define LED_WINK_VALUE 0xFFFF00
#define LED_MAX_SCALER 15
#define LED_MIN_SCALER 1
```
Save the file and then let's try to get the code onto the stick.
## Move code to solo hacker
First we have to build cbor. To do this change into the target folder and use the corresponding command.
```bash
#Change into correct directory
cd solo/targets/stm32l432/
#Make cbor
make cbor
```
You should also make sure to check, that your key has the newest solo firmware installed. To check the firmware on the device, use this command:
```bash
solo key version
```
To update to the newest version, use this command:
```bash
solo key version
```
**Note:** Sometimes the connection between Mac and key seemed to be broken and you might get an error stating: _No solo found_. Just unplug the key and plug it back in.
### General deployment cycle
In general we will always have to go through these steps:
* Compile code and generate new firmware
* Change device into bootloader mode
* Deploy code to device
#### Compile code
To compile the code, we will again have to change into our target directory:
```bash
#Change into correct directory
cd solo/targets/stm32l432/
```
It is important to choose the correct build target. Most explanations focus on the build of the firmware and use:
```bash
make firmware
```
As we are using the solo hacker, we will need to use:
```bash
make build-hacker
```
This will generate a file _solo.hex_, which has the compiled code on it. If you later need to change the bootloader itself, please refer to [the documentation](https://docs.solokeys.io/solo/building/).
#### Deploy code
To deploy the code make sure you are back at the source root.
```bash
cd ../..
```
First we will have to change into bootload modus:
```bash
solo program aux enter-bootloader
```
This is needed to be able to load the new firmware on the device. If we forget this step, the solo tool will do it for us in the next step.
This is the moment of truth. We delete the old firmware and deploy the new one with the changed LED lights to the solo key. For this step we will also stay in the source root.
```bash
solo program bootloader targets/stm32l432/solo.hex
```
If there is another hex-File, that you want to load, you can just exchange the last argument.
And that's it, now your LED should be red.
To summarize, here are again the steps to update your solo:
1. Change code
2. Run these commands
```bash
#Change into correct directory
cd solo/targets/stm32l432/
#Compile code
make build-hacker
#Change to root
cd ../..
#Enter bootload mode
solo program aux enter-bootloader
#Deploy code
solo program bootloader targets/stm32l432/solo.hex
```

View File

@ -1,205 +0,0 @@
# Tutorial: Writing an extension for the solo stick
A short overview about, where and how you should implement your extension into the solo stick code base. In this tutorial we will add a small extension, that will engage in a "ping"-"pong" exchange.
## Make it visible
We need to make it visible, that the key now supports a new extension.
This is done in the function _ctap_get_info_ in [ctap.c](https://github.com/solokeys/solo/blob/master/fido2/ctap.c). This function creates a map with all the information about the solo key. You should therefore add your extension identifier here, too.
```c
uint8_t ctap_get_info(CborEncoder * encoder){
//[...]
ret = cbor_encode_uint(&map, RESP_extensions);
check_ret(ret);
{
ret = cbor_encoder_create_array(&map, &array, 3);
check_ret(ret);
{
ret = cbor_encode_text_stringz(&array, "hmac-secret");
check_ret(ret);
ret = cbor_encode_text_stringz(&array, "credProtect");
check_ret(ret);
//Add it here
}
ret = cbor_encoder_close_container(&map, &array);
check_ret(ret);
}
//[...]
}
```
After you have added your identifier it should look similiar to this:
```c
uint8_t ctap_get_info(CborEncoder * encoder){
//[...]
ret = cbor_encode_uint(&map, RESP_extensions);
check_ret(ret);
{
ret = cbor_encoder_create_array(&map, &array, 3); //This number should reflect the number of supported extensions
check_ret(ret);
{
ret = cbor_encode_text_stringz(&array, "hmac-secret");
check_ret(ret);
ret = cbor_encode_text_stringz(&array, "credProtect");
check_ret(ret);
//Add it here
ret = cbor_encode_text_stringz(&array, "ping-pong");
check_ret(ret);
}
ret = cbor_encoder_close_container(&map, &array);
check_ret(ret);
}
//[...]
}
```
Important: make sure to change the size of the created array to the correct number of elements.
## Let's get our extension parsed
As with all incoming messages, the extension has to be parsed and depending on the incoming message the reply has to be constructed. For this the function _ctap_parse_extensions_ in [ctap_parse.c](https://github.com/solokeys/solo/blob/master/fido2/ctap_parse.c) is used.
In this function the extension identifier is checked. So, if we want to add our ping-pong extension, we need to compare the incoming identifier to our identifier "ping-pong".
```c
uint8_t ctap_parse_extensions(CborValue * val, CTAP_extensions * ext){
//[...]
if (strncmp(key, "hmac-secret",11) == 0){
//[...]
}else if (strncmp(key, "credProtect",11) == 0) {
//[...]
else if (strncmp(key, "ping-pong",9) == 0) {
//Logic should be placed here
}
//[...]
}
```
What happens then, depends on your extension. You should make sure, to check incoming values for correctness, though. As hmac-secret and credProtect are already implemented, you could have a look at their implementations for a kind of guideline.
At this stage we can use the extension struct, which can be found in [ctap.h](https://github.com/solokeys/solo/blob/master/fido2/ctap.h).
```c
typedef struct
{
uint8_t hmac_secret_present;
CTAP_hmac_secret hmac_secret;
uint32_t cred_protect;
} CTAP_extensions;
```
This struct already contains important values for the other extensions, so we are going to add two for our extension. The first "ping_pong_present" should indicate if the key received a message with a ping-pong extension. The response should then contain the correct response.
```c
typedef struct
{
uint8_t hmac_secret_present;
CTAP_hmac_secret hmac_secret;
uint32_t cred_protect;
uint8_t ping_pong_present;
char ping_pong_response[4];
} CTAP_extensions;
```
Now we have to parse our message accordingly.
```c
uint8_t ctap_parse_extensions(CborValue * val, CTAP_extensions * ext){
//[...]
if (strncmp(key, "hmac-secret",11) == 0){
//[...]
}else if (strncmp(key, "credProtect",11) == 0) {
//[...]
else if (strncmp(key, "ping-pong",9) == 0) {
if (cbor_value_get_type(&map) == CborTextStringType)
{
//Cop incoming message
uint8_t txt[5];
sz = sizeof(txt);
ret = cbor_value_copy_text_string(&map, (char *)txt, &sz, NULL);
check_ret(ret);
if(strcmp((const char*)txt, "ping") == 0) {
ext->ping_pong_present = 0x01;
strcpy((char *)ext->ping_pong_response, "pong");
}else if(strcmp((const char*)txt, "pong") == 0) {
ext->ping_pong_present = 0x01;
strcpy((char *)ext->ping_pong_response, "ping");
}else{
printf2(TAG_ERR, "Wrong parameter requested. Got %s.\r\n", txt);
return CTAP2_ERR_INVALID_OPTION;
}
}else{
printf1(TAG_RED, "warning: ping-pong request ignored for being wrong type\r\n");
}
}
//[...]
}
```
Here we are doing the following:
1. Check if we got a message with either "ping" or "pong"
2. Set the correct value, to note, that we received a message using the ping-pong extension
3. Set the correct response ("pong" for "ping" and vice versa)
## Create a reply
Now, that we have parsed the correct message, we have to construct the correct reply. That is done in the function _ctap_make_extensions_ in [ctap.c](https://github.com/solokeys/solo/blob/master/fido2/ctap.c). We will use the before filled _CTAP_extensions_ in here.
We have to do two things here:
1. Check, if a message using the ping-pong extension
2. Set the correct response according to our parsed incoming message
```c
static int ctap_make_extensions(CTAP_extensions * ext, uint8_t * ext_encoder_buf, unsigned int * ext_encoder_buf_size){
//[...]
if (ext->hmac_secret_present == EXT_HMAC_SECRET_PARSED)
{
//[...]
}
else if (ext->hmac_secret_present == EXT_HMAC_SECRET_REQUESTED)
{
//[...]
}
if (ext->cred_protect != EXT_CRED_PROTECT_INVALID) {
//[...]
}
if(ext->ping_pong_present){
extensions_used += 1;
ping_pong_is_valid = 1;
}
if (extensions_used > 0)
{
//[...]
if (hmac_secret_output_is_valid) {
{
//[...]
}
}
if (hmac_secret_requested_is_valid) {
{
//[...]
}
}
if (cred_protect_is_valid) {
{
//[...]
}
}
if (ping_pong_is_valid) {
{
ret = cbor_encode_text_stringz(&extension_output_map, "ping-pong");
check_ret(ret);
//Set the response message
ret = cbor_encode_text_stringz(&extension_output_map, (const char*)ext->ping_pong_response);
check_ret(ret);
}
}
//[...]
}
//[...]
}
```
## Recap
To create a new extension, you would have to take the following three steps:
- Make sure, that the new extension will be made visible through a call of get_info
- Parse incoming messages correctly
- Construct the correct reply

File diff suppressed because it is too large Load Diff

View File

@ -16,9 +16,7 @@
#define CTAP_CLIENT_PIN 0x06
#define CTAP_RESET 0x07
#define GET_NEXT_ASSERTION 0x08
#define CTAP_CBOR_CRED_MGMT 0x0A
#define CTAP_VENDOR_FIRST 0x40
#define CTAP_CBOR_CRED_MGMT_PRE 0x41
#define CTAP_VENDOR_LAST 0xBF
#define MC_clientDataHash 0x01
@ -39,19 +37,6 @@
#define GA_pinAuth 0x06
#define GA_pinProtocol 0x07
#define CM_cmd 0x01
#define CM_cmdMetadata 0x01
#define CM_cmdRPBegin 0x02
#define CM_cmdRPNext 0x03
#define CM_cmdRKBegin 0x04
#define CM_cmdRKNext 0x05
#define CM_cmdRKDelete 0x06
#define CM_subCommandParams 0x02
#define CM_subCommandRpId 0x01
#define CM_subCommandCred 0x02
#define CM_pinProtocol 0x03
#define CM_pinAuth 0x04
#define CP_pinProtocol 0x01
#define CP_subCommand 0x02
#define CP_cmdGetRetries 0x01
@ -73,11 +58,6 @@
#define EXT_HMAC_SECRET_REQUESTED 0x01
#define EXT_HMAC_SECRET_PARSED 0x02
#define EXT_CRED_PROTECT_INVALID 0x00
#define EXT_CRED_PROTECT_OPTIONAL 0x01
#define EXT_CRED_PROTECT_OPTIONAL_WITH_CREDID 0x02
#define EXT_CRED_PROTECT_REQUIRED 0x03
#define RESP_versions 0x1
#define RESP_extensions 0x2
#define RESP_aaguid 0x3
@ -161,29 +141,16 @@ typedef struct
typedef struct {
uint8_t tag[CREDENTIAL_TAG_SIZE];
union {
uint8_t nonce[CREDENTIAL_NONCE_SIZE];
struct {
uint8_t _pad[CREDENTIAL_NONCE_SIZE - 4];
uint32_t value;
}__attribute__((packed)) metadata;
}__attribute__((packed)) entropy;
uint8_t nonce[CREDENTIAL_NONCE_SIZE];
uint8_t rpIdHash[32];
uint32_t count;
}__attribute__((packed)) CredentialId;
struct __attribute__((packed)) Credential {
struct Credential {
CredentialId id;
CTAP_userEntity user;
};
typedef struct {
CredentialId id;
CTAP_userEntity user;
// Maximum amount of "extra" space in resident key.
uint8_t rpId[48];
uint8_t rpIdSize;
} __attribute__((packed)) CTAP_residentKey;
typedef struct Credential CTAP_residentKey;
typedef struct
{
@ -250,7 +217,6 @@ typedef struct
{
uint8_t hmac_secret_present;
CTAP_hmac_secret hmac_secret;
uint32_t cred_protect;
} CTAP_extensions;
typedef struct
@ -319,26 +285,6 @@ typedef struct
} CTAP_getAssertion;
typedef struct
{
int cmd;
struct {
uint8_t rpIdHash[32];
CTAP_credentialDescriptor credentialDescriptor;
} subCommandParams;
struct {
uint8_t cmd;
uint8_t subCommandParamsCborCopy[sizeof(CTAP_credentialDescriptor) + 16];
} hashed;
uint32_t subCommandParamsCborSize;
uint8_t pinAuth[16];
uint8_t pinAuthPresent;
int pinProtocol;
} CTAP_credMgmt;
typedef struct
{
int pinProtocol;
@ -357,12 +303,7 @@ typedef struct
struct _getAssertionState {
// Room for both authData struct and extensions
struct {
CTAP_authDataHeader authData;
uint8_t extensions[80];
} __attribute__((packed)) buf;
CTAP_extensions extensions;
CTAP_authDataHeader authData;
uint8_t clientDataHash[CLIENT_DATA_HASH_SIZE];
CTAP_credentialDescriptor creds[ALLOW_LIST_MAX_SIZE];
uint8_t lastcmd;

View File

@ -666,8 +666,8 @@ uint8_t ctap_parse_extensions(CborValue * val, CTAP_extensions * ext)
if (ret == CborErrorOutOfMemory)
{
printf2(TAG_ERR,"Error, rp map key is too large. Ignoring.\n");
check_ret( cbor_value_advance(&map) );
check_ret( cbor_value_advance(&map) );
cbor_value_advance(&map);
cbor_value_advance(&map);
continue;
}
check_ret(ret);
@ -698,14 +698,6 @@ uint8_t ctap_parse_extensions(CborValue * val, CTAP_extensions * ext)
printf1(TAG_RED, "warning: hmac_secret request ignored for being wrong type\r\n");
}
}
else if (strncmp(key, "credProtect",11) == 0) {
if (cbor_value_get_type(&map) == CborIntegerType) {
ret = cbor_value_get_int(&map, (int*)&ext->cred_protect);
check_ret(ret);
} else {
printf1(TAG_RED, "warning: credProtect request ignored for being wrong type\r\n");
}
}
ret = cbor_value_advance(&map);
check_ret(ret);
@ -879,7 +871,7 @@ uint8_t ctap_parse_make_credential(CTAP_makeCredential * MC, CborEncoder * encod
{
return ret;
}
ret = cbor_value_advance(&map);
cbor_value_advance(&map);
check_ret(ret);
}
@ -1007,163 +999,6 @@ uint8_t parse_allow_list(CTAP_getAssertion * GA, CborValue * it)
return 0;
}
static uint8_t parse_cred_mgmt_subcommandparams(CborValue * val, CTAP_credMgmt * CM)
{
size_t map_length;
int key;
int ret;
unsigned int i;
CborValue map;
size_t sz = 32;
if (cbor_value_get_type(val) != CborMapType)
{
printf2(TAG_ERR,"error, wrong type\n");
return CTAP2_ERR_INVALID_CBOR_TYPE;
}
ret = cbor_value_enter_container(val,&map);
check_ret(ret);
const uint8_t * start_byte = cbor_value_get_next_byte(&map) - 1;
ret = cbor_value_get_map_length(val, &map_length);
check_ret(ret);
for (i = 0; i < map_length; i++)
{
if (cbor_value_get_type(&map) != CborIntegerType)
{
printf2(TAG_ERR,"Error, expecting integer type for map key, got %s\n", cbor_value_get_type_string(&map));
return CTAP2_ERR_INVALID_CBOR_TYPE;
}
ret = cbor_value_get_int(&map, &key);
check_ret(ret);
ret = cbor_value_advance(&map);
check_ret(ret);
switch(key)
{
case CM_subCommandRpId:
ret = cbor_value_copy_byte_string(&map, CM->subCommandParams.rpIdHash, &sz, NULL);
if (ret == CborErrorOutOfMemory)
{
printf2(TAG_ERR,"Error, map key is too large\n");
return CTAP2_ERR_LIMIT_EXCEEDED;
}
check_ret(ret);
break;
case CM_subCommandCred:
ret = parse_credential_descriptor(&map, &CM->subCommandParams.credentialDescriptor);
check_ret(ret);;
break;
}
ret = cbor_value_advance(&map);
check_ret(ret);
}
const uint8_t * end_byte = cbor_value_get_next_byte(&map);
uint32_t length = (uint32_t)end_byte - (uint32_t)start_byte;
if (length > sizeof(CM->hashed.subCommandParamsCborCopy))
{
return CTAP2_ERR_LIMIT_EXCEEDED;
}
// Copy the details that were hashed so they can be verified later.
memmove(CM->hashed.subCommandParamsCborCopy, start_byte, length);
CM->subCommandParamsCborSize = length;
return 0;
}
uint8_t ctap_parse_cred_mgmt(CTAP_credMgmt * CM, uint8_t * request, int length)
{
int ret;
unsigned int i;
int key;
size_t map_length;
CborParser parser;
CborValue it,map;
memset(CM, 0, sizeof(CTAP_credMgmt));
ret = cbor_parser_init(request, length, CborValidateCanonicalFormat, &parser, &it);
check_ret(ret);
CborType type = cbor_value_get_type(&it);
if (type != CborMapType)
{
printf2(TAG_ERR,"Error, expecting cbor map\n");
return CTAP2_ERR_INVALID_CBOR_TYPE;
}
ret = cbor_value_enter_container(&it,&map);
check_ret(ret);
ret = cbor_value_get_map_length(&it, &map_length);
check_ret(ret);
printf1(TAG_PARSE, "CM map has %d elements\n", map_length);
for (i = 0; i < map_length; i++)
{
type = cbor_value_get_type(&map);
if (type != CborIntegerType)
{
printf2(TAG_ERR,"Error, expecting int for map key\n");
return CTAP2_ERR_INVALID_CBOR_TYPE;
}
ret = cbor_value_get_int_checked(&map, &key);
check_ret(ret);
ret = cbor_value_advance(&map);
check_ret(ret);
switch(key)
{
case CM_cmd:
printf1(TAG_PARSE, "CM_cmd\n");
if (cbor_value_get_type(&map) == CborIntegerType)
{
ret = cbor_value_get_int_checked(&map, &CM->cmd);
check_ret(ret);
CM->hashed.cmd = CM->cmd;
}
else
{
return CTAP2_ERR_INVALID_CBOR_TYPE;
}
break;
case CM_subCommandParams:
printf1(TAG_PARSE, "CM_subCommandParams\n");
ret = parse_cred_mgmt_subcommandparams(&map, CM);
check_ret(ret);
break;
case CM_pinProtocol:
printf1(TAG_PARSE, "CM_pinProtocol\n");
if (cbor_value_get_type(&map) == CborIntegerType)
{
ret = cbor_value_get_int_checked(&map, &CM->pinProtocol);
check_ret(ret);
}
else
{
return CTAP2_ERR_INVALID_CBOR_TYPE;
}
break;
case CM_pinAuth:
printf1(TAG_PARSE, "CM_pinAuth\n");
ret = parse_fixed_byte_string(&map, CM->pinAuth, 16);
check_retr(ret);
CM->pinAuthPresent = 1;
break;
}
ret = cbor_value_advance(&map);
check_ret(ret);
}
return 0;
}
uint8_t ctap_parse_get_assertion(CTAP_getAssertion * GA, uint8_t * request, int length)
{
@ -1297,7 +1132,7 @@ uint8_t ctap_parse_get_assertion(CTAP_getAssertion * GA, uint8_t * request, int
return ret;
}
ret = cbor_value_advance(&map);
cbor_value_advance(&map);
check_ret(ret);
}
@ -1518,21 +1353,11 @@ uint8_t ctap_parse_client_pin(CTAP_clientPin * CP, uint8_t * request, int length
break;
case CP_getKeyAgreement:
printf1(TAG_CP,"CP_getKeyAgreement\n");
if (cbor_value_get_type(&map) != CborBooleanType)
{
printf2(TAG_ERR,"Error, expecting cbor boolean\n");
return CTAP2_ERR_INVALID_CBOR_TYPE;
}
ret = cbor_value_get_boolean(&map, &CP->getKeyAgreement);
check_ret(ret);
break;
case CP_getRetries:
printf1(TAG_CP,"CP_getRetries\n");
if (cbor_value_get_type(&map) != CborBooleanType)
{
printf2(TAG_ERR,"Error, expecting cbor boolean\n");
return CTAP2_ERR_INVALID_CBOR_TYPE;
}
ret = cbor_value_get_boolean(&map, &CP->getRetries);
check_ret(ret);
break;

View File

@ -35,7 +35,6 @@ uint8_t parse_cose_key(CborValue * it, COSE_key * cose);
uint8_t ctap_parse_make_credential(CTAP_makeCredential * MC, CborEncoder * encoder, uint8_t * request, int length);
uint8_t ctap_parse_get_assertion(CTAP_getAssertion * GA, uint8_t * request, int length);
uint8_t ctap_parse_cred_mgmt(CTAP_credMgmt * CM, uint8_t * request, int length);
uint8_t ctap_parse_client_pin(CTAP_clientPin * CP, uint8_t * request, int length);
uint8_t parse_credential_descriptor(CborValue * arr, CTAP_credentialDescriptor * cred);

View File

@ -542,9 +542,6 @@ extern void _check_ret(CborError ret, int line, const char * filename);
uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE_BUFFER * wb);
extern void solo_lock_if_not_already();
uint8_t ctaphid_handle_packet(uint8_t * pkt_raw)
{
uint8_t cmd = 0;
@ -734,11 +731,6 @@ uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE
ctaphid_write(wb, NULL, 0);
return 1;
#endif
#if defined(SOLO)
case CTAPHID_REBOOT:
device_reboot();
return 1;
#endif
#if !defined(IS_BOOTLOADER)
case CTAPHID_GETRNG:
@ -770,51 +762,34 @@ uint8_t ctaphid_custom_command(int len, CTAP_RESPONSE * ctap_resp, CTAPHID_WRITE
return 1;
break;
// Remove on next release
#if !defined(IS_BOOTLOADER) && defined(SOLO)
case 0x99:
solo_lock_if_not_already();
wb->bcnt = 0;
ctaphid_write(wb, NULL, 0);
return 1;
break;
#endif
#if !defined(IS_BOOTLOADER) && (defined(SOLO_EXPERIMENTAL))
case CTAPHID_LOADKEY:
/**
* Load external key. Useful for enabling backups.
* bytes: 4 4 96
* payload: version [maj rev patch RFU]| counter_replacement (BE) | master_key |
* bytes: 4 96
* payload: | counter_increase (BE) | master_key |
*
* Counter should be increased by a large amount, e.g. (0x10000000)
* to outdo any previously lost/broken keys.
*/
printf1(TAG_HID,"CTAPHID_LOADKEY\n");
if (len != 104)
if (len != 100)
{
printf2(TAG_ERR,"Error, invalid length.\n");
ctaphid_send_error(wb->cid, CTAP1_ERR_INVALID_LENGTH);
return 1;
}
param = ctap_buffer[0] << 16;
param |= ctap_buffer[1] << 8;
param |= ctap_buffer[2] << 0;
if (param != 0){
ctaphid_send_error(wb->cid, CTAP2_ERR_UNSUPPORTED_OPTION);
return 1;
}
// Ask for THREE button presses
if (ctap_user_presence_test(8000) > 0)
if (ctap_user_presence_test(2000) > 0)
if (ctap_user_presence_test(2000) > 0)
if (ctap_user_presence_test(8000) > 0)
if (ctap_user_presence_test(8000) > 0)
{
ctap_load_external_keys(ctap_buffer + 8);
param = ctap_buffer[7];
param |= ctap_buffer[6] << 8;
param |= ctap_buffer[5] << 16;
param |= ctap_buffer[4] << 24;
ctap_load_external_keys(ctap_buffer + 4);
param = ctap_buffer[3];
param |= ctap_buffer[2] << 8;
param |= ctap_buffer[1] << 16;
param |= ctap_buffer[0] << 24;
ctap_atomic_count(param);
wb->bcnt = 0;

View File

@ -27,7 +27,6 @@
#define CTAPHID_BOOT (TYPE_INIT | 0x50)
#define CTAPHID_ENTERBOOT (TYPE_INIT | 0x51)
#define CTAPHID_ENTERSTBOOT (TYPE_INIT | 0x52)
#define CTAPHID_REBOOT (TYPE_INIT | 0x53)
#define CTAPHID_GETRNG (TYPE_INIT | 0x60)
#define CTAPHID_GETVERSION (TYPE_INIT | 0x61)
#define CTAPHID_LOADKEY (TYPE_INIT | 0x62)

View File

@ -185,22 +185,6 @@ __attribute__((weak)) void ctap_store_rk(int index, CTAP_residentKey * rk)
}
__attribute__((weak)) void ctap_delete_rk(int index)
{
CTAP_residentKey rk;
memset(&rk, 0xff, sizeof(CTAP_residentKey));
if (index < RK_NUM)
{
memmove(RK_STORE.rks + index, &rk, sizeof(CTAP_residentKey));
}
else
{
printf1(TAG_ERR,"Out of bounds for delete_rk\r\n");
}
}
__attribute__((weak)) void ctap_load_rk(int index, CTAP_residentKey * rk)
{
memmove(rk, RK_STORE.rks + index, sizeof(CTAP_residentKey));

View File

@ -140,13 +140,6 @@ uint32_t ctap_rk_size();
*/
void ctap_store_rk(int index,CTAP_residentKey * rk);
/** Delete a resident key from an index.
* @param index to delete resident key from. Has no effect if no RK exists at index.
*
* *Optional*, if not implemented, operates on non-persistant RK's.
*/
void ctap_delete_rk(int index);
/** Read a resident key from an index into memory
* @param index to read resident key from.
* @param rk pointer to resident key structure to write into with RK.

View File

@ -51,7 +51,6 @@ struct logtag tagtable[] = {
{TAG_NFC,"NFC"},
{TAG_NFC_APDU, "NAPDU"},
{TAG_CCID, "CCID"},
{TAG_CM, "CRED_MGMT"},
};

View File

@ -48,7 +48,6 @@ typedef enum
TAG_NFC = (1 << 19),
TAG_NFC_APDU = (1 << 20),
TAG_CCID = (1 << 21),
TAG_CM = (1 << 22),
TAG_NO_TAG = (1UL << 30),
TAG_FILENO = (1UL << 31)

View File

@ -204,7 +204,7 @@ int8_t u2f_authenticate_credential(struct u2f_key_handle * kh, uint8_t key_handl
printf1(TAG_U2F, "APPID does not match rpIdHash.\n");
return 0;
}
make_auth_tag(appid, (uint8_t*)&cred->entropy, cred->count, tag);
make_auth_tag(appid, cred->nonce, cred->count, tag);
if (memcmp(cred->tag, tag, CREDENTIAL_TAG_SIZE) == 0){
return 1;

View File

@ -1,17 +1,12 @@
#include "version.h"
#include "app.h"
const version_t firmware_version
#ifdef SOLO
__attribute__ ((section (".flag"))) __attribute__ ((__used__))
#endif
= {
.major = SOLO_VERSION_MAJ,
.minor = SOLO_VERSION_MIN,
.patch = SOLO_VERSION_PATCH,
.reserved = 0
};
const version_t firmware_version __attribute__ ((section (".flag"))) __attribute__ ((__used__)) = {
.major = SOLO_VERSION_MAJ,
.minor = SOLO_VERSION_MIN,
.patch = SOLO_VERSION_PATCH,
.reserved = 0
};
// from tinycbor, for a quick static_assert
#include <compilersupport_p.h>

42
mkdocs.yml Executable file → Normal file
View File

@ -1,36 +1,34 @@
site_name: Solo Technical Documentation
site_author: SoloKeys
site_description: 'Documentation for the SoloKeys solo software'
site_url: 'https://docs.solokeys.dev/'
site_url: 'https://docs.solokeys.io/solo/'
repo_url: 'https://github.com/solokeys/solo'
repo_name: 'solokeys/solo'
copyright: 'Copyright &copy; 2018 - 2019 SoloKeys'
nav:
- Home: index.md
- FIDO2 Implementation: fido2-impl.md
- Metadata Statements: metadata-statements.md
- Build instructions: building.md
- Programming instructions: programming.md
- Bootloader mode: bootloader-mode.md
- Customization: customization.md
- Solo Extras: solo-extras.md
- Application Ideas: application-ideas.md
- Running on Nucleo32 board: nucleo32-board.md
- Signed update process: signed-updates.md
- Usage and Porting guide: porting.md
- Tutorial Getting Started: tutorial-getting-started.md
- Tutorial - Writing extensions: tutorial-writing-extensions.md
- Code documentation: code-overview.md
- Contributing Code: contributing.md
- Contributing Docs: documenting.md
- udev Rules: udev.md
- About: repo-readme.md
- Home: solo/index.md
- FIDO2 Implementation: solo/fido2-impl.md
- Metadata Statements: solo/metadata-statements.md
- Build instructions: solo/building.md
- Programming instructions: solo/programming.md
- Bootloader mode: solo/bootloader-mode.md
- Customization: solo/customization.md
- Solo Extras: solo/solo-extras.md
- Application Ideas: solo/application-ideas.md
- Running on Nucleo32 board: solo/nucleo32-board.md
- Signed update process: solo/signed-updates.md
- Usage and Porting guide: solo/porting.md
- Code documentation: solo/code-overview.md
- Contributing Code: solo/contributing.md
- Contributing Docs: solo/documenting.md
- udev Rules: solo/udev.md
- About: solo/repo-readme.md
theme:
name: material
logo: 'images/logo.svg'
favicon: 'images/favicon.ico'
logo: 'solo/images/logo.svg'
favicon: 'solo/images/favicon.ico'
markdown_extensions:
- markdown_include.include

View File

@ -449,12 +449,6 @@ void ctap_store_rk(int index, CTAP_residentKey * rk)
}
void ctap_delete_rk(int index)
{
CTAP_residentKey rk;
memset(&rk, 0xff, sizeof(CTAP_residentKey));
memmove(RK_STORE.rks + index, &rk, sizeof(CTAP_residentKey));
}
void ctap_load_rk(int index, CTAP_residentKey * rk)
{

View File

@ -1,13 +0,0 @@
let
nixpkgs_tar = fetchTarball { url = "https://github.com/NixOS/nixpkgs/archive/20.03.tar.gz"; sha256 = "0182ys095dfx02vl2a20j1hz92dx3mfgz2a6fhn31bqlp1wa8hlq"; };
pkgs = import "${nixpkgs_tar}" {};
pyPackages = (python-packages: with python-packages; ([
solo-python pytest
] ++ (with builtins; map (d: getAttr d python-packages) (filter (d: stringLength d > 0) (pkgs.lib.splitString "\n" (builtins.readFile ./tools/requirements.txt))))));
python-with-my-packages = pkgs.python3.withPackages pyPackages;
in
with pkgs;
stdenv.mkDerivation {
name = "solo";
buildInputs = [ gnumake gcc gcc-arm-embedded-8 python-with-my-packages ];
}

View File

@ -1,4 +1,4 @@
# STM32L432 Solo
Check out our [official documentation](https://docs.solokeys.dev/building/)
Check out our [official documentation](https://docs.solokeys.io/solo/building/)
for instructions on building and programming!

View File

@ -50,15 +50,12 @@ typedef struct {
uint8_t payload[255 - 10];
} __attribute__((packed)) BootloaderReq;
uint8_t * last_written_app_address = 0;
/**
* Erase all application pages. **APPLICATION_END_PAGE excluded**.
*/
static void erase_application()
{
int page;
last_written_app_address = (uint8_t*) 0;
for(page = APPLICATION_START_PAGE; page < APPLICATION_END_PAGE; page++)
{
flash_erase_page(page);
@ -109,20 +106,17 @@ int is_bootloader_disabled()
uint32_t * auth = (uint32_t *)(AUTH_WORD_ADDR+4);
return *auth == 0;
}
uint8_t * last_written_app_address;
#include "version.h"
bool is_firmware_version_newer_or_equal()
{
if (last_written_app_address == 0) {
return false;
}
printf1(TAG_BOOT,"Current firmware version: %u.%u.%u.%u (%02x.%02x.%02x.%02x)\r\n",
current_firmware_version.major, current_firmware_version.minor, current_firmware_version.patch, current_firmware_version.reserved,
current_firmware_version.major, current_firmware_version.minor, current_firmware_version.patch, current_firmware_version.reserved
);
volatile version_t * new_version = ((volatile version_t *) (last_written_app_address-8+4));
volatile version_t * new_version = ((volatile version_t *) last_written_app_address);
printf1(TAG_BOOT,"Uploaded firmware version: %u.%u.%u.%u (%02x.%02x.%02x.%02x)\r\n",
new_version->major, new_version->minor, new_version->patch, new_version->reserved,
new_version->major, new_version->minor, new_version->patch, new_version->reserved
@ -176,7 +170,6 @@ int bootloader_bridge(int klen, uint8_t * keyh)
uint32_t addr = ((*((uint32_t*)req->addr)) & 0xffffff) | 0x8000000;
uint32_t * ptr = (uint32_t *)addr;
uint32_t current_address;
switch(req->op){
case BootWrite:
@ -203,16 +196,9 @@ int bootloader_bridge(int klen, uint8_t * keyh)
printf2(TAG_ERR, "Error, boot check bypassed\n");
exit(1);
}
current_address = addr + len;
if (current_address < (uint32_t) last_written_app_address) {
printf2(TAG_ERR, "Error, only ascending writes allowed.\n");
has_erased = 0;
return CTAP2_ERR_NOT_ALLOWED;
}
last_written_app_address = (uint8_t*) current_address;
// Do the actual write
flash_write((uint32_t)ptr,req->payload, len);
last_written_app_address = (uint8_t *)ptr + len - 8 + 4;
break;
case BootDone:
// Writing to flash finished. Request code validation.

View File

@ -84,5 +84,4 @@ cbor:
cd ../../tinycbor/ && make clean
cd ../../tinycbor/ && make CC="$(CC)" AR=$(AR) \
LDFLAGS="$(LDFLAGS_LIB)" \
CFLAGS="$(CFLAGS) -Os -DCBOR_PARSER_MAX_RECURSIONS=3"
CFLAGS="$(CFLAGS) -Os"

View File

@ -61,7 +61,7 @@ SECTIONS
*(.data*)
. = ALIGN(8);
_edata = .;
} >sram2 AT> flash
} >ram AT> flash
.flag :
{

View File

@ -199,20 +199,6 @@ int solo_is_locked(){
return tag == ATTESTATION_CONFIGURED_TAG && (device_settings & SOLO_FLAG_LOCKED) != 0;
}
// Locks solo flash from debugging. Locks on next reboot.
// This should be removed in next Solo release.
void solo_lock_if_not_already() {
uint8_t buf[2048];
memmove(buf, (uint8_t*)ATTESTATION_PAGE_ADDR, 2048);
((flash_attestation_page *)buf)->device_settings |= SOLO_FLAG_LOCKED;
flash_erase_page(ATTESTATION_PAGE);
flash_write(ATTESTATION_PAGE_ADDR, buf, 2048);
}
/** device_migrate
* Depending on version of device, migrates:
* * Moves attestation certificate to data segment.
@ -577,11 +563,7 @@ uint32_t ctap_atomic_count(uint32_t amount)
return lastc;
}
if (amount > 256){
lastc = amount;
} else {
lastc += amount;
}
lastc += amount;
if (lastc/256 > erases)
{
@ -790,28 +772,33 @@ uint32_t ctap_rk_size(void)
void ctap_store_rk(int index,CTAP_residentKey * rk)
{
ctap_overwrite_rk(index, rk);
}
int page_offset = (sizeof(CTAP_residentKey) * index) / PAGE_SIZE;
uint32_t addr = flash_addr(page_offset + RK_START_PAGE) + ((sizeof(CTAP_residentKey)*index) % PAGE_SIZE);
void ctap_delete_rk(int index)
{
CTAP_residentKey rk;
memset(&rk, 0xff, sizeof(CTAP_residentKey));
ctap_overwrite_rk(index, &rk);
printf1(TAG_GREEN, "storing RK %d @ %04x\r\n", index,addr);
if (page_offset < RK_NUM_PAGES)
{
flash_write(addr, (uint8_t*)rk, sizeof(CTAP_residentKey));
//dump_hex1(TAG_GREEN,rk,sizeof(CTAP_residentKey));
}
else
{
printf2(TAG_ERR,"Out of bounds reading index %d for rk\n", index);
}
}
void ctap_load_rk(int index,CTAP_residentKey * rk)
{
int byte_offset_into_page = (sizeof(CTAP_residentKey) * (index % (PAGE_SIZE/sizeof(CTAP_residentKey))));
int page_offset = (index)/(PAGE_SIZE/sizeof(CTAP_residentKey));
uint32_t addr = flash_addr(page_offset + RK_START_PAGE) + byte_offset_into_page;
int page_offset = (sizeof(CTAP_residentKey) * index) / PAGE_SIZE;
uint32_t addr = flash_addr(page_offset + RK_START_PAGE) + ((sizeof(CTAP_residentKey)*index) % PAGE_SIZE);
printf1(TAG_GREEN, "reading RK %d @ %04x\r\n", index, addr);
if (page_offset < RK_NUM_PAGES)
{
uint32_t * ptr = (uint32_t *)addr;
memmove((uint8_t*)rk,ptr,sizeof(CTAP_residentKey));
//dump_hex1(TAG_GREEN,rk,sizeof(CTAP_residentKey));
}
else
{
@ -822,28 +809,22 @@ void ctap_load_rk(int index,CTAP_residentKey * rk)
void ctap_overwrite_rk(int index,CTAP_residentKey * rk)
{
uint8_t tmppage[PAGE_SIZE];
int page_offset = (sizeof(CTAP_residentKey) * index) / PAGE_SIZE;
int page = page_offset + RK_START_PAGE;
int byte_offset_into_page = (sizeof(CTAP_residentKey) * (index % (PAGE_SIZE/sizeof(CTAP_residentKey))));
int page_offset = (index)/(PAGE_SIZE/sizeof(CTAP_residentKey));
printf1(TAG_GREEN, "overwriting RK %d @ page %d @ addr 0x%08x-0x%08x\r\n",
index, RK_START_PAGE + page_offset,
flash_addr(RK_START_PAGE + page_offset) + byte_offset_into_page,
flash_addr(RK_START_PAGE + page_offset) + byte_offset_into_page + sizeof(CTAP_residentKey)
);
printf1(TAG_GREEN, "overwriting RK %d\r\n", index);
if (page_offset < RK_NUM_PAGES)
{
memmove(tmppage, (uint8_t*)flash_addr(RK_START_PAGE + page_offset), PAGE_SIZE);
memmove(tmppage, (uint8_t*)flash_addr(page), PAGE_SIZE);
memmove(tmppage + byte_offset_into_page, rk, sizeof(CTAP_residentKey));
flash_erase_page(RK_START_PAGE + page_offset);
flash_write(flash_addr(RK_START_PAGE + page_offset), tmppage, PAGE_SIZE);
memmove(tmppage + (sizeof(CTAP_residentKey) * index) % PAGE_SIZE, rk, sizeof(CTAP_residentKey));
flash_erase_page(page);
flash_write(flash_addr(page), tmppage, PAGE_SIZE);
}
else
{
printf2(TAG_ERR,"Out of bounds reading index %d for rk\n", index);
}
printf1(TAG_GREEN, "4\r\n");
}
void boot_st_bootloader(void)

View File

@ -146,14 +146,12 @@ void device_set_clock_rate(DEVICE_CLOCK_RATE param)
case DEVICE_LOW_POWER_IDLE:
SET_CLOCK_RATE0();
break;
#if !defined(IS_BOOTLOADER)
case DEVICE_LOW_POWER_FAST:
SET_CLOCK_RATE1();
break;
case DEVICE_FAST:
SET_CLOCK_RATE2();
break;
#endif
}
}

View File

@ -1,4 +1,5 @@
ecdsa
fido2==0.7.3
intelhex
pyserial
solo-python